
20-1 
© Copyright 2016 Pearson Education, Inc. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may 

be reproduced, in any form or by any means, without permission in writing from the publisher. 

 ELECTRIC CHARGE, FORCE, AND FIELD 

EXERCISES 

Section 20.1 Electric Charge 

 13. INTERPRET We’ll estimate the charge your body would carry if the electron charge slightly differed from the proton 
charge. 
DEVELOP Since the human body is about 60% water, let’s assume that the number of protons/electrons per 
kilogram in your body is the same as that of a water molecule. Water is 2 hydrogen atoms (with one proton and 
one electron each) and one oxygen atom (with 8 protons and 8 electrons). If the charges on the electrons and 
protons are different by one part in a billion, then the net charge on a water molecule would be  

( ) ( )9 28 27
proton electron10 10 10 10 1.60 10 C 1.60 10 Cq q q e− − −∆ = − = = × = ×  

The mass of a water molecule is the mass of two hydrogens and one oxygen: 1u 1u 16u 18u,+ + =  where 
271 u 1.66 10 kg.−= × Therefore, the net charge to mass ratio for a water molecule would be: 

( )
2H O

27

27

1.60 10 C 0.05 C/kg
18 1.66 10 kg

q
m

−

−

⎛ ⎞∆ ×= =⎜ ⎟⎜ ⎟ ×⎝ ⎠
  

EVALUATE We’ll assume your mass is 65 kg. If we approximate this mass as pure water, then the total charge on 
your body would be approximately 

( )( )
2H O

65 kg 0.05 C/kg 3 C
q

q m
m

⎛ ⎞∆
∆ ≈ =⎜ ⎟⎜ ⎟

⎝ ⎠
 

ASSESS This is a huge amount of charge. Imagine half of the charge was in your head/chest and the other half 
was in your legs, about a meter away. Then the magnitude of the force of repulsion between the upper and lower 
parts of your body would be  

( )( )
( )

219 2 2
2 101 2

12 22

9.0 10 N m /C 3 C
2 10 N

1 m
kq q

F
r

× ⋅
= = = ×  

This would rip you apart! 

 14. INTERPRET This problem deals with quantity of charge in a typical lightning flash. We want to express the 
quantity in terms of the elementary charge e. 
DEVELOP Since the magnitude of elementary charge e is 191.6 10  C,e −= ×  the number N of electrons involved in 
the lightening flash is given by N = Q/e. 
EVALUATE Substituting the values given in the problem statement, we find  

20
19

25 C/ 1.6 10
1.6 10  C

N Q e −= = = ×
×

 

ASSESS Since 1 coulomb is about 6.25 × 1018 elementary charges, our result has the right order of magnitude.  

 15. INTERPRET This problem asks us to find the combination of u and d quarks needed to make a proton, which has 
a positive unit charge e, and a neutron, which has zero charge. 

DEVELOP The u quark has charge 2e/3 and the d quark has charge −e/3, so we can combine these so the charges 

sum to unity (for the proton) or zero (for the neutron).  
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EVALUATE (a) Two u quarks and a d quark make a total charge of 2(2/3) − 1/3 = 1, so the proton can be 
constructed from the quark combination uud. 
(b) Two d quarks and a u quark make a total charge of 2(−1/3) + 2/3 = 0, so the neutron can be constructed from 
the quark combination udd.  

ASSESS Because of a phenomenon called color confinement, quarks can only be found in hadrons, of which 
protons and neutrons are the most stable examples. 

 16. INTERPRET This problem deals with the quantity of net charge Earth carries. We want to express the quantity in 
terms of the elementary charge e. 
DEVELOP Since the charge carried by an electron is 191.6 10  C,q e −= − = − ×  the number N of electrons carried 
by Earth is given by N = Q/q. 
EVALUATE Substituting the values given in the problem statement, we find  

5
24

19

5 10  C 3.1 10
1.6 10  C

Q
N

e −
− ×= = = ×

− − ×
 

ASSESS Since 1 coulomb is about 6.25 × 1018 elementary charges, our result has the right order of magnitude.  

 17. INTERPRET This problem deals with the number of electrons a honeybee has to lose to acquire a net positive 
charge of +180 pC. We express the quantity in terms of the elementary charge e. 
DEVELOP Since the charge carried by an electron is 191.6 10  C,q e −= − = − ×  the number N of electrons the 
honeybee needs to lose to have a net charge of +Q is given by N = +Q/e. 
EVALUATE Substituting the values given in the problem statement, we find  

12
9

19

180 10  C 1.1 10
1.6 10  C

Q
N

e

−

−
×= = = ×
×

 

ASSESS Being positively charged, honeybees are attracted to the negatively charged spider webs.  

Section 20.2 Coulomb’s Law 

 18. INTERPRET The electron and proton each carry one unit of electric charge, but the sign of the charge is opposite 
for the two particles. Given the distance between them, we are to find the force (magnitude and direction) between 
these particles. 

DEVELOP Coulomb’s law (Equation 20.1) gives the force between two particles. For this problem, 
19

1 2 1.6 10 Cq q e= = = ×  and r = 52.9 × 10−12 m. Because the charges have opposite signs, the force will be 

attractive. 

EVALUATE The force between these particles is attractive and has the magnitude  

( )
2 9 2 2 19 2

8
22 12

(9.0 10  N m /C )(1.6 10  C) 8.2 10  N
52.9 10  m

ke
F

r

−
−

−

× ⋅ ×= = = ×
×

  

ASSESS Because the electron is much less massive than the proton, the electron does most of the accelerating in 
this two-particle system. 

 19. INTERPRET We want to know how far a proton must be from an electron to exert an electrical attraction equal to the 
electron’s weight on Earth. 
DEVELOP The force between a proton and electron has a magnitude given by Coulomb’s law (Equation 20.1): 

2 2/ ,F ke r= where 191 1.60 10 C.e −= × We’ll solve this for the distance, r, at which e .F m g=  
EVALUATE The distance at which the electrical force is equal to the gravitational force is  

( )( )
( )( )

29 2 2 192

31 2
e

9.0 10 N m /C 1.60 10 C
5.1 m

9.11 10 kg 9.8 m/s
ke

r
m g

−

−

× ⋅ ×
= = =

×
 

ASSESS On the molecular scale, protons and electrons are roughly 1010 m− apart. Since the Coulomb attraction 
scales as 21 / ,r electric forces will clearly overwhelm any gravity effects.  
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 20. INTERPRET The problem is to calculate the charge on tiny Styrofoam pieces. 
DEVELOP Since the charges are equal, the repulsion force at the given distance is 2 2/F kq r=  (Equation 20.1). 
EVALUATE Solving for the charge in Coulomb’s law gives 

( )( )
( )

22

9 2 2

0.021 N 0.015 m
23 nC

9.0 10 N m /C
Fr

q
k

= = =
× ⋅

 

ASSESS This seems reasonable for small charged objects. 

 21. INTERPRET This problem involves finding the unit vector associated with the electrical force one charge exerts 
on another, given the coordinates of the positions of both charges. 
DEVELOP A unit vector from the position of charge q at (1 m,  0),qr =  to any other point ( ),r x y=  is 

( ) ( )
( )2 2

1 m,ˆ
1 m

q

q

r r x y
n

r r x y

− −
= =

− − +
 

EVALUATE (a) When the other charge is at position (1 m,1 m),r =  the unit vector is  

2

(0,1 m) ˆˆ (0,1)
0 (1 m)

n j= = =
+

 

(b) When ( )0, 0 ,r =  

( )
( )

( )
2

1 m, 0 ˆˆ 1,0
1 m 0

n i
−

= = − = −
− +

 

(c) Finally, when ( )2 m,3 m ,r =  the unit vector is 

( )
( ) ( )

( )
2 2

1 m, 3 m 1, 3 ˆ ˆˆ 0.316 0.949
101 m 3 m

n i j= = = +
+

 

The sign of q doesn’t affect this unit vector, but the signs of both charges do determine whether the force exerted 
by q is repulsive or attractive; that is, in the direction of n̂+  or ˆ.n−  
ASSESS The unit vector always points away from the charge q located at (1 m, 0).  

 22. INTERPRET This problem requires us to find the force acting on a proton due to an electron, given the positions 
of the two particles. 

DEVELOP Use the result of the previous problem to find the direction of the force acting on the proton. The 

relevant quantities are ( )0,0qr =  for the proton and ( )0.41 nm, 0.36 nmr = , so the unit vector indicating the 

direction of the force is 

( ) ( )
( ) ( )2 2

0.41 m, 0.36 nm ˆ ˆˆ 0.75 0.66
0.41 m 0.36 nm

q

q

r r
n i j

r r

−
= = = +

− +
 

Because the charges are opposite in sign, the force will act in the positive n̂  direction. The magnitude of the force 

may be found using Coulomb’s law (Equation 20.1). 

EVALUATE The magnitude of the force is 
2 9 2 2 19 2

10
2 2 2 18 2

(9 10  N m /C )(1.6 10  C) 7.7 10  N
(0.41 0.36 ) 10  mp

ke
F

r

−
−

−
× ⋅ ×= = = ×

+ ×
 

so the complete (i.e., vector) force is ( ) 10ˆ ˆ5.8 5.1 10 Ni j −+ ×  

ASSESS This force is two orders of magnitude less than the force between the electron and proton in a hydrogen 
atom. The direction of the force is 1tan (0.36 0.41) 41θ −= = °  above the x axis. 

Section 20.3 The Electric Field 

 23. INTERPRET This problem is about calculating the electric field strength due to a source, when the force 
experienced by the electron is known. 
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DEVELOP Equation 20.2a shows that the electric field strength (magnitude of the field) at a point is equal to the 
force per unit charge that would be experienced by a charge at that point: / .E F q=  
EVALUATE With | |,q e= we find the field strength to be 

9
9

19

0.61 10 N 3.8 10 N/C
| | 1.60 10 C
F

E
e

−

−
×= = = ×
×

 

ASSESS Since the charge of electron is negative, the electric field will point in the opposite direction as the force. 

 24. INTERPRET This problem asks us to find the magnitude of the force on an electric charge that is placed in an 
electric field of the given strength. 

DEVELOP The electric field is the force per unit charge, so we multiply the magnitude of the charge by that of the 

electric field to find the force (see Equation 20.2b).  

EVALUATE The magnitude of the force is ( )( )6 42.0 10  C 100 N/C 2.0 10  N.F qE − −= = × = ×  

ASSESS The direction of this force will be in the same direction as that of the electric field because the charge is 
positive. 

 25. INTERPRET This problem involves calculating the electric field needed to produce the given force on the given 
charge, and then find the force experienced by a second charge is the same electric field. 

DEVELOP Equation 20.2a shows that the electric field strength (magnitude of the field) at a point is equal to the 

force per unit charge that would be experienced by a charge at that point: / .E F q= The equation allows us to 

calculate E give that F = 150 mN and q = 68 nC. For part (b), the force experienced by another charge q′ in the 

same field is given by Equation 20.2b: F′ = q′E. 

EVALUATE (a) With 68 nC,q =  we find the field strength to be  

6150 mN 2.2 10  N/C
| | 68 nC
F

E
e

= = = ×  

(b) The force experienced by a charge q′ = 35 µC in the same field is 

( )( )635 μC 2.21 10  N/C 77 NF q E′ ′= = × =  

ASSESS The force a test charge particle experiences is proportional to the magnitude of the test charge. In our 
problem, since 35 μC 68 nC,q q′ = > =  we find F′ > F. 

 26. INTERPRET We want the force on an ion inside a cell with an internal electric field. 
DEVELOP A singly-charged ion has a charge of | |,q e= so the magnitude of the force will be .F e E=  
EVALUATE The force on the ion in the cell is 

( )( )19 61.60 10 C 8.0 10 N/C 1.3 pNF e E −= = × × =  

ASSESS Although a pico-Newton is very small, it is a significant force at the molecular scale. 

 27. INTERPRET This problem is similar to Problem 20.25, in that we are given the force exerted on a given charge by 
an unknown electric field, and we are to find the force exerted by this field on another charge (a proton, in this 
case). 

DEVELOP Apply Equation 20.2b E F q= to find the electric field, with q = −1 µC. The force on the proton  

(qp = 1.6 × 10−6 C) is given by Equation 20.2a, p pF q E= . Inserting the result of Equation 20.2b gives 

p p p
F

F q E q
q

= =  

EVALUATE Inserting the given quantities into the expression above for the force on the proton gives 

19
6

ˆ10 N ˆ(1.6 10  C) 1.6  pN
1.0 10 Cp

i
F i−

−= × = −
− ×

 

ASSESS The force on the proton acts in the opposite direction compared to the force on the original charge, 
because the two charges have opposite signs. 
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 28. INTERPRET For this problem, we are to calculate the electric field strength due to a positive point charge—the 
proton. 
DEVELOP The electric field strength at a distance r from a point source charge q is given by Equation 20.3: 

2
ˆkq

E r
r

=  

The proton in a hydrogen atom behaves like a point charge, so we can apply this equation to find the electric field 
of the proton. The charge of the proton is q = +e = 1.6 × 10−19 C. 
EVALUATE At a distance of one Bohr radius (a0 = 0.0529 nm) from the proton, the electric field strength is  

( )( )
( )

9 2 2 19
11

22 11
0

9.0 10  N m /C 1.6 10  C
5.2 10  N/C

5.29 10  m

ke
E

a

−

−

× ⋅ ×
= = = ×

×
 

ASSESS The field strength at the position of the electron is enormous because of the close proximity.  

Section 20.4 Fields of Charge Distributions 

 29. INTERPRET For this problem, we are to find the electric field at several locations in the vicinity of two given 
point charges. We can apply the principle of superposition to solve this problem. 
DEVELOP Take the origin of the x-y coordinate system to be at the midpoint between the two charges, as 
indicated in the figure below, with unit vectors î pointing to the right, and ĵ pointing up. We use Equation 

20.4 to find the electric field at the given points. Let q1 = +2.0 µC and q2 = −2.0 µC. Let ( ) ˆ2.5 cmr j± = ±  
denote the positions of the charges and r  denote that of the field point (i.e., the point at which we are 
calculating the electric field). A unit vector from charge i to the field point is ( )r r r r± ±− −  [where the plus 
(minus) sign corresponds to the positive (negative) charge)]. Thus, the spatial factors in Coulomb’s law are 

( ) 32 3ˆ .i i i ir r r r r r r r± ±= = − −  By the principle of superposition (Equation 20.4), the total electric field at any 
point is  

1 1 2 2
3 3
1 2

q r q r
E k

r r
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 

 
EVALUATE (a) For the point at 5.0 cm to the left of P, we have 

( )
( ) ( ) ( )
( ) ( ) ( )

1

2

ˆ5.0 cm
ˆ ˆ ˆ5.0 cm 2.5 cm 2.5 cm
ˆ ˆ ˆ5.0 cm 2.5 cm 7.5 cm

r i

r r r i i i

r r r i i i

+

−

= −

= − = − − − = −

= − = − − = −

 

so the electric field is 

( )
( )

( )
( )

( )

1 1 2 2 1 2
3 3 2 2
1 2 1 2

6 62
9

2 22

ˆ ˆ

ˆ ˆ2.0 10 C 2.0 10 CN m ˆ9.0 10 26  MN/C
C 0.025 m 0.075 m

q r q r q i q i
E k k

r r r r

i i
i

− −

⎛ ⎞⎛ ⎞
= + = − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎡ ⎤× − ×⎛ ⎞⋅ ⎢ ⎥= × − − = −⎜ ⎟
⎢ ⎥⎝ ⎠ ⎣ ⎦

 

or 26 MN/C, pointing to the left. 
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(b) For the point at 5.0 cm directly above P, we have 

( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

1
3 3/23 2 2

1

2
3 3/ 23 2 2

2

ˆ5.0 cm
ˆ ˆ2.5 cm 5.0 cm

5.0 cm 2.5 cm

ˆ ˆ2.5 cm 5.0 cm

5.0 cm 2.5 cm

r j

i jr r r
r r r

i jr r r
r r r

+

+

−

−

=

− − +−= =
− ⎡ ⎤+ −⎣ ⎦

− +−= =
− ⎡ ⎤+⎣ ⎦

 

so the electric field is 

( )
( ) ( )

( )
( ) ( )

( ) ( )
( )

2 6
9

3/ 2 3/ 22 2 2 2 2 2

2 6
9

3/ 22 2 2 2

ˆ ˆ ˆ ˆ0.025 0.050 0.025 0.050N m 2.0 10  C9.0 10
C m 0.025 0.050 0.025 0.050

N m 2.0 10  C ˆ9.0 10 0.050 (5.2 
C 0.025 0.050 m

i j i j
E

i

−

−

⎧ ⎫
− − + − +⎛ ⎞⎛ ⎞⎪ ⎪⋅ ×= × −⎨ ⎬⎜ ⎟⎜ ⎟

⎡ ⎤ ⎡ ⎤⎝ ⎠⎝ ⎠⎪ ⎪− + +⎣ ⎦ ⎣ ⎦⎩ ⎭
⎛ ⎞

⎛ ⎞⎜ ⎟⋅ ×= × =⎜ ⎟⎜ ⎟
⎡ ⎤⎝ ⎠⎜ ⎟+⎣ ⎦⎝ ⎠

ˆMN/C)i

 

or 5.2 MN/C to the right. 

(c) For 0r = , we have 

( )
( ) ( )

( )
( ) ( )

1
3 3 23

1

2
3 3 23

2

ˆ ˆ2.5 cm

2.5 cm 2.5 cm
ˆ ˆ2.5 cm

2.5 cm 2.5 cm

ir r r i
r r r

ir r r i
r r r

+

+

−

−

−− −= = =
−

−= = =
−

 

so the electric field is 

( )
2 6

9
2 2 2 2

ˆ ˆN m 2.0 10  C ˆ9.0 10 58 MN/C
C m (0.025) (0.025)

i i
E i

− ⎡ ⎤⎛ ⎞ ⎛ ⎞⋅ × −= × − = +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦

 

or 58 MN/C to the right. 

ASSESS The electric field for part (b) is much weaker because the fields from the two charges largely cancel. 

 30. INTERPRET Given the magnitude of the dipole moment, we are asked to calculate the distance between the pair 
of opposite charges that make up the dipole. 
DEVELOP As shown in Equation 20.5, the electric dipole moment p is the product of the charge q and the 
separation d between the two charges making up the dipole: 

p qd=  

EVALUATE Using the equation above, the distance separating the charges of a dipole is 
30

19

6.2 10  C m 39 pm 0.039 nm
1.6 10  C

p
d

q

−

−
× ⋅= = = =

×
 

ASSESS The distance d has the same order of magnitude as the Bohr radius 0( 0.0529 nm).a =  

 31. INTERPRET We are given a long wire with a uniform charge density and are asked to find the electric field 
strength 38 cm from the wire. We can assume that the wire length is much, much greater than 38 cm. 

DEVELOP For a very long wire ( 38 cm),L >>  Example 20.7 shows that the magnitude of the electric field falls 

off like 1/r. Therefore, the electric field is simply scaled by the ratio of the distances, or 

1
2 1

2

r
E E

r
=  
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EVALUATE Inserting the given quantities into the expression above gives  

( )2
221.9 kN/C 1.1 kN/C
38

E = =  

ASSESS The electric field gets weaker the farther we are from the wire, as expected. 

 32. INTERPRET In this problem we are asked to find the line charge density, given the field strength at a distance 
from a long wire. We can assume that the wire is much, much longer than the distance involved (45 cm), so that 
the result of Example 20.7 applies. 
DEVELOP If the electric field points radially toward the long wire ( 45 cm),L >>  the charge on the wire must be 
negative. The magnitude of the field is given by the result of Example 20.7,  

2k
E

r
λ=  

EVALUATE Using the equation above, we find the line charge density to be  

( )( )
( )9 2 2

260 kN/C 0.45 m
6.5 μC/m

2 2 9.0 10  N m /C
Er
k

λ
−

= = =−
× ⋅

 

ASSESS The electric field strength due to a line charge density decreases as 1/r. Compare this to the 1/r2 
dependence of the electric field of a point charge. 

 33. INTERPRET We will use Coulomb’s law and the definition of electric field to find the electric field at a point on 
the axis of a charged ring. 
DEVELOP From Example 20.6, which is done for a general distance x, we see that 

( )3/ 22 2

kQx
E

x a
=

+
 

We want to know the field E at position x = a. 
EVALUATE Inserting x = a into the expression above gives 

( ) ( )3/ 2 3/ 2 22 2 2 82

kQx kQa kQ
E

ax a a
= = =

+
 

ASSESS The units are kQ/(distance)2, which are correct for an electric field. 

Section 20.5 Matter in Electric Fields 

 34. INTERPRET For this problem, we are to find the force generated by 10 elementary charges in the given electric 
field, and calculate the mass that can be suspended by this force in the Earth’s gravitational field.  

DEVELOP By Newton’s second law, the force due to gravity and the force due to the electric field must cancel 

each other for the oil drop to have no acceleration. This condition gives 

, org eF F

mg qE

= −
= −

 

The equation can be used to compute the mass m. 

EVALUATE Using the equation above, the mass is  

( )( )
( )

19 7
12

2

10 1.6 10  C 2.0 10  N/C
3.3 10  kg

9.8 m/s
qE

m
g

−
−

× × ×
= = = ×  

ASSESS Because this mass is so small, the size of such a drop may be better appreciated in terms of its radius, 
1/3

oil(3 /4 ) .R m πρ=  Millikan used oil of density 3
oil 0.9199 g/cm ,ρ =  so 9.46 μmR =  for this drop. 

 35. INTERPRET This problem involves kinematics, Newton’s second law, and Coulomb’s law. We can use these 
concepts to find the electric field strength necessary to accelerate an electron from rest to c/10 within 5.0 cm. 
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DEVELOP If the electric filed is constant in space, the force applied to the charge will be constant, so we can use 

Equation 2.11, which applied for constant acceleration, to find the necessary acceleration for the electron. This 

gives 

( )
0

2 2
0 02v v a x x

=

= + −  

where v = c/10, x − x0 = 5.0 cm, and v0 = 0 because the electron starts from rest. Thus the acceleration is 

( ) ( )
2 2

02 200 5.0 cm
v c

a
x x

= =
−

 

The force needed to provide this acceleration is given by Newton’s second law which, combined with Coulomb’s 

law, gives 
2

10 m
mc

F Eq ma= = =  

which we can solve for E. 

EVALUATE Inserting |q| = 1.6 ×10−19 C for the electron’s charge (since we are only concerned with the strength of 
the electric field, not its direction), we find 

( )
( )( )

( )( )

231 82
4

19

9.11 10 kg 3.0 10 m/s
5.1 10 N/C

10 m 1.6 10 C 10 m
mc

E
q

−

−

× ×
= = = ×

×
 

ASSESS Because the electron has as negative charge, it would move opposite to the direction of this electric field. 

 36. INTERPRET This problem is about the motion of a proton, which has charge +e, in an electric field that points to the 
left. The proton enters the field region with the given velocity, and we are to find how far it travels in the field before it 
reverses direction. We are also to describe its subsequent motion. To address this problem, we will use Newton’s 
second law and Coulomb’s law, and some kinematics from Chapter 2. 
DEVELOP Choose the x axis to the right, in the direction of the proton’s initial velocity, so that the electric field is 
oriented to the left. If only the Coulomb force (Equation 20.2b) acts on the proton, the acceleration can be found 
from Newton’s second law (for constant mass: Equation 4.3): 

( )ˆ
x

eE
F qE qE i ma a

m
= = − = ⇒ = −  

where ax is the magnitude of the proton’s acceleration along the x axis. The negative sign means that the proton 
decelerates as it enters the electric field. Because the acceleration is constant, we can apply Equation 2.11, 

( )2 2
0 02v v a x x= + − . When the proton reverses direction, its velocity v = 0 momentarily, so we insert this into 

Equation 2.11 to find the distance traveled x − x0. 
EVALUATE (a) Using Equation 2.11, with 5

0 3.8 10  m/sv = × , we find the maximum penetration into the field 
region to be 

( )( )
( )( )

227 52 2
0 0

0 19 3

1.67 10  kg 3.8 10  m/s
1.346 cm 1.3 cm

2 2 2 1.6 10  C 56 10  N/Cx

v mv
x x

a eE

−

−

× ×
− = − = = = ≈

× ×
 

(b) The proton subsequently moves to the left, with the same constant acceleration in the field region, until it exits 
with f 0v v= − . 
ASSESS The deceleration of the proton increases with the field strength E. Note that it is unrealistic to have an 
electric field that begins instantaneously in space or time, as we will find in later chapters. 

 37. INTERPRET This problem involves an electrostatic analyzer like that in Example 20.8, so we will use the results 
of that example. We are to find the coefficient E0 in the expression for the electric field strength in the analyzer that 
will permit protons to exit the analyzer.  

DEVELOP From the analysis of Example 20.8, we know that the coefficient E0 of the analyzer is related to the 

particle mass m, its velocity v, and it charge q by 
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2

0
mv

E
qb

=  

Given that 271.67 10  kgm −= ×  for a proton, 191.6 10 Cq −= × , and v and b are given, we can find E0. 

EVALUATE Inserting the given quantities in the expression for E0 gives 

( )( )
( )( )

227 32

0 19

1.67 10  kg 84 10 m/s
980 N/C

1.6 10 C 0.075 m
mv

E
eb

−

−

× ×
= = =

×
 

to two significant figures. 

ASSESS Note that the proton exits the analyzer with the same speed with which it entered that analyzer, because 
the force is always perpendicular to the proton’s trajectory (i.e., it’s a centripetal force). Thus, the force does no 
work on the proton, but the proton’s velocity has changed direction.  

PROBLEMS 

 38. INTERPRET The problem asks for an estimate of the fraction of electrons removed from a 2-g ping pong ball due 
to rubbing. 
DEVELOP Suppose that half the ball’s mass is protons (the other half is neutrons). The number of protons is then  

,0
1 g

p
p

N
m

=  

For the ping pong ball to be initially neutral, it must have the same number of electrons Ne,0. Therefore, Ne,0= Np,0. 
The number of electrons removed is  

6
13

19 19

1μC 1 10 C 1 10
1.6 10 C 1.6 10 C 1.6eN

−

− −
×∆ = = = ×

× ×
 

The fraction removed is then ∆Ne/Ne,0. 
EVALUATE Inserting the numbers, we find the fraction of the ping pong ball’s electrons that are removed is 

( ) ( ) ( )
13 13

11
27

,0

0.625 10 0.625 10 1 10
1 1 1.67 10  kg

e

e p

N
N g m g

− −
−

−

∆ × ×= = = ×
×

 

ASSESS The fraction is about a hundred billionth. Thus, although we removed some 10 trillion electrons, it is 
only a very small fraction of the total number of electrons. 

 39. INTERPRET This problem involves Coulomb’s law, which we can use to relate the force experienced by the two 
particles to their charges. 

DEVELOP Coulomb’s law (Equation 20.1) gives the force between charged particles 1 and 2 as 

1 2
2

kq q
F

r
=  

We are given that q1 = 2q2, and the r = 12.5 cm = 0.125 m, so we can solve for the magnitude of the larger charge 

q1. 

EVALUATE Substituting for q2 in Coulomb’s law and solving for q1 gives 

( ) ( )

2
1

1 2 1

1 9 2 2

2

2 143 N2 0.125 m 22 μC
9.0 10 N m /C

q Fr
q q q

k

F
q r

k

⎛ ⎞= =⎜ ⎟
⎝ ⎠

= ± = ± = ±
× ⋅

 

ASSESS Because the force is repulsive, the charges must have the same sign. However, from the information 
given in the problem statement, we cannot tell whether the sign is positive or negative. 

 40. INTERPRET In solving this problem we follow Problem Solving Strategy 20.1. The source charges are the proton 
and the electron, and the charge on which the forces act is the helium nucleus (with charge +2e). Using the 
principle of superposition, we can sum the individual forces to find the total force. 
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DEVELOP Make a sketch of the situation that shows the charges and their positions (see figure below). The unit 
vector from the proton’s position toward the origin is î− . Using Equation 20.1, the Coulomb force exerted by the 
proton on the helium nucleus is  

( ) ( )( )( )
( ) ( ) ( )

9 2 2
He

P,He 22 9
,He

9.0 10 N m /C 2ˆ ˆ ˆ0.180 nN
1.6 10 m

p

p

e ekq q
F i i i

r −

× ⋅
= = = −

×
− −  

where we have retained an extra significant figure in the result because this is an intermediary result. Similarly, the 

unit vector from the electron’s position to the origin is ĵ− , so the force it exerts on the helium nucleus is  

( ) ( )( )
( ) ( ) ( )He

,He 2 9
,He

2ˆ ˆ ˆ0.638 nN
0.85 10 m

e
e

e

k e ekq q
F i j j

r −

−
= = =

×
− −  

 
EVALUATE To two significant figures, the net Coulomb force on the helium nucleus is the sum of these: 

( ) ( )net ,He ,He
ˆ ˆ0.18 nN 0.64 nNp eF F F i j= + = − +  

ASSESS In situations where there are more than one source charge, we apply the superposition principle and add 

the electric forces vector-wise. Because the electron is closer to the He nucleus than the proton in this problem 

( ,He ,Hee pr r< ), we expect ,He ,He| | | |.p eF F<  The direction of the force is ( )atan 0.638 0.180 106θ = − =  with respect 

to the positive x axis. 

 41. INTERPRET This involves finding the electric force on one charge from another charge when both are located in 
the x-y plane.  
DEVELOP Denote the positions of the charges by 1

ˆ ˆ15 5.0  cmr i j= +  for 1 9.5 μC,q =  and 2
ˆ ˆ4.4 11  cmr i j= +  for 

2 3.2 μC.q = −  The vector from q1 to q2 is 2 1,r r r= − from which we can find the charge separation, r, that goes 
into Coulomb’s law, 2

12 1 2 / ,F kq q r=  for the force q1 exerts on q2. The direction of this force can be designated 
with the unit vector, ˆ / .r r r=  
EVALUATE First, we find the vector displacement: 

( ) ( )2 1
ˆ ˆ ˆ ˆ ˆ ˆ4.4 11  cm 15 5.0  cm 10.6 6.0  cmr r r i j i j i j= − = + − + = − +  

The magnitude of this vector is 2 210.6 6.0 cm 12.2 cm.r = + = So the electric force has a magnitude of  

( )( )( )
( )

9 2 2
1 2

12 22

9.0 10 N m /C 9.5 μC 3.2 μC
18.4 N

0.122 m
kq q

F
r

× ⋅ −
= = = −  

Using the unit vector, we can write the force in component form: 

( )12 12

ˆ ˆ10.6 6.0  cm ˆ ˆˆ 18.4 N 16 9.0  N
12.2 cm
i j

F F r i j
⎛ ⎞− += = − = −⎜ ⎟⎜ ⎟
⎝ ⎠

 

ASSESS Without calculating the exact directions, we can see that r points to the left of the positive y-axis, 
whereas 12F  points to the right of the negative y-axis. This seems to agree with the fact that the force between 
oppositely charged particles is attractive, pointing in the opposite direction as the vector that separates their 
positions. 

 42. INTERPRET Coulomb’s law applies here. Since more than one source charge is involved, we make use of the 
superposition principle to find the net force on the test charge. 
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DEVELOP Make a sketch of the situation (see figure below). By symmetry, the test charge must be placed on the 
axis; if not, it will experience a nonzero force in the ĵ  direction. If we place a charge to the left of the origin, it 
will experience a nonzero force because the charge 3q is both larger (in magnitude) and closer than the charge −2q, 
so it will always generate a greater force for all x < 0. If we place a positive (negative) test charge between the two 
charges, the net force will be to the right (left); that is, nonzero in both cases. Thus, the test charge Q must be 
placed on the x axis to the right of the −2q charge; that is, at x > a. Using the principle of superposition (Equation 
20.4) with Coulomb’s law (Equation 20.1), the net Coulomb force on the test charge is 

( ) ( )
( )22

3 2
x

kQ q kQ q
F

x x a

−
= +

−
 

Set Fx = 0 to solve for x. 

 
EVALUATE The condition Fx = 0 implies that ( )2 23 2 ,x a x− =  or 2 26 3 0.x xa a− + =  Thus,  

( )2 23 9 3 3 6x a a a a= ± − = ±  

Only the solution ( )3 6 5.45x a a= + =  is to the right of x = a. 
ASSESS At ( )3 6x a= +  the forces acting on Q from 3q and −2q exactly cancel each other. Notice that our 
result is independent of the sign and magnitude of the third charge Q. 

 43. INTERPRET This problem involves Coulomb’s law and the principle of superposition, which we can use to find 
the condition such that the three given charges all experience zero net force. 

DEVELOP By symmetry, the negative charge placed at the midpoint between the two positive charges 

experiences zero net force. On the other hand, the Coulomb force on +Q is  

( )
2

22

( )
2

x
kQ q kQ

F
a a

−= +  

EVALUATE Setting 0,xF =  we obtain 4 .Q q=  

ASSESS To verify that we have the correct positioning, we calculate the net force on the left-hand charge. 
Coulomb’s law and the superposition principle give 

( ) ( ) ( )
2 2

22

4 16ˆ ˆ 0
2

q q
k i k i
a a

− + =  

The expression for the force on the right-hand charge is the same, except that the sign of the unit vectors is 
reversed. The force on the central charge is 

( ) ( )
2 2

2 2

4 4ˆ ˆ 0q q
k i k i
a a

− + =  

Thus, all three charges experience zero net force. The situation is depicted below. 

 
Note that the equilibrium is unstable, since if q− is displaced slightly toward one charge, the net force on it will be 
in the direction of that charge. 

 44. INTERPRET More than one source charge is involved in this problem. Therefore, we use Coulomb’s law and 
apply the superposition principle to find the net force on q3. 
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DEVELOP We denote the positions of the charges by ( ) ( )1 2
ˆ ˆm ,  2 m ,r j r i= 1 =  and ( ) ( )3

ˆ ˆ2 m 2 mr i j= +  (see 
figure below). The unit vector pointing from q1 toward q3 is  

( )3 1
13

3 1

ˆ r r
r

r r
−

=
−

 

Similarly, the unit vector pointing from q2 toward q3 is 

( )3 2
23

3 2

ˆ r r
r

r r
−

=
−

 

The vector form of Coulomb’s law and the superposition principle give the net electric force on q3 as 

( ) ( )1 3 3 1 2 3 3 2
3 13 23 3 3

3 1 3 2

kq q r r kq q r r
F F F

r r r r

− −
= + = +

− −
 

 
EVALUATE Substituting the values given in the problem statement, we find the force acting on q3 to be  

( ) ( )

( )( ) ( )( ) ( ) ( )

1 3 3 1 2 3 3 2
3 13 23 3 3

3 1 3 2

6 6
9 2 2 6

22

ˆ ˆ ˆ68 10 C 2.0 34 10 C 2 ˆ ˆ9.0 10 N m /C 15 10 C 1.6 0.33  N
8.0 m5.0 5.0 m

kq q r r kq q r r
F F F

r r r r

i j j
i j

− −
−

− −
= + = +

− −

⎡ ⎤× +1.0 − ×
⎢ ⎥= × ⋅ × + = −
⎢ ⎥
⎣ ⎦

 

or 2 2
3 3 3 1.7 Nx yF F F= + =  at an angle of 1

3 3tan ( / ) 11y xF Fθ −= = − °  to the x axis. 

ASSESS The force between q1 and q3 is repulsive ( 1 3 0q q > ) while the force between q2 and q3 is attractive 
( 2 3 0q q < ). The two forces add vectorially to give the net force on q3. 

 45. INTERPRET This problem is similar to the preceding one, only the magnitude of the charges has changed. 
Therefore, we can use the same strategy to solve this problem.  
DEVELOP  The position of the charges are again denoted by ( ) ( )1 2

ˆ ˆm ,  2 m ,r j r i= 1 =  and ( ) ( )3
ˆ ˆ2 m 2 mr i j= +  

The unit vector pointing from q3 toward q1 is  

( ) ( ) ( ) ( )
( ) ( )

1 3
31 2 21 3

ˆ ˆ ˆ1 m 2 m 2 m 2 1 ˆˆ
5 52 1 m

r r j i j
r j

r r
− − −

= = = − −
− − + −

 

Similarly, the unit vector pointing from q2 toward q1 is 

( ) ( ) ( )
( )

1 2
21 221 2

ˆ ˆ1 m 2 m 2 1ˆ ˆˆ
5 51 2 m

r r j i
r i j

r r
− −

= = = − +
− + −

 

The vector form of Coulomb’s law and the superposition principle give the net electric force on q3 as 

( ) ( )2 32 21 3 31
1 1 12 2 3/ 2 2 3/ 2 2

21 31

ˆ ˆ ˆ ˆ2 2ˆ ˆ
5 m m

q i j q i jq r q r
F kq kq

r r

⎡ ⎤− + − −⎡ ⎤ ⎢ ⎥= + = +⎢ ⎥ ⎢ ⎥5⎣ ⎦ ⎣ ⎦

 

We are told that the force on q1 is in the î  direction, so the ĵ  component of 1F  must be zero. This gives 

2 3 0q q− =  

EVALUATE (a) From the equation above, we find that q3 = −q2, or q3 = 20 µC. 
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(b) Inserting the result from part (a) into the expression for 1F  gives 

( )( )( )( ) ( )3 / 29 2 2 2
1

ˆ ˆ9.0 10 N m /C 25 20 μC 4.0 5.0 1.6  N.F i i−= × ⋅ × − = −  

ASSESS Because the charges q2 and q3 are positioned symmetrically above and below q1, the result that q2 = −q3 
is expected. 

 46. INTERPRET We are given the data of the electric forces on the DNA segments in an electrophoresis apparatus. 

We would like to determine the electric field strength of the apparatus based on the data given.  

DEVELOP The electric charge q carried by the DNA segments is directly proportional to the number of base 

pairs, with each base pair carrying a charge of q = −2e. Since | | ,F q E= plotting F versus the number of base pairs 

give a straight line, and the slope is equal to 2eE, where E is the field strength.  

EVALUATE  (a) A plot of the electric force versus the number of base pairs is given below. 

 
The electric field is  

4 16
3

19 19

(5.66 10 ) pN 5.66 10 N 1.77 10 N/C
2(1.6 10 C) 2(1.6 10 C)

E
− −

− −
× ×= = = ×
× ×

 

 
ASSESS Electrophoresis is a widely used application of electric fields for separating molecules by size and 
molecular weight. It’s especially useful in biochemistry and molecular biology for distinguishing larger molecules 
like proteins and DNA fragments. 

 47. INTERPRET We’re asked to calculate the electric field from a point charge at several locations.  
DEVELOP The electric field from a point charge is given by Equation 20.3: 2ˆ / .E kqr r=  The charge is at the 
origin, so the vector, ,r  has the same coordinate values as the points in x-y plane that we’re asked to consider. 
Since the unit vector is ˆ / ,r r r= we can write the electric field in a more compact form: 3/ .E kqr r=  
EVALUATE  (a) At 50 cmx =  and 0 cm,y = the electric field is 

( )( )
( ) ( )

2

2
N m9

C
33

9.0 10 65 μC
ˆ ˆ50  cm 2.3  MN/C

50 cm
kq

E r i i
r

⋅×
= = =  

(b) At 50 cmx =  and 50 cm,y = the electric field is 

( )( )

( ) ( )
2

2
N m9

C
3

2 2

9.0 10 65 μC
ˆ ˆ ˆ ˆ ˆ ˆ50 50  cm 0.827 0.827  MN/C 0.83 0.83  MN/C

50 50  cm
E i j i j i j

⋅×
= + = + ≈ +

+
 

(c) At 25 cmx =  and 75 cm,y = − the electric field is 

( )( )

( ) ( )
2

2
N m9

C
3

2 2

9.0 10 65 μC
ˆ ˆ ˆ ˆ25 75  cm 0.30 0.89  MN/C

25 75  cm
E i j i j

⋅×
= − = −

+
 

ASSESS The magnitude of the electric field in parts (a), (b), (c) is 2.3 MN/C, 1.2 MN/C, and 0.9 MN/C, 
respectively. This shows that the field decreases as one moves further away from the point charge, as we would 
expect. 
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 48. INTERPRET This problem involves Coulomb’s law and, since more than one source charge is involved, the 
superposition principle. We will use these to find the point where the field strength vanishes. 
DEVELOP We first note that the field can be zero only along the line joining the charges (the x axis). To the left 
or right of both charges, the fields due to each both have y components in the same direction, and so cannot sum to 
zero. Between the two charges, a distance x > 0 from the 1 µC charge, the electric field is 

( ) ( ) ( )1 2
22

ˆ ˆ
10 cm

kq kq
E i i

x x
= + −

−
 

EVALUATE With 1 1.0 μCq =  and 2 2.0 μCq = , the field vanishes when 

( )22

1.0 μC 2.0 μC
10 cm

10 cm 4.1 cm
2 1

x x

x

=
−

= =
+

 

ASSESS Since 0E =  at 4.1 cmx =  a charge placed at that point does not experience any force.  

 49. INTERPRET This problem involves two source charges, a proton at x = 0 and an ion at x = 5.0 nm. We can apply 
the principle of superposition to find the electric field at x = −5 nm. 

DEVELOP The field at the point x = −5 nm due to the proton is  

( ) ( )2
ˆ

5 nm
p

ke
E i= −  

The field at the same point due to the ion is 

( ) ( )2
ˆ

10 nm
i

i
kq

E i= −  

The total electric field is the sum of these two, and is zero at x = −5.0 nm, so we can solve for qi.  

EVALUATE Solving for the ion’s charge gives 

( ) ( ) ( ) ( )
( )
( )

2 2

2

2

ˆ ˆ 0
5 nm 10 nm

10 nm
4

5 nm

i

i

ke kq
i i

q e e

− + − =

= − = −
 

ASSESS Note that the field due to the ion was defined for a positive charge, so the final charge is negative, as 
indicated. 

 50. INTERPRET Coulomb’s law applies here. The two source charges q are positioned on the x axis, and we use the 
superposition principle to find the field strength at a point on the y axis. 
DEVELOP As in Example 20.2, we apply the symmetry argument to show that the x components of the electric 
field due to both charges cancel, and the net electric field points in the +y direction. 
EVALUATE (a) Since electric field is the force per unit charge, from Example 20.2, we obtain 

( )net, 3/ 22 2 2

22 cosy
kq kqy

E
r a y

θ= =
+

 

(b) The magnitude of the field, a positive function, is zero for y = 0 and ,y = ∞  hence it has a maximum in 
between. Setting the spatial derivative of the electric field equal to zero, we find 

( ) ( ) ( )3/2 5/22 2 2 230 2
2

a y y a y y
− −

= + − +  

or 2 2 23 0.a y y+ − =  Thus, the field strength maxima are at 2 .y a= ±  

ASSESS By symmetry, we expect the directions of the electric field at 2y a= ±  to be opposite.  
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 51. INTERPRET This problem is that same as Example 20.5, except that it is rotated by 90°. There are two source 
particles: a proton at (0, 0.60 nm) and an electron at (0, −0.60 nm), so the system is dipole. 

DEVELOP  We can use the result of Example 20.5, with y replaced by x, and x by −y (or, equivalently, ˆ ˆby ,j i  

and ˆ ˆ by ).i j−  The electric field on the x axis is then 

( ) 3/ 22 2ˆ( ) 2  E x kqa j a x
−

= +  

where 191.6 10  Cq e −= = ×  and a = 0.60 nm (see Figure 20.12 rotated 90° clockwise). The constant 

( )( ) ( )( )29 2 2 192 2 9.0 10 N m /C 1.6 10 C 2.88 GN/C nm .kq −= × ⋅ × =  

EVALUATE (a) Midway between the two charges (at x = 0), the electric field is 

( )
2

22

ˆ ˆ2 (2.88 nm GN/C) ˆ(0,0) (8.0 GN/C)
0.60 nm

kqj j
E j

a
⋅= = =  

(b) for x = 2 nm,  

( ) ( )( ) ( ) ( ) ( )3/ 2 32 2 2 ˆ ˆ2.0 nm,0 (2.88 nm GN/C) 0.60 nm 0.60 2.0 nm 190 MN/CE j j
− −= ⋅ + =  

(c) For x = 20 nm,  

( ) ( )( ) ( ) ( ) ( ) ( )
3/ 222 2 ˆ ˆ ˆ20 nm,0 2.88 nm GN/C 0.60 nm 0.60 20 215.71 kN/C 220 kN/C .E j j j

−
⎡ ⎤− = ⋅ + − = =⎣ ⎦  

to two significant figures. 

ASSESS For part (c), because x � a, we can apply Equation 20.6a, which gives 

( ) ( )( )
( )

2

33 3

2 2.88 nm GN/C 20 nm2ˆ ˆ20 ,0 216.0 kN/C
20 nm

kp kqa
E nm j j

x x

⋅ −
− = − = − = − =

−
 

which differs by only 0.1% from the more precise result of part (c). 

 52. INTERPRET We find the electric field on the axis of a dipole, and show that Equation 20.6b is correct. To do this 
we will use the equation for electric field. 
DEVELOP The spacing between the + and – charges is 2a. We will use 2

q
E k

r
= for each charge to find the total 

field at a point .x a>>  
EVALUATE  

2 2
2 2

2 2

2

ˆ ˆ ˆ[( ) ( ) ]
( ) ( )

ˆ 1 1

q q
E k i k i kq x a x a i

x a x a

kq a a
E i

x x x

− −

− −

+ −= + = − − +
− +

⎡ ⎤⎛ ⎞ ⎛ ⎞→ = − − +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

For ,x a>>
2

1 1 2 ,a a
x x

−
⎛ ⎞± ≈⎜ ⎟
⎝ ⎠

∓ so 

2 2 3

(2 )ˆ ˆ[ 1 2 1 2 ] 4 2 .kq a a kq a k qa
E i i

x x x x x x
⎛ ⎞ ⎛ ⎞ ⎛ ⎞≈ + − − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

But 2 ,p qd qa= = so 3

2 ˆ.kp
E i

x
=  

ASSESS We have shown what was required. 

 53. INTERPRET This problem involves finding the net charge or an unknown charge distribution. We are given the 
behavior of the electric field as a function of distance from the charge, for distances much, much greater than the 
size of the charge distribution. 

DEVELOP Taking the hint, we suppose that the field strength varies with an inverse power of the distance, 

( ) .nE r r≈  Under this hypothesis, 296/87.7 = (1.44/2.16)n, or  

n = ln(296/87.7)/ln(1.44/2.16) = −3.0. 

EVALUATE A dipole field falls off like 3r−  for r a>> , so the charge distribution must be a dipole, whose net 
charge is zero. 
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ASSESS Note that this result is only valid if the dipole separation a � 1 m. Because this is normally the case, the 
result is appears valid. 

 54. INTERPRET Coulomb’s law and the principle of superposition applies here. There are three source charges, and 
we are to find the field strength at a point on the y axis above the upper-most charge. 

DEVELOP Make a sketch of the situation (see figure below). The electric field on the y axis (for 3 /2y a> ) due 

to the two charges on the x axis follows from Example 20.2. The only difference is that in this problem, the charges 

on the x axis are separated by a instead of 2a. Thus,  

( )1 3/22 2

2 ˆ
/4

kqy
E j

y a
=

+
 

On the other hand, using Equation 20.3, we find the electric field due to the charge on the y axis for 3 /2y a>  is  

( )2 2
ˆ

3 /2

kq
E j

y a
=

−
 

Using the principle of superposition, the total field for 3 /2y a>  is the sum of 1E  and 2E . 

 
EVALUATE (a) For 3 /2,y a>  the total field is simply the sum of both terms: 

( ) ( )1 2 3/2 22 2

2 1 ˆ
/4 3 /2

y
E E E kq j

y a y a

⎡ ⎤
⎢ ⎥= + = +⎢ ⎥+ −⎢ ⎥⎣ ⎦

 

(b) For ,y a>>  the electric field may be approximated as  

( )3/2 2 22

2 1 3ˆ ˆy kq
E kq j j

y yy

⎡ ⎤
⎢ ⎥≈ + =
⎢ ⎥
⎢ ⎥⎣ ⎦

 

which is like that due to a point charge of magnitude 3q. 
ASSESS At large distances much, much greater than a, the charge distribution looks like a point charge located at 
the origin with charge 3q. 

 55. INTERPRET This problem involves Coulomb’s law, which generates the given forces between two charged metal 
spheres. The spheres initially experience an attractive force, but when the charge on the spheres is equilibrated, the 
force becomes repulsive. 

DEVELOP The charges initially attract, so q1 = −q2, and, by Coulomb’s law (Equation 20.1), we have  

1 2
22.5 N

1 m
kq q= −  

When the spheres are brought together, they share the total charge equally, each acquiring 1
1 22 ( ).q q+ The 

magnitude of their repulsion is  

( )2
1 2

22.5 N
4 m
q q

k
+

=  

Because the forces have the same magnitude, we can equation them to find the original charges q1 and q2. 
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EVALUATE Equating these two forces, we find a quadratic equation ( )21
1 2 1 24 ,q q q q+ = −  or 2 2

1 1 2 26 0,q q q q+ + =  

with solutions ( )1 23 8 .q q= − ±  Both solutions are possible, but since ( ) 1
3 8 3 8 ,

−
+ = −  they merely represent 

a relabeling of the charges. Since ( ) ( ) ( )222 9 2 2
1 2 2.5 N m / 9.0 10 N m /C 1.67 μCq q− = ⋅ × ⋅ = , the solutions are 

( )1 3 8 16.7 μC 40 μCq = ± + = ±  and ( ) ( )2 40.2 μC 3 8 6.9 μC,q = + =∓ ∓  or the same values with q1 and q2 

interchanged. 

ASSESS The results are reported to two significant figures, which is the precision to which the data is known. 

 56. INTERPRET Two forces are involved in this problem: the Coulomb force and the spring force. The spring is 
stretched due to the Coulomb repulsion between the charges, and we are to find by how much the spring stretches. 
DEVELOP The Coulomb force is given by Equation 20.1 and the spring force is given by Equation 4.9, Fs = −kx, 
where x is the displacement from equilibrium of the spring. We assume that the Coulomb repulsion Fe is the only 
force stretching the spring. When balanced with the spring force, s ,eF F=  or 

( )
2

s2
0

0kq
k x

L x
− =

+
 

where 0L  is the equilibrium length. This cubic equation can be solved by iteration or by Newton’s method. 
EVALUATE Substituting the values given in the problem statement gives  

( ) ( )( )

2
2

0

29 2 2
2 2 3

( )

9.0 10 N m /C 3 8 μC
0.526 m 8.96 10  m

1 45 N/m

s

kq
x L x

k

x x −

+ =

× ⋅  
+ = = ×

  

Newton’s method yields x = 18.0 cm, to two significant figures. 
ASSESS Our result makes sense because the amount stretched is seen to decrease with increasing spring constant ks 
and increase with the magnitude of the charge q. 

 57. INTERPRET We will calculate the electric field magnitude a distance x from either end of a uniformly charged 
rod of charge Q and length L.  
DEVELOP We will use the integral form for electric field, Equation 20.7: 2 ˆ.k dq

r
E r= ∫  Because the charge is 

distributed uniformly along the length, the differential charge element is ( )/ ,dq Q L dx′= where x′ is the location 
of this charge along the rod, see figure below. 

 
We are only interested in the electric field along the x-axis at points with ,x L> in which case the distance to dq  is 
just .r x x′= −  
EVALUATE The integral for the electric field strength is 

( )2 20 0

L LkQk dq dxE
r L x x

′= =
′−∫ ∫  

We can change variables: ,u x x′= − ,dx du′ = −  so the integral becomes 

( ) ( )2
1 1x L

x

kQ kQ kQduE
uL L x L x x x L

− ⎛ ⎞−= = − =⎜ ⎟⎜ ⎟− −⎝ ⎠
∫  

ASSESS For ,x L the electric field reduces to 2/ ,E kQ x= which is what we’d expect since the rod will appear 
as a point charge from a great distance. 

 58. INTERPRET The electron undergoes circular motion where the centripetal force (Chapter 3) is provided by the 
Coulomb force in the form of an electric field around a long current-carrying wire. 
DEVELOP The electric field of the wire is radial and falls off like 1/ ( 2 / ,r E k rλ=  see Example 20.7). For an 
attractive force (negative electron encircling a positively charged wire), this is the same dependence as the 
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centripetal acceleration (see Equation 3.9, ac = v2/r). For circular motion around the wire, the Coulomb force 
provides the electron’s centripetal acceleration. Thus, applying Newton’s second law gives 

2

22

cF ma

v
eE m

r
ke v

m
r r

λ

=

− =

− =

 

The equation can be used to deduce the tangential speed v of the electron. 
EVALUATE Substituting the values given, we find the speed to be  

( )( )( )9 2 2 19 9
6

31

2 9.0 10 N m /C 1.6 10 C 2.5 10  C/m2 2.8 10  m/s
9.11 10  kg

ke
v

m
λ − −

−

× ⋅ × ×
= = = ×

×
 

ASSESS The speed of the electron is independent of r, the radial distance from the long wire. This is because both 
the electric field and the centripetal acceleration fall off as 1/r, so the r-dependence cancels out. 

 59. INTERPRET The charge orbiting the wire undergoes circular motion, and the centripetal force (Chapter 3) is 
provided by the Coulomb force. We are asked to find the line charge density, given the particle’s orbital speed. 
This problem is similar to Problem 20.56. 
DEVELOP The electric field of the wire is radial and falls off like 1/ ( 2 / ,r E k rλ=  see Example 20.7). For an 
attractive force (positive charge encircling a negatively charged wire), this is the same dependence as the 
centripetal acceleration (Equation 3.9, ac = v2/r). For circular motion around the wire, the Coulomb force provides 
the centripetal acceleration. Thus, Newton’s second law gives 

c
2

c
2

F qE ma

v qE kq
a

r m mr
λ

= =

= = = −
 

The equation can be used to deduce the line charge density λ give the speed. 
EVALUATE The above equation gives 

( )( )
( )( )

292

9 2 2 9

6.8 10 kg 280 m/s
14 μC/m

2 2 9.0 10 N m /C 2.1 10  C
mv
kq

λ
−

−

×
= − = − = −

× ⋅ ×
 

ASSESS For the force to be attractive, the line charge density must be negative.  

 60. INTERPRET For this problem, we are to find the torque on the given dipole placed at 30° with respect to a linear 
electric field (similar to what is shown in Figure 20.20). We are also to find the work done by the electric field in 
orienting the dipole so that it is antiparallel to the field. 

DEVELOP The torque on the dipole is given by Equation 20.9,  

| | sinP E pEτ θ= × =  

The work done in orienting the dipole antiparallel to the field is the change in the potential energy from the initial 

to the final states, where the potential energy of a dipole in an electric field is given by Equation 20.10. Thus, 

( ) ( )
f i

W U p E p E= ∆ = − ⋅ − − ⋅  

EVALUATE (a) Evaluating the expression for torque gives 

( )( ) ( )sin 1.5 nC m 4.0 MN/C sin 30 3.0 mN mpEτ θ= = ⋅ ° = ⋅  

(b) Evaluating the expression for work gives 

( )( )( )(cos30 cos180 ) 1.5 nC m 4.0 MN/C 1.866 11 mJW pE= ° − ° = ⋅ =  

ASSESS When the dipole is oriented antiparallel to the field, the torque is also zero, but this is an unstable 
equilibrium because the slightest perturbation will allow the dipole to reverse its orientation in the electric field. 
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 61. INTERPRET You want to check if a patent for an isotope separator will work. Since different isotopes have the 
same charge but different mass, the device can work if it discriminates between objects with different charge-to-
mass ratios. 
DEVELOP You can assume the accelerating field, 1,E  is constant and that the plates in the figure are separated by 
a distance x. Therefore, if an atom stripped of its electrons starts at rest at the bottom plate, it will be accelerated by 
the field to a final speed of  

122 qE x
v ax

m
= =  

So, it is true that isotopes of different charge-to-mass rations ( )/q m will leave the first half of the device with 
different speeds. For example, an isotope with a relatively large charge-to-mass ratio will attain a higher speed in 
the accelerating field than another isotope with a lower charge-to-mass ratio. But the question is: can the second 
half of the device select just one of these speeds so that only one type of isotope emerges? 
EVALUATE The second half of the device is an electrostatic analyzer, as described in Example 20.8. It has a 
curved field, ( )2 0 ˆ/ ,E E b r r=  which points toward the center of curvature. The parameters 0E  and b  are 
constants with units of electric field and distance, respectively. It was shown in the text that particles entering the 
device from below will only emerge from the horizontal outlet if their speed satisfies:  

0qE b
v

m
=  

If you equate this speed with the speed from the accelerating field, you find that the charge-to-mass ratio cancels 
out. This means there’s no discrimination between isotopes. If one type of isotope can emerge, then they all can. 
The device doesn’t work.  
ASSESS The problem with this device is that both the accelerating field and the curving field depend on the 
charge-to-mass ratio in the same way. One way to get around this is to accelerate the isotopes by heating them to 
high temperature. The speeds in this case won’t depend on the charge. Another way is to use a magnetic field to 
curve the path of the isotopes. In this case, the charge-to-mass ratio doesn’t cancel out, as we’ll see in Example 
26.2.  

 62. INTERPRET The problem asks us to find the electric field near a strand of DNA. 
DEVELOP We’re looking for the electric field at a distance, 25 nm,y = from a strand of DNA that has length, 

5.0 μm.L =  Since the point we’re considering is not near either end of the strand and since / 0.005 1,y L = << the 
situation is approximately the same as for an infinite wire. In Example 20.7, it was shown that the electric field at a 
distance y from an infinite wire has magnitude 2 / ,E k yλ= where λ  is the charge per unit length. 
EVALUATE We’re told that the DNA carries e+ of charge for every nm of length, so / nm.eλ = Using the above 
formula: 

( )( )
( )

( )( )
( )

2 2

2 2
N m N m9 19 9 10

C C

9

2 9.0 10 1.60 10 C/nm 2 9.0 10 1.60 10 C/m2 0.12 GN/C
25 nm 25 10 m

k
E

y
λ

⋅ ⋅− −

−

× × × ×
= = = =

×
 

ASSESS Since the charge per unit length is positive, the electric field will point outward from the DNA strand, as 
in Figure 20.17. The actual field will deviate from this picture near either end. But we often can get away with 
treating a wire or a sheet as infinite, as long as we only consider points that are short distances away. 

 63. INTERPRET This problem is about an electric dipole aligned with an external electric field. We are to find the 
dipole moment given the electric field and the amount of work needed to reverse the dipole’s orientation.  
DEVELOP Using Equation 20.10, the energy required to reverse the orientation of such a dipole is  

( ) ( ) ( )f icos cos cos 180 cos 0 2U pE pE pEθ θ ⎡ ⎤∆ = − − = − ° − ° =⎣ ⎦  

EVALUATE Using the equation above, the electric dipole moment is  

( )
27

30
3

3.1 10  J 1.3 10  C m
2 2 1.2 10  N/C
U

p
E

−
−∆ ×= = = × ⋅

×
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ASSESS An electric dipole tends to align itself in the direction of the external electric field. Thus, energy is 
required to change its orientation.  

 64. INTERPRET This problem involves 4 source charges, arranged as two dipoles. The dipoles are oriented parallel 
and on the same line. We are to find the expression for the force between the two dipoles, so Coulomb’s law and 
the principle of superposition will apply. 

DEVELOP Make a sketch of the situation (see figure below). The right-hand dipole has charges +q at x + a/2, −q at 

x − a/2, each of which experiences a force from both charges of the left-hand dipole, which are +q at a/2 and −q at 

−a/2. The Coulomb force on a charge in the right-hand dipole due to a charge in the left-hand dipole is  

( ) 3
R L R R

ˆ
Lkq q x x i x x− = −  

(see solution to Problem 15), so the total force on the right-hand dipole is 

( ) ( )
( )

( )
2 2 2 2

2
2 2 22 2 2 2 2

2 31 1 1 1ˆ ˆ
x

kq a x a
F kq i i

x xx a x a x x a

⎡ ⎤ −
⎢ ⎥= − − + = −
⎢ ⎥+ − −⎣ ⎦

 

 
EVALUATE (a) In the limit a x<<  

( )2 2 2 2 2 2

6 4 4

ˆ ˆ2 3 6 6ˆ
x

kq a x kq a i kp i
F i

x x x

− −≈ = = −  

where p = qa is the dipole moment of both dipoles. 
(b) The force on the right-hand dipole is in the negative x direction, indicating an attractive force. 

ASSESS By Newton’s third law, each dipole experiences a force of equal magnitude but in the opposite direction. 

 65. INTERPRET This problem is about the interaction between a dipole and the electric field due to a source charge.  

DEVELOP With the x axis in the direction from Q to p and the y axis parallel to the dipole in Figure 20.30, we 

have ˆ(2 )p qa j= and 2 ˆ( / ) .E kQ x i= In the limit ,x a>> the torque on the dipole is given by Equation 20.9, ,p Eτ = ×  

where E is the field from the point charge Q, at the position of the dipole.  

EVALUATE (a) Using Equation 20.9, we find the torque to be 

2 2

2 ˆˆ ˆ(2 ) kQ kQqa
p E qaj i k

x x
τ ⎛ ⎞= × = × = −⎜ ⎟

⎝ ⎠
 

The direction is into the page, or clockwise, to align p with .E  
(b) The Coulomb force obeys Newton’s third law. The field of the dipole at the position of Q is (Example 20.5 
adapted to new axes)  

dipole 3

2 ˆkqa
E j

x
= −  

Thus, the force on Q due to the dipole is 

on dipole 3

2 ˆ
Q

kQqa
F QE j

x
= = −  

The force on the dipole due to Q is the opposite of this: 

on dipole on 3

2 ˆ
Q

kQqa
F F j

x
= − =  

The magnitude of on dipoleF is 32 / .kQqa x  

(c) The direction of on dipoleF is in ˆ,j+ or parallel to the dipole moment. 
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ASSESS The net force on dipoleF will cause the dipole to move in the ˆ direction.j+ In addition, there is a torque that 

tends to align p with .E So, the motion of the dipole involves both translation and rotation. 

 66. INTERPRET This problem gives the position of two source charges, and we are to find a position at which the 
electric field is zero.  

DEVELOP The electron’s field is directed toward the electron (a negative charge) and the ion’s field is directed 

away from the ion (a positive charge). Therefore, the fields can cancel only at points on the negative x axis (x < 0) 

since the directions are opposite and the smaller charge is closer. The field from a point charge is  

( ) ( )
3

ˆq
q

q

x x
E x kq i

x x

−
=

−
 

where q = −e and xq = 0 for the electron, and q = 5e and xq = 10 nm for the ion. Setting the total field to zero gives 

( ) ( )

( )
( ) ( )

3 3

22

22

5 10 nmˆ ˆ0
10 nm

1 5
10 nm

4 2 10 nm 10 nm

k e x e x
i i

x x

x x

x x

− −
= +

−
−= +

−

= + −

 

which we can solve for x. 

EVALUATE The negative solution to this quadratic is 

( ) ( )
( )( )

2 210 nm 10 nm 4 10 nm
2.5 nm 1 5 8.1 nm

4
x

⎡ ⎤− − +⎢ ⎥⎣ ⎦= = − + = −  

ASSESS Thus, if we label the distance between the two charges as a, the field goes to zero not far from −a from 
the smaller charge. 

 67. INTERPRET You’re asked to estimate the charge distribution on two different molecules given their dipole 
moments. 
DEVELOP Your given the dipole moment, p, for H2O and CO in debyes. A debye (D) is a unit with dimensions of 
“charge” times “distance.” You can look in an outside reference and see that 301 D 3.34 10 C m.−= × ⋅  You can 
model these dipole molecules as two opposite charges, ,q±  separated by a distance d. Since the atomic separation 
for many molecules is about an Angstrom ( )101 10 m ,−=Å we can estimate how the charge is distributed on each 
molecule: / .q p d=  
EVALUATE Let’s first convert the dipole moments to SI units: 

( )

( )

2

30
30

H O

30
31

CO

3.34 10 C m1.85 D 6.18 10 C m
1 D

3.34 10 C m0.12 D 4.00 10 C m
1 D

p

p

−
−

−
−

⎛ ⎞× ⋅= = × ⋅⎜ ⎟
⎝ ⎠
⎛ ⎞× ⋅= = × ⋅⎜ ⎟
⎝ ⎠

 

Assuming the atoms in the molecules are separated by about 1 Angstrom, the amount of charge on each “atom” is 

2

30

H O 10 19

31

CO 10 19

6.18 10 C m 1 0.4 
10 m 1.6 10 C

4.00 10 C m 1 0.03 
10 m 1.6 10 C

p e
q e

d

p e
q e

d

−

− −

−

− −

× ⋅ ⎛ ⎞= = =⎜ ⎟×⎝ ⎠
× ⋅ ⎛ ⎞= = =⎜ ⎟×⎝ ⎠

 

We’ve written the result in terms elementary charge. 
ASSESS In the case of water, the oxygen atom partially “steals” the electrons from the hydrogen atoms. That 
results in a negative fractional charge ( )0.4q e≈ − on the oxygen atom, and a correspondingly positive fractional 
charge on the hydrogen atoms. A similar situation occurs with carbon monoxide, but this time the carbon atom is 
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the more electrophilic (“electron-loving”) species in the covalent bond, so it will have the negative fractional 
charge and the oxygen atom will have the positive one.  

 68. INTERPRET This problem is about the electric field due to a charged ring. We are to find the ring’s radius and the 
total charge on the ring, given the magnitude and direction of the electric field at two locations on the axis of the 
ring. 
DEVELOP The electric field on the axis of a uniformly charged ring of radius a is calculated in Example 20.6. 
The result is 

( )
( )3/ 22 2

kQx
E x

x a
=

+
 

Knowing the field strengths at two different values of x allows us to deduce a and Q. 
EVALUATE (a) The data given in the problem statement imply  

( )
( )

( )
( )

1 3/22 2

2 3/22 2

5.0 cm
380 kN/C

5.0 cm

15 cm
160 kN/C

15 cm

kQ
E

a

kQ
E

a

= =
⎡ ⎤+⎣ ⎦

= =
⎡ ⎤+⎣ ⎦

 

Dividing these two equations and taking the 2/3 root gives 

( )
( )

22/3 2

2 2

15 cm380 15 3.70
160 5.0 5.0 cm

a

a

+×⎛ ⎞ = =⎜ ⎟×⎝ ⎠ +
 

which, when solved for the radius a, gives 

( ) ( )( )2 215 cm 3.70 5.0 cm
7.0 cm

2.70
a

−
= =  

(b) To calculate Q, we substitute the result for a into either one of the field equations above. This leads to  

( ) ( ) ( )
( )( )

3/ 22 2

9 2 2

380 kN/C 5.0 cm 7.00 cm
540 nC

9.0 10 N m /C 5 .0 cm
Q

⎡ ⎤+⎣ ⎦= =
× ⋅

 

to two significant figures. 
ASSESS To check that our results are correct, we may substitute the values obtained for a and Q into the field 
equation to calculate E1 and E2 at r1 = 5.0 cm and r2 = 15 cm. Note that the field strength decreases as x is 
increased. For example, the equation for E2 gives 

( )( )( )
( ) ( )

9 2 2

2 3/22 2

9.0 10 N m /C 538 nC 0.15 m
160 kN/C

0.15 m 0.07 m
E

× ⋅
= =

⎡ ⎤+⎣ ⎦

 

which agrees with the initial value. 

 69. INTERPRET This problem involves three source charges positioned on a line. We are to find the electric field on 
this line to the right of the right-most charge and show that this expression reduces to κ/x4 for x � a, where κ is a 
constant and a is the characteristic size of the source-charge distribution. 

DEVELOP The electric field of a single charge is give by Equation 20.3. Apply the principle of superposition to 

find the electric field due to three charges. This gives 

( )
( ) ( )2 22

2ˆ q q q
E x ki

xx a x a

⎡ ⎤
⎢ ⎥= − +
⎢ ⎥− +⎣ ⎦
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EVALUATE (a) Simplifying the expression above for the electric field gives 

( ) ( )
( ) ( )

2 2
2

22 2 2

3 ˆ2
x a

E x kqa i
x x a

−
=

−
 

(b) For x � a, we can neglect the a compared to x2. This gives 

( ) ( )
2

4

6 ˆkqa
E x i

x
≈  

ASSESS The quadrupole moment of this “linear quadrupole” is 24xxQ qa= . 

 70. INTERPRET We’re asked to calculate the field from a dipole at a point located 45° from the dipole axis. 
DEVELOP We will place the dipole on the x-axis as in Example 20.5, with the q+ charge at ,x a=  and the 
q− charge at .x a= −  We identify r+ and r−  as the distance vectors from each charge to the field point, which is a 

distance r from the origin and an 45° from the x-axis. See the figure below. 

 
From the figure it’s clear what the component forms of r+ and r−  are: 

( )

( )

ˆ ˆ ˆ ˆ1
2 2 2

ˆ ˆ ˆ ˆ1
2 2 2

r r r
r a i j i j

r r r
r a i j i j

ε

ε

+

−

⎛ ⎞ ⎡ ⎤= − + = − +⎜ ⎟ ⎣ ⎦⎝ ⎠
⎛ ⎞ ⎡ ⎤= + + = + +⎜ ⎟ ⎣ ⎦⎝ ⎠

 

where we have simplified the expressions by using 2 / .a rε =  The magnitudes of these vectors are: 1r r ε+ = −  
and 1 .r r ε− = +  We have neglected terms of order 2 ,ε  since .a r<<  These variables can be plugged into 
Equation 20.3 in order to find the electric field contributions from each charge. 
EVALUATE The electric field from each charge is:  

( )
( ) ( ) ( )
( )
( ) ( ) ( )

1 3
3/ 23 2 22 2

1 3
3/ 23 2 22 2

ˆ ˆ1 ˆ ˆ1 1
2 21

ˆ ˆ1 ˆ ˆ1 1
2 21

i jkq kq kq
E r i j

r r r

i jkq kq kq
E r i j

r r r

ε
ε ε

ε

ε
ε ε

ε

+ +
+

− −
−

− + ⎡ ⎤= = ≈ + + +⎣ ⎦−

+ +− − − ⎡ ⎤= = ≈ − + −⎣ ⎦+

 

Here, we have used the binomial approximation: ( )1 1 ,p
x px+ ≈ + for 1.x << Summing these together gives the 

net electric field from the dipole: 

32

ˆ ˆ2 5 3ˆ ˆ3
82 10

kq kp i j
E E E i j

rr
ε

+ −

⎡ ⎤+⎡ ⎤= + ≈ + = ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
 

We’ve used the electric dipole moment, 2 ,p aq= and written the vector components as a unit vector. We can 
compare this to the electric field on the dipole axis at the distance, 3ˆ2 / ,E kp r i=  from Equation 20.6b. The 
magnitude of the electric field at a 45° angle to the dipole axis is reduced by a factor of 5 / 8.  
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ASSESS For a given distance, the dipole field is largest on dipole axis. That’s because this position maximizes the 
difference between r+ and ,r−  which in turn maximizes the difference between E+ and .E−  Note that the dipole 
field can also be written as 

3 3

2 cos sin,r
kp kp

E E
r rθ

θ θ= =  

When θ = 0, we have 2 2
1 1 1 1 13 3

2 2, 0, .r r
kp kp

E E E E E
r rθ θ= = = + =  On the other hand, when θ = 45°,  

2 2
2 2 2 2 23 3 3 3

2 (1 / 2) 2 (1 / 2) 5, ,
2r r

kp kp kp kp
E E E E E

r r r rθ θ= = = = + =  

Thus,  

2

1

1 5 5 0.79
2 2 8

E
E

= = ≈  

The field decreases by a factor of 5 / 8.  

 71. INTERPRET This problem is about the electric field due to a 10-m-long straight wire, which is our source charge.  
DEVELOP For a uniformly charged wire of length L and charge Q, the line density is .Q Lλ =  Approximating 
the wire as infinitely long, the electric field due to the line charge can be written as (see Example 20.7) 

2k
E

r
λ=  

EVALUATE (a) The charge density is  

25 μC 2.5 μC/m
10 m

Q
L

λ = = =  

(b) Since 15 cm<<10 mr L= =  and the field point is far from either end, we may regard the wire as approximately 
infinite. Then Example 20.7 gives  

( )( )9 2 22 9.0 10 N m /C 2.5 μC/m2 300 kN/C
0.15 m

k
E

r
λ × ⋅

= = =  

(c) At 350 m and 10 mr L= = , the wire behaves approximately like a point charge, so the field strength is  

( )( )9 2 2 6

2 2

9.0 10 N m /C 25 10 C
1.8 N/C

(350 m)
kQ

E
r

−× ⋅ ×
= = =  

ASSESS The finite-size, line charge distribution looks like a point charge at large distances. 

 72. INTERPRET We’re considering the electric field from a thin rod at a point on the rod’s perpendicular bisector. 
DEVELOP We will approach this problem in the same way as was done in Example 20.7 for an infinite line of 
charge. 
EVALUATE  (a) The line charge density is just the total charge divided by the length: / .Q Lλ =  
(b) The charge distribution is symmetrical with respect to the rod’s perpendicular bisector. Therefore, all 
horizontal components of the electric field in the x-direction will cancel each other out, as in Figure 20.16. The 
result is an electric field that points along the y-axis.  
(c) To find the magnitude of the electric field on the bisector, we follow the same development as in Example 20.7. 
Due to the symmetry, the infinitesimal electric field component, ,ydE will be the same, but the limits of integration 
not be infinity, but instead / 2x L= −  to / 2.x L=  

( )
/ 2

/ 2

2 2 2 2 2 2 2 2/ 2
/ 2

2
1 4 /

L

L

y y L

L

k ydx x k
E dE k y

x y y x y y y L

λ λλ
+

+

−
−

⎡ ⎤
⎢ ⎥= = = =

+ ⎢ ⎥+ +⎣ ⎦
∫ ∫  

ASSESS For ,y L the electric field reduces to the result for an infinite wire, 2 / .y yE dE k yλ= ≈∫  And 
conversely, if ,y L the field becomes: 2/ ,yE k L yλ= which is the field from a point charge .Q Lλ= This makes 
sense: from very far the rod should behave like a point charge. 
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 73. INTERPRET In this problem we want to find the electric field due to a uniformly charged disk of radius R.  
DEVELOP We take the disk to consist of a large number of annuli. With uniform surface charge density ,σ  the 
amount of charge on an area element dA is .dq dAσ= Our strategy is to first calculate the electric field dE due to 
dq at a field point on the axis, simplify with symmetry argument, and then integrate over the entire disk to get E.  
EVALUATE (a) The area of an annulus of radii 1 2R R< is just 2 2

2 1( ).R Rπ − For a thin ring, 1R r= and 2 ,R r dr= +  so 

the area is 2 2 2[( ) ] (2 ).r dr r rdr drπ π+ − = + When dr is very small, the square term is negligible, and 

2 .dA rdrπ= (This is equal to the circumference of the ring times its thickness.)  

(b) For surface charge density ,  2 .dq dA rdrσ σ πσ= =   

(c) From Example 20.6, the electric field due to a ring of radius r and charge dq is  

2 2 3/2 2 2 3/2

2
( ) ( )x
xdq k xr

dE k dr
x r x r

π σ= =
+ +

 

which holds for x positive away from the ring’s center. (d) Integrating from 0r = to R, one finds  

2 2 3/2 2 2 1/22 20 0
0

12 2 2
( ) | | ( )

R
R R

x x
rdr x x

E dE k x k x k
x r x x Rx r

π σ π σ π σ ⎡ ⎤−= = = = −⎢ ⎥+ ++ ⎣ ⎦
∫ ∫  

For 0,  | |x x x> = and the field is 

2 2
2 1x

x
E k

x R
π σ

⎛ ⎞
= −⎜ ⎟⎜ ⎟+⎝ ⎠

 

On the other hand, for 0,  | | ,x x x< = − the electric field is 

2 2

| |2 1x
x

E k
x R

π σ
⎛ ⎞

= − +⎜ ⎟⎜ ⎟+⎝ ⎠
 

This is consistent with symmetry on the axis, since ( ) ( ).x xE x E x= − −  

ASSESS One may readily verify that (see Problem 72, for ,x R>> 2 .kQ
x x
E ≈ In other words, the finite-size charge 

distribution looks like a point charge at large distances. 

 74. INTERPRET We will find the electric field from an infinite sheet. 
DEVELOP An infinite flat sheet is the same as an infinite flat disk (the shape is irrelevant when the dimensions 
extend to infinity). Thus, we can find the magnitude of the electric field from a uniformly charged infinite flat 
sheet by letting R→ ∞ in the result of Problem 20.73 
EVALUATE As was shown in the previous problem, a charged disk centered at the origin and perpendicular to the 
x-axis will generate an electric field along the x-axis with magnitude: 

2 2
2 1x

x
E k

x R
π σ

⎛ ⎞
= −⎜ ⎟⎜ ⎟+⎝ ⎠

 

Where σ  is the charge density per unit area. If ,R→ ∞ then the second term in the parentheses goes to zero, and 
we’re left with: 

2xE kπ σ=  

ASSESS Strikingly, this result no longer depends on x, the distance from the sheet. The field is uniform, whether 
you are a nanometer or a light-year away. If the charge on the sheet is positive, the field points away from the sheet 
on both sides, and the opposite if the charge is negative. 

 75. INTERPRET In this problem we want to show that at large distances, the electric field due to a uniformly charged 

disk of radius R reduces to that of a point charge.  

DEVELOP The result of Problem 74 for the field on the axis of a uniformly charged disk, of radius R, at a distance 

x > 0 on the axis (away from the disk’s center) is  

2 2
2 1x

x
E k

x R
π σ

⎛ ⎞
= −⎜ ⎟⎜ ⎟+⎝ ⎠
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For 2 2/ 1,R x <<  we use the binomial expansion in Appendix A and write 
1/22 2

2 2

11 1
2

R R
x x

−
⎛ ⎞

+ ≈ − +⎜ ⎟
⎝ ⎠

 

EVALUATE Substituting the above expression into the first equation, we obtain  
1/22 2 2

2 2 2 2

1 22 1 1 2 1 1
2 2x

R R k R kQ
E k k

x x x x
π σπ σ π σ

−⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= − + ≈ − − + ≈ =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦

 

which is the field from a point charge ( )2Q R Aπ σ σ= =  at a distance x. 

ASSESS The result once again demonstrates that any finite-size charge distribution looks like a point charge at 

large distances. 

 76. INTERPRET For this problem, we are to find the electric field at the center of a semicircular loop.   

DEVELOP Begin by establishing a coordinate system (see figure below) with origin at point P, vertical y axis, and 

horizontal x axis. Then each charge element dq creates an electric field of magnitude 2dE kdq a=  in the direction 
ˆ ˆˆ cos sin .r i jθ θ= +  The total electric field at P is then ˆ( ) .E P dEr= ∫  The loop has a uniform charge Q along its 

length of πa, so its linear charge density is Q aλ π=  and we can write .dq dlλ=  Expressing the line element as 

,dl adθ=  we have .dq adλ θ=  We can now formulate the integral for the total electric field in terms of θ starting 

with dE k d aλ θ= : 

0

ˆ( ) k
E P d r

a

π λ θ= ∫  

 
EVALUATE Performing the integration gives 

2
0 0 0

2 2ˆ ˆ ˆ ˆˆ( ) cos sink k k kQ
E P d r d i d j j j

a a a a

π π πλ λ λθ θ θ θ θ
π

⎡ ⎤
= = + = =⎢ ⎥

⎣ ⎦
∫ ∫ ∫   

ASSESS The field decreases as 1/a2, and increases proportional to the total charge Q. 

 77. INTERPRET We are to find the position of the charge Q in Example 20.2 for which the force is a maximum. At 
large distances, the force will be small because of the inverse-square nature of the force. At close distances, the net 
force will be small because the forces from the two charges tend to cancel. Somewhere between near and far will 
be a maximum.  
DEVELOP  The equation for force is found in the example, so we will differentiate to find the value of y where 
force is a maximum. We are given the equation for force: 

( )3/22 2

2 ˆkqQy
F j

a y
=

+
 

We find the value of y at which this force is a maximum by setting dF/dy = 0. 
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EVALUATE 

( ) ( ) ( )3/ 2 3/ 2 3/ 22 2 2 2 2 2

2 1 30 2 2
2

dF d kqQy d y
kqQ kqQ

dy dy dya y a y a y

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = = −
⎢ ⎥ ⎢ ⎥+ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

2

( )
( )

( ) ( )

2

5/ 22 2

2 2 2
2 2 2

5/ 22 2

2 2

3
3

2
2

y

a y

a y y
a y y

a y

a
a y y

⎡ ⎤
⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

+ −
= = + −

+

= ⇒ =

 

ASSESS This is a bit less than one and a half times the distance from the center to one charge. 

 78. INTERPRET We are to find the electric field at any point (x, y) due to a uniformly charged rod of length L and 
charge Q. We will check our answer by showing that the result matches the special cases of Problem 72 and 
Problem 57. This is an electric field problem, which we will solve by direct integration.  
DEVELOP We will find the field at point ( , ),P x y=  and for the integration variable we’ll use x′. The 

infinitesimal charge dq is the charge per unit length times the length dx′, so .Q
Ldq dx′= The distance from each bit 

of charge dq to the point (x, y) is ( )2 2 .r x x y′= − +  The unit vector in the direction of r is  

( )
( )2 2

ˆ ˆ
ˆ

x x i yjr
r

r x x y

′− +
= =

′− +
 

We will find the electric field by integrating 2 ˆ.k dq

r
dE r=  

EVALUATE  
(a) 

( )
( )
( )

( )
( )

( ) ( )

( ) ( ) ( )

2

/ 2 / 2

2 3/ 22 2 22 2/ 2 / 2

/ 2

2 22 2

/ 2

2
2 2 22 2 2

2 2 2

ˆ

ˆ ˆ ˆ ˆ

1 ˆ ˆ

1 1 ˆ

L Q L
L

L L

L

L

L

L L L

k dq
dE r

r

x x i yj x x i yjk dx kQ
E dx

Lx x y x x y x x y

kQ x x
i j

L x x y y x x y

xkQ
i

L x y x y y x y

− −

−

=

⎛ ⎞′ ′− + − +′ ⎜ ⎟ ′= =⎜ ⎟′− + ⎡ ⎤⎜ ⎟′− + ′− +⎝ ⎠ ⎣ ⎦

⎡ ⎤′−⎢ ⎥= −⎢ ⎥′ ′− + − +⎢ ⎥⎣ ⎦

⎛ ⎞
+⎜ ⎟= − + −⎜ ⎟⎜ ⎟− + + + + +⎝ ⎠

∫ ∫

( )
2
2 2

2

ˆ
L

L

x
j

y x y

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎢ ⎥⎜ ⎟⎜ ⎟− +⎢ ⎥⎝ ⎠⎣ ⎦

 

When 0,x =  the electric field reduces to 

( )2 2 22
2

2ˆ ˆ0
4L

kQ L kQ
E i j

L y L yy y

⎡ ⎤
⎢ ⎥= + =⎢ ⎥ ++⎢ ⎥⎣ ⎦

 

(b) When 0,y = the electric field reduces to 

2

0
2 2

1 1 ˆ lim
L

L L y

xkQ
E i

L x x →

+⎛ ⎞
= − +⎜ ⎟⎜ ⎟− +⎝ ⎠ ( )2

Ly x +
2
Lx −

−
( )2

Ly x −

( )
( )

2 2
22 0

2

ˆ

1 1ˆ lim
L L

yL

j

x xkQ
i

L y yx →

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞+ − − ⎛ ⎞⎜ ⎟= + −⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

ˆ kQ
j

L

⎡ ⎤
⎢ ⎥ =
⎢ ⎥
⎣ ⎦

L

( )2 2 22
2

4ˆ
4L

kQ
i

x Lx

⎡ ⎤
⎢ ⎥ =

−⎢ ⎥−⎣ ⎦

 

ASSESS The electric field in part (a) is not simple, but we have shown that for some simple cases it reduces to 
simpler forms. 
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 79. INTERPRET We are to find the electric field near a line of non-uniform charge density. This is an electric field 
calculation, and we will integrate to find the field. 

DEVELOP The rod has charge density 2
0 ( ) ,x
Lλ λ=  and extends from x = 0 to x = L. We want to find the electric 

field at x = −L. We will use 2 ˆ,k dq

r
dE r=  with dq dxλ=  and .r x L= +  

EVALUATE 

( )
( ) ( )

( ) ( )

2

2 2
0 0

2 20
0

2
0 0 0
2 2

ˆ

ˆ ˆ 2 ln

ˆ ˆ ˆ2 12 ln 2 ln 2 2ln 2
2 2 2

Lx
L L

k dq
dE r

r

k L
E ki dx i x L x L

L x Lx L

k i L L k i L k i
L L L L

L L L L L

λ λ

λ λ λ

=

⎡ ⎤
= = − − +⎢ ⎥++ ⎣ ⎦

⎡ ⎤⎛ ⎞ ⎡ ⎤ ⎡ ⎤= − − − = − − = − +⎢ ⎥⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⎣ ⎦⎣ ⎦

∫  

ASSESS Since 0λ is charge per length, the units are correct. 

 80. INTERPRET We are to find the electric field at points along the axis of a rod carrying non-uniform charge density. 
This is an electric field calculation, and we will integrate to find the field. We will also show that at large distances 
the field looks like that of a dipole, and we’ll find the dipole moment. 

DEVELOP The rod has charge 0 ,xLλ λ ′=  and extends from x′ = −L to x′ = L. We want to find the electric field at 

some point x > L. We will use 2 ˆ,k dq

r
dE r=  with dq dxλ ′=  and .r x x′= −  

EVALUATE (a) We perform the integration to find 

( )
( )

( )

( ) ( )

2

0 0
2

0

0
2 2

0
2 2

ˆ

ˆ ˆ ln

ˆ
ln

ˆ
ln

ˆ 2 ln

LL x
L

LL

k dq
dE r

r

k x
E ki dx i x x

L x xx x

k i x x x L
L x L x L x L

x x L x x Lk i x L
L L x x L

k i xL x L
L x L x L

λ λ

λ

λ

λ

′

−−

=

⎡ ⎤′ ′= = + −⎢ ⎥′−′ ⎣ ⎦−

⎡ ⎤−⎛ ⎞= − +⎢ ⎥⎜ ⎟− + +⎝ ⎠⎣ ⎦
⎡ ⎤+ − − −⎛ ⎞= +⎢ ⎥⎜ ⎟− +⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤−⎛ ⎞= +⎢ ⎥⎜ ⎟− +⎝ ⎠⎣ ⎦

∫

 

(b) For x � L,  

( ) ( )

( )2

2

0
22

0

12
0

2

2 2
0

2 2

ˆ 2 ln ln

ˆ 2 ln 1 ln 1
1

ˆ 2 1 ln 1 ln 1

ˆ 2 11
2

L
x

k i xL
E x L x L

L x L

k i L L L
x x

L x xx

k i L L L L
L x x x x

k i L L L L
L x x x x

λ

λ

λ

λ

−

⎡ ⎤= + − − +⎢ ⎥−⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= + − − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥− ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= − + − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

⎛ ⎞
≈ + + − +⎜ ⎟

⎝ ⎠

2

2

1
2

L L
x x

⎛ ⎞
− +⎜ ⎟⎜ ⎟

⎝ ⎠

0
ˆ 2k i L

L x
λ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=
3

3

2 2L L
x x

+ −
2

0
3

2 ˆk L
i

x
λ⎡ ⎤

=⎢ ⎥
⎣ ⎦

 

Comparing this with the field of a dipole in the same orientation, 3
2 ˆ,kp

x
E i=  we see that the dipole moment of this 

charged rod is 2
0 .p Lλ=  

ASSESS We have shown what was required. 
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 81. INTERPRET An electric field is used to deflect ink drops in an ink-jet printer. You need to find the maximum 
electric field for which the ink drops still can exit the deflection device. This is a problem of projectile motion 
where the dynamics are controlled by the electric force, not the gravitational force. 
DEVELOP The time that it takes the ink drop to traverse the field region in the Figure 20.37 is: / .t L v=  During 
that time it will undergo acceleration from the electric field: / .a qE m=  Since the field is uniform, this 
acceleration is constant, so the amount of vertical deflection will be: 1 2

0 2 .yy v t at∆ = + The drop initially has no 
vertical velocity, so 0 0.yv =  The maximum field is that which deflects the drop by / 2,y d∆ = since the drop 
starts off in the middle between the two plates. 
EVALUATE Solving for the maximum field magnitude, 

2

max 2

mdv
E

qL
=  

ASSESS You can check that this has the right units:  
2 2

max 2 2

kg m m/s N/C
C m

mdv
E

qL
⎡ ⎤ ⋅ ⋅= = =⎡ ⎤ ⎢ ⎥⎣ ⎦ ⋅⎣ ⎦

 

Indeed, these are the right units for an electric field. 

 82. INTERPRET We are considering the electric fields that operate in the heart muscle. 
DEVELOP In Equations 20.6a and 20.6b (as well as Problem 20.70), we see that the electric field from an electric 
dipole is proportional to one over the distance cubed, 31 / ,r for r much larger than the dipole’s length: .r d  
EVALUATE The heart is composed of many electric dipoles, so the electric field will be a sum of dipole fields 
that all are proportional to the distance, ,ir  separating the dipole from the point of interest: 

net 3
ˆii i

i

kp
E a r

r
=∑  

where ip  are the individual dipole moments, and ia are constants arising from the particular geometry. Far enough 
away from the heart, the individual distances will all be approximately equal to each other: ,ir r≈ so the magnitude 
of the net field will fall off as 31 / .r  
The answer is (c). 
ASSESS If there were a net charge on the heart, then the field might fall off as 21 / .r But there apparently is a 
balance of positive and negative charges in the heart muscles, as shown in Figure 20.38a. 

 83. INTERPRET We are considering the electric fields that operate in the heart muscle. 
DEVELOP The magnitude of the dipole field on a line that bisects the dipole axis is 3/ ,E kp r= from Equations 
20.6a. Whereas, the magnitude of the dipole field along the dipole axis is 32 / ,E kp r= from Equations 20.6b. So 
the field is twice as large along the dipole axis. 
EVALUATE The extension of the line in Figure 20.38c bisects the dipole axes of all the dipoles in the heart 
muscle. A line perpendicular to this one will approximately correspond to the axes of all the dipoles. So the field 
on the extension should be weaker than the field on the perpendicular. 
The answer is (a). 
ASSESS At the same distance from the heart, the field on the extension of the line in Figure 20.38c is the weakest 
compared to other directions. That’s because the field contribution from the positive and negative charges are 
equal and approximately opposite. 

 84. INTERPRET We are considering the electric fields that operate in the heart muscle. 
DEVELOP The figures make it clear that the net charge is zero in Figures 20.38a and b. 
EVALUATE To form a dipole, there only needs to be a slight shift in the relative position of positive and negative 
charges (see, for example, Figure 20.23). There appears to be a slight shift in the balance of charges in Figure 20.38b.  
The answer is (c). 
ASSESS Note that a dipole is often not a stable arrangement of charge. There will be Coulomb forces between the 
positive and negative charges trying to pull them back into a configuration that has less of a dipole moment. 
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 85. INTERPRET We are considering the electric fields that operate in the heart muscle. 
DEVELOP Equations 20.6b shows that the electric field on the dipole axis is parallel to the axis and points in the 
same direction as the dipole moment, that is, in the direction from the negative charge to the positive charge.  
EVALUATE Inside the heart above and below the line in Figure 20.38c, the electric field should point in the same 
direction as the dipole moment.  
The answer is (a). 

ASSESS If we had been asked about the internal field of the dipoles, the answer would have been opposite the 
direction of the dipole moment (see Figure 20.24). But this would only comprise a small sliver of the heart area. 
The majority of the electric field points in the dipole moment’s direction. 


