
Instructor’s Solution Manual
Introduction to Electrodynamics

Fourth Edition

David J. Gri�ths

2014



2

Contents

1 Vector Analysis 4

2 Electrostatics 26

3 Potential 53

4 Electric Fields in Matter 92

5 Magnetostatics 110

6 Magnetic Fields in Matter 133

7 Electrodynamics 145

8 Conservation Laws 168

9 Electromagnetic Waves 185

10 Potentials and Fields 210

11 Radiation 231

12 Electrodynamics and Relativity 262

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



3

Preface

Although I wrote these solutions, much of the typesetting was done by Jonah Gollub, Christopher Lee, and
James Terwilliger (any mistakes are, of course, entirely their fault). Chris also did many of the figures, and I
would like to thank him particularly for all his help. If you find errors, please let me know (gri�th@reed.edu).

David Gri�ths

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



4 CHAPTER 1. VECTOR ANALYSIS

Chapter 1

Vector Analysis

Problem 1.1

CHAPTER 1. VECTOR ANALYSIS 3

Chapter 1
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Problem 1.1

✲

✒

✯

✣

A

B

C

B
+
C

︸ ︷︷ ︸

|B| cos θ1

︸ ︷︷ ︸

|C| cos θ2

}|B| sin θ1

}|C| sin θ2

θ1

θ2

θ3

(a) From the diagram, |B + C| cos θ3 = |B| cos θ1 + |C| cos θ2.
|A||B + C| cos θ3 = |A||B| cos θ1 + |A||C| cos θ2.
So: A·(B + C) = A·B + A·C. (Dot product is distributive)

Similarly: |B + C| sin θ3 = |B| sin θ1 + |C| sin θ2. Mulitply by |A| n̂.
|A||B + C| sin θ3 n̂ = |A||B| sin θ1 n̂ + |A||C| sin θ2 n̂.
If n̂ is the unit vector pointing out of the page, it follows that
A×(B + C) = (A×B) + (A×C). (Cross product is distributive)

(b) For the general case, see G. E. Hay’s Vector and Tensor Analysis, Chapter 1, Section 7 (dot product) and
Section 8 (cross product)

Problem 1.2

✲ A = B

✻
C

❂
B×C ❄A×(B×C)

The triple cross-product is not in general associative. For example,
suppose A = B and C is perpendicular to A, as in the diagram.
Then (B×C) points out-of-the-page, and A×(B×C) points down,
and has magnitude ABC. But (A×B) = 0, so (A×B)×C = 0 ̸=
A×(B×C).

Problem 1.3

✲ y

✻z

✰
x

✣B

❲
A

θ

A = +1 x̂ + 1 ŷ − 1 ẑ; A =
√

3; B = 1 x̂ + 1 ŷ + 1 ẑ;

A·B = +1 + 1 − 1 = 1 = AB cos θ =
√

3
√

3 cos θ ⇒ cos θ.

θ = cos−1
(

1
3

)

≈ 70.5288◦

Problem 1.4

The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example,
we might pick the base (A) and the left side (B):
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(a) From the diagram, |B + C| cos ✓3 = |B| cos ✓1 + |C| cos ✓2. Multiply by |A|.
|A||B + C| cos ✓3 = |A||B| cos ✓1 + |A||C| cos ✓2.
So: A·(B + C) = A·B + A·C. (Dot product is distributive)

Similarly: |B + C| sin ✓3 = |B| sin ✓1 + |C| sin ✓2. Mulitply by |A| n̂.
|A||B + C| sin ✓3 n̂ = |A||B| sin ✓1 n̂ + |A||C| sin ✓2 n̂.
If n̂ is the unit vector pointing out of the page, it follows that
A⇥(B + C) = (A⇥B) + (A⇥C). (Cross product is distributive)

(b) For the general case, see G. E. Hay’s Vector and Tensor Analysis, Chapter 1, Section 7 (dot product) and
Section 8 (cross product)

Problem 1.2
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Problem 1.3

✲ y

✻z

✰
x

✣B

❲
A

θ

A = +1 x̂ + 1 ŷ − 1 ẑ; A =
√

3; B = 1 x̂ + 1 ŷ + 1 ẑ; B =
√

3.

A·B = +1 + 1 − 1 = 1 = AB cos θ =
√

3
√

3 cos θ ⇒ cos θ = 1
3
.

θ = cos−1
(

1
3

)

≈ 70.5288◦

Problem 1.4

The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example,
we might pick the base (A) and the left side (B):

A = −1 x̂ + 2 ŷ + 0 ẑ; B = −1 x̂ + 0 ŷ + 3 ẑ.
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The triple cross-product is not in general associative. For example,
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A = +1 x̂ + 1 ŷ � 1 ẑ; A =
p

3; B = 1 x̂ + 1 ŷ + 1 ẑ; B =
p

3.

A·B = +1 + 1� 1 = 1 = AB cos ✓ =
p

3
p

3 cos ✓ ) cos ✓ = 1
3 .

✓ = cos�1
�

1
3

�
⇡ 70.5288�

Problem 1.4

The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example,
we might pick the base (A) and the left side (B):

A = �1 x̂ + 2 ŷ + 0 ẑ; B = �1 x̂ + 0 ŷ + 3 ẑ.
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CHAPTER 1. VECTOR ANALYSIS 5

A⇥B =

������

x̂ ŷ ẑ

�1 2 0
�1 0 3

������
= 6 x̂ + 3 ŷ + 2 ẑ.

This has the right direction, but the wrong magnitude. To make a unit vector out of it, simply divide by its
length:

|A⇥B| =
p

36 + 9 + 4 = 7. n̂ = A⇥B
|A⇥B| = 6

7 x̂ + 3
7 ŷ + 2

7 ẑ .

Problem 1.5

A⇥(B⇥C) =

������

x̂ ŷ ẑ

Ax Ay Az

(ByCz �BzCy) (BzCx �BxCz) (BxCy �ByCx)

������

= x̂[Ay(BxCy �ByCx)�Az(BzCx �BxCz)] + ŷ() + ẑ()
(I’ll just check the x-component; the others go the same way)
= x̂(AyBxCy �AyByCx �AzBzCx + AzBxCz) + ŷ() + ẑ().

B(A·C)�C(A·B) = [Bx(AxCx + AyCy + AzCz)� Cx(AxBx + AyBy + AzBz)] x̂ + () ŷ + () ẑ
= x̂(AyBxCy + AzBxCz �AyByCx �AzBzCx) + ŷ() + ẑ(). They agree.

Problem 1.6

A⇥(B⇥C)+B⇥(C⇥A)+C⇥(A⇥B) = B(A·C)�C(A·B)+C(A·B)�A(C·B)+A(B·C)�B(C·A) = 0.
So: A⇥(B⇥C)� (A⇥B)⇥C = �B⇥(C⇥A) = A(B·C)�C(A·B).

If this is zero, then either A is parallel to C (including the case in which they point in opposite directions, or
one is zero), or else B·C = B·A = 0, in which case B is perpendicular to A and C (including the case B = 0.)

Conclusion: A⇥(B⇥C) = (A⇥B)⇥C() either A is parallel to C, or B is perpendicular to A and C.

Problem 1.7

r = (4 x̂ + 6 ŷ + 8 ẑ)� (2 x̂ + 8 ŷ + 7 ẑ) = 2 x̂� 2 ŷ + ẑ

r =
p

4 + 4 + 1 = 3

r̂ = rr = 2
3 x̂�

2
3 ŷ + 1

3 ẑ

Problem 1.8

(a) ĀyB̄y + ĀzB̄z = (cos�Ay + sin�Az)(cos�By + sin�Bz) + (� sin�Ay + cos�Az)(� sin�By + cos�Bz)
= cos2 �AyBy + sin� cos�(AyBz + AzBy) + sin2

�AzBz + sin2
�AyBy � sin� cos�(AyBz + AzBy) +

cos2 �AzBz

= (cos2 �+ sin2
�)AyBy + (sin2

�+ cos2 �)AzBz = AyBy + AzBz. X
(b) (Ax)2 + (Ay)2 + (Az)2 = ⌃3

i=1AiAi = ⌃3
i=1

�
⌃3

j=1RijAj

� �
⌃3

k=1RikAk

�
= ⌃j,k (⌃iRijRik) AjAk.

This equals A
2
x + A

2
y + A

2
z provided ⌃3

i=1RijRik =
⇢

1 if j = k

0 if j 6= k

�

Moreover, if R is to preserve lengths for all vectors A, then this condition is not only su�cient but also
necessary. For suppose A = (1, 0, 0). Then ⌃j,k (⌃i RijRik) AjAk = ⌃i Ri1Ri1, and this must equal 1 (since we
want A

2
x+A

2
y+A

2
z = 1). Likewise, ⌃3

i=1Ri2Ri2 = ⌃3
i=1Ri3Ri3 = 1. To check the case j 6= k, choose A = (1, 1, 0).

Then we want 2 = ⌃j,k (⌃i RijRik) AjAk = ⌃i Ri1Ri1 + ⌃i Ri2Ri2 + ⌃i Ri1Ri2 + ⌃i Ri2Ri1. But we already
know that the first two sums are both 1; the third and fourth are equal, so ⌃i Ri1Ri2 = ⌃i Ri2Ri1 = 0, and so
on for other unequal combinations of j, k. X In matrix notation: R̃R = 1, where R̃ is the transpose of R.
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Problem 1.9
CHAPTER 1. VECTOR ANALYSIS 5

✲ x

✻y

✠
z

❃✿

Looking down the axis:

✻y

&
x

✰z

✻z′

&y′

✰
x′

❄

■

✒
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A 120� rotation carries the z axis into the y (= z) axis, y into x (= y), and x into z (= x). So Ax = Az,
Ay = Ax, Az = Ay.

R =

0

@
0 0 1
1 0 0
0 1 0

1

A

Problem 1.10

(a) No change. (Ax = Ax, Ay = Ay, Az = Az)

(b) A �! �A, in the sense (Ax = �Ax, Ay = �Ay, Az = �Az)

(c) (A⇥B) �! (�A)⇥(�B) = (A⇥B). That is, if C = A⇥B, C �! C . No minus sign, in contrast to
behavior of an “ordinary” vector, as given by (b). If A and B are pseudovectors, then (A⇥B) �! (A)⇥(B) =
(A⇥B). So the cross-product of two pseudovectors is again a pseudovector. In the cross-product of a vector
and a pseudovector, one changes sign, the other doesn’t, and therefore the cross-product is itself a vector.
Angular momentum (L = r⇥p) and torque (N = r⇥F) are pseudovectors.

(d) A·(B⇥C) �! (�A)·((�B)⇥(�C)) = �A·(B⇥C). So, if a = A·(B⇥C), then a �! �a; a pseudoscalar
changes sign under inversion of coordinates.
Problem 1.11

(a)rf = 2x x̂ + 3y
2
ŷ + 4z

3
ẑ

(b)rf = 2xy
3
z
4
x̂ + 3x

2
y
2
z
4
ŷ + 4x

2
y
3
z
3
ẑ

(c)rf = e
x sin y ln z x̂ + e

x cos y ln z ŷ + e
x sin y(1/z) ẑ

Problem 1.12

(a) rh = 10[(2y � 6x� 18) x̂ + (2x� 8y + 28) ŷ]. rh = 0 at summit, so
2y � 6x� 18 = 0
2x� 8y + 28 = 0 =) 6x� 24y + 84 = 0

�
2y � 18� 24y + 84 = 0.

22y = 66 =) y = 3 =) 2x� 24 + 28 = 0 =) x = �2.
Top is 3 miles north, 2 miles west, of South Hadley.

(b) Putting in x = �2, y = 3:
h = 10(�12� 12� 36 + 36 + 84 + 12) = 720 ft.

(c) Putting in x = 1, y = 1: rh = 10[(2� 6� 18) x̂ + (2� 8 + 28) ŷ] = 10(�22 x̂ + 22 ŷ) = 220(� x̂ + ŷ).
|rh| = 220

p
2 ⇡ 311 ft/mile; direction: northwest.

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
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Problem 1.13

r = (x� x
0) x̂ + (y � y

0) ŷ + (z � z
0) ẑ; r =

p
(x� x0)2 + (y � y0)2 + (z � z0)2.

(a) r(r 2) = @
@x [(x�x

0)2+(y�y
0)2+(z�z

0)2] x̂+ @
@y () ŷ+ @

@z () ẑ = 2(x�x
0) x̂+2(y�y

0) ŷ+2(z�z
0) ẑ = 2 r .

(b) r( 1r ) = @
@x [(x� x

0)2 + (y � y
0)2 + (z � z

0)2]� 1
2 x̂ + @

@y ()� 1
2 ŷ + @

@z ()� 1
2 ẑ

= � 1
2 ()� 3

2 2(x� x
0) x̂� 1

2 ()� 3
2 2(y � y

0) ŷ � 1
2 ()� 3

2 2(z � z
0) ẑ

= �()� 3
2 [(x� x

0) x̂ + (y � y
0) ŷ + (z � z

0) ẑ] = �(1/r 3)r = �(1/r 2) r̂ .

(c) @
@x (r n) = n r n�1 @ r

@x = n r n�1( 1
2

1r 2 r x) = n r n�1 r̂ x, so r(r n) = n r n�1 r̂
Problem 1.14

y = +y cos�+ z sin�; multiply by sin�: y sin� = +y sin� cos�+ z sin2
�.

z = �y sin�+ z cos�; multiply by cos�: z cos� = �y sin� cos�+ z cos2 �.

Add: y sin�+ z cos� = z(sin2
�+ cos2 �) = z. Likewise, y cos�� z sin� = y.

So @y
@y = cos�; @y

@z = � sin�; @z
@y = sin�; @z

@z = cos�. Therefore

(rf)y = @f
@y = @f

@y
@y
@y + @f

@z
@z
@y = +cos�(rf)y + sin�(rf)z

(rf)z = @f
@z = @f

@y
@y
@z + @f

@z
@z
@z = � sin�(rf)y + cos�(rf)z

)
So rf transforms as a vector. qed

Problem 1.15

(a)r·va = @
@x (x2) + @

@y (3xz
2) + @

@z (�2xz) = 2x + 0� 2x = 0.

(b)r·vb = @
@x (xy) + @

@y (2yz) + @
@z (3xz) = y + 2z + 3x.

(c)r·vc = @
@x (y2) + @

@y (2xy + z
2) + @

@z (2yz) = 0 + (2x) + (2y) = 2(x + y)

Problem 1.16

r·v = @
@x ( x

r3 ) + @
@y ( y

r3 ) + @
@z ( z

r3 ) = @
@x

h
x(x2 + y

2 + z
2)� 3

2

i

+ @
@y

h
y(x2 + y

2 + z
2)� 3

2

i
+ @

@z

h
z(x2 + y

2 + z
2)� 3

2

i

= ()� 3
2 + x(�3/2)()� 5

2 2x + ()� 3
2 + y(�3/2)()� 5

2 2y + ()� 3
2

+ z(�3/2)()� 5
2 2z = 3r

�3� 3r
�5(x2 + y

2 + z
2) = 3r

�3� 3r
�3 = 0.

This conclusion is surprising, because, from the diagram, this vector field is obviously diverging away from the
origin. How, then, can r·v = 0? The answer is that r·v = 0 everywhere except at the origin, but at the
origin our calculation is no good, since r = 0, and the expression for v blows up. In fact, r·v is infinite at
that one point, and zero elsewhere, as we shall see in Sect. 1.5.
Problem 1.17

vy = cos� vy + sin� vz; vz = � sin� vy + cos� vz.
@vy

@y = @vy

@y cos�+ @vz
@y sin� =

⇣
@vy

@y
@y
@y + @vy

@z
@z
@y

⌘
cos�+

⇣
@vz
@y

@y
@y + @vz

@z
@z
@y

⌘
sin�. Use result in Prob. 1.14:

=
⇣

@vy

@y cos�+ @vy

@z sin�
⌘

cos�+
⇣

@vz
@y cos�+ @vz

@z sin�
⌘

sin�.
@vz
@z = �@vy

@z sin�+ @vz
@z cos� = �

⇣
@vy

@y
@y
@z + @vy

@z
@z
@z

⌘
sin�+

⇣
@vz
@y

@y
@z + @vz

@z
@z
@z

⌘
cos�

= �
⇣
�@vy

@y sin�+ @vy

@z cos�
⌘

sin�+
⇣
�@vz

@y sin�+ @vz
@z cos�

⌘
cos�. So

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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@vy

@y + @vz
@z = @vy

@y cos2 �+ @vy

@z sin� cos�+ @vz
@y sin� cos�+ @vz

@z sin2
�+ @vy

@y sin2
�� @vy

@z sin� cos�
�@vz

@y sin� cos�+ @vz
@z cos2 �

= @vy

@y

�
cos2 �+ sin2

�
�

+ @vz
@z

�
sin2

�+ cos2 �
�

= @vy

@y + @vz
@z . X

Problem 1.18

(a) r⇥va =

������

x̂ ŷ ẑ
@
@x

@
@y

@
@z

x
2 3xz

2 �2xz

������
= x̂(0� 6xz) + ŷ(0 + 2z) + ẑ(3z

2 � 0) = �6xz x̂ + 2z ŷ + 3z
2
ẑ.

(b) r⇥vb =

������

x̂ ŷ ẑ
@
@x

@
@y

@
@z

xy 2yz 3xz

������
= x̂(0� 2y) + ŷ(0� 3z) + ẑ(0� x) = �2y x̂� 3z ŷ � x ẑ.

(c) r⇥vc =

������

x̂ ŷ ẑ
@
@x

@
@y

@
@z

y
2 (2xy + z

2) 2yz

������
= x̂(2z � 2z) + ŷ(0� 0) + ẑ(2y � 2y) = 0.

Problem 1.19

A x

y

z

v

v

v

vB

As we go from point A to point B (9 o’clock to 10 o’clock), x

increases, y increases, vx increases, and vy decreases, so @vx/@y >

0, while @vy/@y < 0. On the circle, vz = 0, and there is no
dependence on z, so Eq. 1.41 says

r⇥ v = ẑ

✓
@vy

@x
� @vx

@y

◆

points in the negative z direction (into the page), as the right
hand rule would suggest. (Pick any other nearby points on the
circle and you will come to the same conclusion.) [I’m sorry, but I
cannot remember who suggested this cute illustration.]

Problem 1.20

v = y x̂ + x ŷ; or v = yz x̂ + xz ŷ + xy ẑ; or v = (3x
2
z � z

3) x̂ + 3 ŷ + (x3 � 3xz
2) ẑ;

or v = (sinx)(cosh y) x̂� (cos x)(sinh y) ŷ; etc.
Problem 1.21

(i) r(fg) = @(fg)
@x x̂ + @(fg)

@y ŷ + @(fg)
@z ẑ =

⇣
f

@g
@x + g

@f
@x

⌘
x̂ +

⇣
f

@g
@y + g

@f
@y

⌘
ŷ +

⇣
f

@g
@z + g

@f
@z

⌘
ẑ

= f

⇣
@g
@x x̂ + @g

@y ŷ + @g
@z ẑ

⌘
+ g

⇣
@f
@x x̂ + @f

@y ŷ + @f
@z ẑ

⌘
= f(rg) + g(rf). qed

(iv) r·(A⇥B) = @
@x (AyBz �AzBy) + @

@y (AzBx �AxBz) + @
@z (AxBy �AyBx)

= Ay
@Bz
@x + Bz

@Ay

@x �Az
@By

@x �By
@Az
@x + Az

@Bx
@y + Bx

@Az
@y �Ax

@Bz
@y �Bz

@Ax
@y

+Ax
@By

@z + By
@Ax
@z �Ay

@Bx
@z �Bx

@Ay

@z

= Bx

⇣
@Az
@y �

@Ay

@z

⌘
+ By

�
@Ax
@z �

@Az
@x

�
+ Bz

⇣
@Ay

@x �
@Ax
@y

⌘
�Ax

⇣
@Bz
@y �

@By

@z

⌘

�Ay

�
@Bx
@z �

@Bz
@x

�
�Az

⇣
@By

@x �
@Bx
@y

⌘
= B· (r⇥A)�A· (r⇥B). qed

(v) r⇥ (fA) =
⇣

@(fAz)
@y � @(fAy)

@z

⌘
x̂ +

⇣
@(fAx)

@z � @(fAz)
@x

⌘
ŷ +

⇣
@(fAy)

@x � @(fAx)
@y

⌘
ẑ

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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CHAPTER 1. VECTOR ANALYSIS 9

=
⇣
f

@Az
@y + Az

@f
@y � f

@Ay

@z �Ay
@f
@z

⌘
x̂ +

⇣
f

@Ax
@z + Ax

@f
@z � f

@Az
@x �Az

@f
@x

⌘
ŷ

+
⇣
f

@Ay

@x + Ay
@f
@x � f

@Ax
@y �Ax

@f
@y

⌘
ẑ

= f

h⇣
@Az
@y �

@Ay

@z

⌘
x̂ +

�
@Ax
@z �

@Az
@x

�
ŷ +

⇣
@Ay

@x �
@Ax
@y

⌘
ẑ

i

�
h⇣

Ay
@f
@z �Az

@f
@y

⌘
x̂ +

⇣
Az

@f
@x �Ax

@f
@z

⌘
ŷ +

⇣
Ax

@f
@y �Ay

@f
@x

⌘
ẑ

i

= f (r⇥A)�A⇥ (rf). qed
Problem 1.22

(a) (A·r)B =
⇣
Ax

@Bx
@x + Ay

@Bx
@y + Az

@Bx
@z

⌘
x̂ +

⇣
Ax

@By

@x + Ay
@By

@y + Az
@By

@z

⌘
ŷ

+
⇣
Ax

@Bz
@x + Ay

@Bz
@y + Az

@Bz
@z

⌘
ẑ.

(b) r̂ = r
r = x x̂+y ŷ+z ẑp

x2+y2+z2
. Let’s just do the x component.

[(r̂·r)r̂]x = 1p
⇣
x

@
@x + y

@
@y + z

@
@z

⌘
xp

x2+y2+z2

= 1
r

n
x

h
1p + x(� 1

2 ) 1
(p )3 2x

i
+ yx

h
� 1

2
1

(p )3 2y

i
+ zx

h
� 1

2
1

(p )3 2z

io

= 1
r

�
x
r �

1
r3

�
x

3 + xy
2 + xz

2
� 

= 1
r

�
x
r �

x
r3

�
x

2 + y
2 + z

2
� 

= 1
r

�
x
r �

x
r

�
= 0.

Same goes for the other components. Hence: (r̂·r) r̂ = 0 .

(c) (va·r)vb =
⇣
x

2 @
@x + 3xz

2 @
@y � 2xz

@
@z

⌘
(xy x̂ + 2yz ŷ + 3xz ẑ)

= x
2 (y x̂ + 0 ŷ + 3z ẑ) + 3xz

2 (x x̂ + 2z ŷ + 0 ẑ)� 2xz (0 x̂ + 2y ŷ + 3x ẑ)
=
�
x

2
y + 3x

2
z
2
�
x̂ +

�
6xz

3 � 4xyz
�
ŷ +

�
3x

2
z � 6x

2
z
�
ẑ

= x
2
�
y + 3z

2
�
x̂ + 2xz

�
3z

2 � 2y
�
ŷ � 3x

2
z ẑ

Problem 1.23

(ii) [r(A·B)]x = @
@x (AxBx + AyBy + AzBz) = @Ax

@x Bx + Ax
@Bx
@x + @Ay

@x By + Ay
@By

@x + @Az
@x Bz + Az

@Bz
@x

[A⇥(r⇥B)]x = Ay(r⇥B)z �Az(r⇥B)y = Ay

�@By

@x �
@Bx
@y

�
�Az

�
@Bx
@z �

@Bz
@x

�

[B⇥(r⇥A)]x = By

�@Ay

@x �
@Ax
@y

�
�Bz

�
@Ax
@z �

@Az
@x

�

[(A·r)B]x =
�
Ax

@
@x + Ay

@
@y + Az

@
@z

�
Bx = Ax

@Bx
@x + Ay

@Bx
@y + Az

@Bx
@z

[(B·r)A]x = Bx
@Ax
@x + By

@Ax
@y + Bz

@Ax
@z

So [A⇥(r⇥B) + B⇥(r⇥A) + (A·r)B + (B·r)A]x
= Ay

@By

@x �Ay
@Bx
@y �Az

@Bx
@z + Az

@Bz
@x + By

@Ay

@x �By
@Ax
@y �Bz

@Ax
@z + Bz

@Az
@x

+Ax
@Bx
@x + Ay

@Bx
@y + Az

@Bx
@z + Bx

@Ax
@x + By

@Ax
@y + Bz

@Ax
@z

= Bx
@Ax
@x + Ax

@Bx
@x + By

�@Ay

@x �
@Ax
@y/ +@Ax

@y/
�

+ Ay

�@By

@x �
@Bx
@y/ +@Bx

@y/
�

+Bz

�
�@Ax

@z/ +@Az
@x + @Ax

@z/
�

+ Az

�
�@Bx

@z/ +@Bz
@x + @Bx

@z/
�

= [r(A·B)]x (same for y and z)

(vi) [r⇥(A⇥B)]x = @
@y (A⇥B)z � @

@z (A⇥B)y = @
@y (AxBy �AyBx)� @

@z (AzBx �AxBz)
= @Ax

@y By + Ax
@By

@y �
@Ay

@y Bx �Ay
@Bx
@y �

@Az
@z Bx �Az

@Bx
@z + @Ax

@z Bz + Ax
@Bz
@z

[(B·r)A� (A·r)B + A(r·B)�B(r·A)]x
= Bx

@Ax
@x + By

@Ax
@y + Bz

@Ax
@z �Ax

@Bx
@x �Ay

@Bx
@y �Az

@Bx
@z + Ax

�
@Bx
@x + @By

@y + @Bz
@z

�
�Bx

�
@Ax
@x + @Ay

@y + @Az
@z

�

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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10 CHAPTER 1. VECTOR ANALYSIS

= By
@Ax
@y + Ax

�
�@Bx

@x/ +@Bx
@x/ +@By

@y + @Bz
@z

�
+ Bx

�
@Ax
@x/ �@Ax

@x/ �@Ay

@y �
@Az
@z

�

+ Ay

�
�@Bx

@y

�
+ Az

�
�@Bx

@z

�
+ Bz

�
@Ax
@z

�

= [r⇥(A⇥B)]x (same for y and z)
Problem 1.24

r(f/g) = @
@x (f/g) x̂ + @

@y (f/g) ŷ + @
@z (f/g) ẑ

= g @f
@x�f @g

@x
g2 x̂ +

g @f
@y�f @g

@y

g2 ŷ + g @f
@z�f @g

@z
g2 ẑ

= 1
g2

h
g

⇣
@f
@x x̂ + @f

@y ŷ + @f
@z ẑ

⌘
� f

⇣
@g
@x x̂ + @g

@y ŷ + @g
@z ẑ

⌘i
= grf�frg

g2 . qed

r·(A/g) = @
@x (Ax/g) + @

@y (Ay/g) + @
@z (Az/g)

= g @Ax
@x �Ax

@g
@x

g2 +
g

@Ay
@y �Ay

@g
@y

g2 + g @Az
@z �Az

@g
@x

g2

= 1
g2

h
g

⇣
@Ax
@x + @Ay

@y + @Az
@z

⌘
�
⇣
Ax

@g
@x + Ay

@g
@y + Az

@g
@z

⌘i
= gr·A�A·rg

g2 . qed

[r⇥(A/g)]x = @
@y (Az/g)� @

@z (Ay/g)

=
g @Az

@y �Az
@g
@y

g2 � g
@Ay
@z �Ay

@g
@z

g2

= 1
g2

h
g

⇣
@Az
@y �

@Ay

@z

⌘
�
⇣
Az

@g
@y �Ay

@g
@z

⌘i

= g(r⇥A)x+(A⇥rg)x

g2 (same for y and z). qed

Problem 1.25

(a) A⇥B =

������

x̂ ŷ ẑ

x 2y 3z

3y �2x 0

������
= x̂(6xz) + ŷ(9zy) + ẑ(�2x

2 � 6y
2)

r·(A⇥B) = @
@x (6xz) + @

@y (9zy) + @
@z (�2x

2 � 6y
2) = 6z + 9z + 0 = 15z

r⇥A = x̂

⇣
@
@y (3z)� @

@z (2y)
⌘

+ ŷ
�

@
@z (x)� @

@x (3z)
�

+ ẑ

⇣
@
@x (2y)� @

@y (x)
⌘

= 0; B·(r⇥A) = 0

r⇥B = x̂

⇣
@
@y (0)� @

@z (�2x)
⌘

+ ŷ
�

@
@z (3y)� @

@x (0)
�

+ ẑ

⇣
@
@x (�2x)� @

@y (3y)
⌘

= �5 ẑ; A·(r⇥B) = �15z

r·(A⇥B) ?= B·(r⇥A)�A·(r⇥B) = 0� (�15z) = 15z. X
(b) A·B = 3xy � 4xy = �xy ; r(A·B) = r(�xy) = x̂

@
@x (�xy) + ŷ

@
@y (�xy) = �y x̂� x ŷ

A⇥(r⇥B) =

������

x̂ ŷ ẑ

x 2y 3z

0 0 �5

������
= x̂(�10y) + ŷ(5x); B⇥(r⇥A) = 0

(A·r)B =
⇣
x

@
@x + 2y

@
@y + 3z

@
@z

⌘
(3y x̂� 2x ŷ) = x̂(6y) + ŷ(�2x)

(B·r)A =
⇣
3y

@
@x � 2x

@
@y

⌘
(x x̂ + 2y ŷ + 3z ẑ) = x̂(3y) + ŷ(�4x)

A⇥(r⇥B) + B⇥(r⇥A) + (A·r)B + (B·r)A
= �10y x̂ + 5x ŷ + 6y x̂� 2x ŷ + 3y x̂� 4x ŷ = �y x̂� x ŷ = r·(A·B). X

(c) r⇥(A⇥B) = x̂

⇣
@
@y (�2x

2 � 6y
2)� @

@z (9zy)
⌘

+ ŷ
�

@
@z (6xz)� @

@x (�2x
2 � 6y

2)
�

+ ẑ

⇣
@
@x (9zy)� @

@y (6xz)
⌘

= x̂(�12y � 9y) + ŷ(6x + 4x) + ẑ(0) = �21y x̂ + 10x ŷ

r·A = @
@x (x) + @

@y (2y) + @
@z (3z) = 1 + 2 + 3 = 6; r·B = @

@x (3y) + @
@y (�2x) = 0

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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CHAPTER 1. VECTOR ANALYSIS 11

(B·r)A� (A·r)B + A(r·B)�B(r·A) = 3y x̂� 4x ŷ � 6y x̂ + 2x ŷ � 18y x̂ + 12x ŷ = �21y x̂ + 10x ŷ

= r⇥(A⇥B). X
Problem 1.26

(a) @2Ta
@x2 = 2; @2Ta

@y2 = @2Ta
@z2 = 0 ) r2

Ta = 2.

(b) @2Tb
@x2 = @2Tb

@y2 = @2Tb
@z2 = �Tb ) r2

Tb = �3Tb = �3 sinx sin y sin z.

(c) @2Tc
@x2 = 25Tc ; @2Tc

@y2 = �16Tc ; @2Tc
@z2 = �9Tc ) r2

Tc = 0.

(d) @2vx
@x2 = 2 ; @2vx

@y2 = @2vx
@z2 = 0 ) r2

vx = 2
@2vy

@x2 = @2vy

@y2 = 0 ; @2vy

@z2 = 6x ) r2
vy = 6x

@2vz
@x2 = @2vz

@y2 = @2vz
@z2 = 0 ) r2

vz = 0

9
>=

>;
r2

v = 2 x̂ + 6x ŷ.

Problem 1.27

r·(r⇥v) = @
@x

⇣
@vz
@y �

@vy

@z

⌘
+ @

@y

�
@vx
@z �

@vz
@x

�
+ @

@z

⇣
@vy

@x �
@vx
@y

⌘

=
⇣

@2vz
@x @y �

@2vz
@y @x

⌘
+
⇣

@2vx
@y @z �

@2vx
@z @y

⌘
+
⇣

@2vy

@z @x �
@2vy

@x @z

⌘
= 0, by equality of cross-derivatives.

From Prob. 1.18: r⇥va = �6xz x̂+2z ŷ+3z
2
ẑ ) r·(r⇥va) = @

@x (�6xz)+ @
@y (2z)+ @

@z (3z
2) = �6z+6z = 0.

Problem 1.28

r⇥(rt) =

������

x̂ ŷ ẑ
@
@x

@
@y

@
@z

@t
@x

@t
@y

@t
@z

������
= x̂

�
@2t

@y @z �
@2t

@z @y

�
+ ŷ

�
@2t

@z @x �
@2t

@x @z

�
+ ẑ
�

@2t
@x @y �

@2t
@y @x

�

= 0, by equality of cross-derivatives.

In Prob. 1.11(b), rf = 2xy
3
z
4
x̂ + 3x

2
y
2
z
4
ŷ + 4x

2
y
3
z
3
ẑ, so

r⇥(rf) =

������

x̂ ŷ ẑ
@
@x

@
@y

@
@z

2xy
3
z
4 3x

2
y
2
z
4 4x

2
y
3
z
3

������
= x̂(3 · 4x

2
y
2
z
3 � 4 · 3x

2
y
2
z
3) + ŷ(4 · 2xy

3
z
3 � 2 · 4xy

3
z
3) + ẑ(2 · 3xy

2
z
4 � 3 · 2xy

2
z
4) = 0. X

Problem 1.29

(a) (0, 0, 0) �! (1, 0, 0). x : 0! 1, y = z = 0; dl = dx x̂;v · dl = x
2
dx;
R

v · dl =
R 1
0 x

2
dx = (x3

/3)|10 = 1/3.

(1, 0, 0) �! (1, 1, 0). x = 1, y : 0! 1, z = 0; dl = dy ŷ;v · dl = 2yz dy = 0;
R

v · dl = 0.

(1, 1, 0) �! (1, 1, 1). x = y = 1, z : 0! 1; dl = dz ẑ;v · dl = y
2
dz = dz;

R
v · dl =

R 1
0 dz = z|10 = 1.

Total:
R

v · dl = (1/3) + 0 + 1 = 4/3.

(b) (0, 0, 0) �! (0, 0, 1). x = y = 0, z : 0! 1; dl = dz ẑ;v · dl = y
2
dz = 0;

R
v · dl = 0.

(0, 0, 1) �! (0, 1, 1). x = 0, y : 0! 1, z = 1; dl = dy ŷ;v ·dl = 2yz dy = 2y dy;
R

v ·dl =
R 1
0 2y dy = y

2|10 = 1.
(0, 1, 1) �! (1, 1, 1). x : 0! 1, y = z = 1; dl = dx x̂;v · dl = x

2
dx;
R

v · dl =
R 1
0 x

2
dx = (x3

/3)|10 = 1/3.

Total:
R

v · dl = 0 + 1 + (1/3) = 4/3.

(c) x = y = z : 0! 1; dx = dy = dz;v · dl = x
2
dx + 2yz dy + y

2
dz = x

2
dx + 2x

2
dx + x

2
dx = 4x

2
dx;R

v · dl =
R 1
0 4x

2
dx = (4x

3
/3)|10 = 4/3.

(d)
H

v · dl = (4/3)� (4/3) = 0.
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Problem 1.30

x, y : 0 ! 1, z = 0; da = dx dy ẑ;v · da = y(z2 � 3) dx dy = �3y dx dy;
R

v · da = �3
R 2
0 dx

R 2
0 y dy =

�3(x|20)(
y2

2 |
2
0) = �3(2)(2) = �12. In Ex. 1.7 we got 20, for the same boundary line (the square in the

xy-plane), so the answer is no: the surface integral does not depend only on the boundary line. The total flux
for the cube is 20 + 12 = 32.

Problem 1.31

R
T d⌧ =

R
z
2
dx dy dz. You can do the integrals in any order—here it is simplest to save z for last:

Z
z
2

Z ✓Z
dx

◆
dy

�
dz.

The sloping surface is x+y+z = 1, so the x integral is
R (1�y�z)
0 dx = 1�y�z. For a given z, y ranges from 0 to

1� z, so the y integral is
R (1�z)
0 (1�y� z) dy = [(1� z)y� (y2

/2)]|(1�z)
0 = (1� z)2� [(1� z)2/2] = (1� z)2/2 =

(1/2)� z + (z2
/2). Finally, the z integral is

R 1
0 z

2( 1
2 � z + z2

2 ) dz =
R 1
0 ( z2

2 � z
3 + z4

2 ) dz = ( z3

6 �
z4

4 + z5

10 )|10 =
1
6 �

1
4 + 1

10 = 1/60.

Problem 1.32

T (b) = 1 + 4 + 2 = 7; T (a) = 0. ) T (b)� T (a) = 7.

rT = (2x + 4y)x̂ + (4x + 2z
3)ŷ + (6yz

2)ẑ; rT ·dl = (2x + 4y)dx + (4x + 2z
3)dy + (6yz

2)dz

(a) Segment 1: x : 0! 1, y = z = dy = dz = 0.
R

rT ·dl =
R 1
0 (2x) dx = x

2
��1
0

= 1.

Segment 2: y : 0! 1, x = 1, z = 0, dx = dz = 0.
R

rT ·dl =
R 1
0 (4) dy = 4y|10 = 4.

Segment 3: z : 0! 1, x = y = 1, dx = dy = 0.
R

rT ·dl =
R 1
0 (6z

2) dz = 2z
3
��1
0

= 2.

9
>=

>;

R b
a rT ·dl = 7. X

(b) Segment 1: z : 0! 1, x = y = dx = dy = 0.
R

rT ·dl =
R 1
0 (0) dz = 0.

Segment 2: y : 0! 1, x = 0, z = 1, dx = dz = 0.
R

rT ·dl =
R 1
0 (2) dy = 2y|10 = 2.

Segment 3: x : 0! 1, y = z = 1, dy = dz = 0.
R

rT ·dl =
R 1
0 (2x + 4) dx

= (x2 + 4x)
��1
0

= 1 + 4 = 5.

9
>>>=

>>>;

R b
a rT ·dl = 7. X

(c) x : 0! 1, y = x, z = x
2
, dy = dx, dz = 2x dx.

rT ·dl = (2x + 4x)dx + (4x + 2x
6)dx + (6xx

4)2x dx = (10x + 14x
6)dx.

R b
a rT ·dl =

R 1
0 (10x + 14x

6)dx = (5x
2 + 2x

7)
��1
0

= 5 + 2 = 7. X
Problem 1.33

r·v = y + 2z + 3x

R
(r·v)d⌧ =

R
(y + 2z + 3x) dx dy dz =

RR nR 2
0 (y + 2z + 3x) dx

o
dy dz

,! ⇥
(y + 2z)x + 3

2x
2
⇤2
0

= 2(y + 2z) + 6
=
R nR 2

0 (2y + 4z + 6)dy

o
dz

,! ⇥
y
2 + (4z + 6)y

⇤2
0

= 4 + 2(4z + 6) = 8z + 16

=
R 2
0 (8z + 16)dz = (4z

2 + 16z)
��2
0

= 16 + 32 = 48.

Numbering the surfaces as in Fig. 1.29:

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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CHAPTER 1. VECTOR ANALYSIS 13

(i) da = dy dz x̂, x = 2. v·da = 2y dy dz.
R
v·da =

RR
2y dy dz = 2y

2
��2
0

= 8.

(ii) da = �dy dz x̂, x = 0. v·da = 0.
R
v·da = 0.

(iii) da = dx dz ŷ, y = 2. v·da = 4z dx dz.
R
v·da =

RR
4z dx dz = 16.

(iv) da = �dx dz ŷ, y = 0. v·da = 0.
R
v·da = 0.

(v) da = dx dy ẑ, z = 2. v·da = 6x dx dy.
R
v·da = 24.

(vi) da = �dx dy ẑ, z = 0. v·da = 0.
R
v·da = 0.

)
R
v·da = 8 + 16 + 24 = 48 X

Problem 1.34

r⇥v = x̂(0� 2y) + ŷ(0� 3z) + ẑ(0� x) = �2y x̂� 3z ŷ � x ẑ.

da = dy dz x̂, if we agree that the path integral shall run counterclockwise. So
(r⇥v)·da = �2y dy dz.

R
(r⇥v)·da =

R nR 2�z
0 (�2y)dy

o
dz

,! y
2
��2�z

0
= �(2� z)2

= �
R 2
0 (4� 4z + z

2)dz = �
⇣
4z � 2z

2 + z3

3

⌘���
2

0

= �
�
8� 8 + 8

3

�
= � 8

3 -

6
z

y

@
@

@
@

@
@

y =
2�

z

Meanwhile, v·dl = (xy)dx + (2yz)dy + (3zx)dz. There are three segments.

-

6
z

y

@
@

@
@

@
@-

(1)

@
@I (2)

?
(3)

(1) x = z = 0; dx = dz = 0. y : 0! 2.
R
v·dl = 0.

(2) x = 0; z = 2� y; dx = 0, dz = �dy, y : 2! 0. v·dl = 2yz dy.R
v·dl =

R 0
2 2y(2� y)dy = �

R 2
0 (4y � 2y

2)dy = �
�
2y

2 � 2
3y

3
���2

0
= �

�
8� 2

3 · 8
�

= � 8
3 .

(3) x = y = 0; dx = dy = 0; z : 2! 0. v·dl = 0.
R
v·dl = 0. So

H
v·dl = � 8

3 . X
Problem 1.35

By Corollary 1,
R
(r⇥v)·da should equal 4

3 . r⇥v = (4z
2 � 2x)x̂ + 2z ẑ.

(i) da = dy dz x̂, x = 1; y, z : 0! 1. (r⇥v)·da = (4z
2 � 2)dy dz;

R
(r⇥v)·da =

R 1
0 (4z

2 � 2)dz

= (4
3z

3 � 2z)
��1
0

= 4
3 � 2 = � 2

3 .

(ii) da = �dx dy ẑ, z = 0; x, y : 0! 1. (r⇥v)·da = 0;
R
(r⇥v)·da = 0.

(iii) da = dx dz ŷ, y = 1; x, z : 0! 1. (r⇥v)·da = 0;
R
(r⇥v)·da = 0.

(iv) da = �dx dz ŷ, y = 0; x, z : 0! 1. (r⇥v)·da = 0;
R
(r⇥v)·da = 0.

(v) da = dx dy ẑ, z = 1; x, y : 0! 1. (r⇥v)·da = 2 dx dy;
R
(r⇥v)·da = 2.

)
R
(r⇥v)·da = � 2

3 + 2 = 4
3 . X

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



14 CHAPTER 1. VECTOR ANALYSIS

Problem 1.36

(a) Use the product rule r⇥(fA) = f(r⇥A)�A⇥ (rf) :
Z

S
f(r⇥A) · da =

Z

S
r⇥(fA) · da +

Z

S
[A⇥ (rf)] · da =

I

P
fA · dl +

Z

S
[A⇥ (rf)] · da. qed

(I used Stokes’ theorem in the last step.)

(b) Use the product rule r·(A⇥B) = B · (r⇥A)�A · (r⇥B) :
Z

V
B · (r⇥A)d⌧ =

Z

V
r·(A⇥B) d⌧ +

Z

V
A · (r⇥B) d⌧ =

I

S
(A⇥B) · da +

Z

V
A · (r⇥B) d⌧. qed

(I used the divergence theorem in the last step.)

Problem 1.37 r =
p

x2 + y2 + z2; ✓ = cos�1

✓
zp

x2+y2+z2

◆
; � = tan�1

� y
x

�
.

Problem 1.38

There are many ways to do this one—probably the most illuminating way is to work it out by trigonometry
from Fig. 1.36. The most systematic approach is to study the expression:

r = x x̂ + y ŷ + z ẑ = r sin ✓ cos� x̂ + r sin ✓ sin� ŷ + r cos ✓ ẑ.

If I only vary r slightly, then dr = @
@r (r)dr is a short vector pointing in the direction of increase in r. To make

it a unit vector, I must divide by its length. Thus:

r̂ =
@r
@r�� @r
@r

�� ; ✓̂ =
@r
@✓�� @r
@✓

�� ; �̂ =
@r
@��� @r
@�

�� .

@r
@r = sin ✓ cos� x̂ + sin ✓ sin� ŷ + cos ✓ ẑ;

�� @r
@r

��2 = sin2
✓ cos2 �+ sin2

✓ sin2
�+ cos2 ✓ = 1.

@r
@✓ = r cos ✓ cos� x̂ + r cos ✓ sin� ŷ � r sin ✓ ẑ;

�� @r
@✓

��2 = r
2 cos2 ✓ cos2 �+ r

2 cos2 ✓ sin2
�+ r

2 sin2
✓ = r

2
.

@r
@� = �r sin ✓ sin� x̂ + r sin ✓ cos� ŷ;

�� @r
@�

��2 = r
2 sin2

✓ sin2
�+ r

2 sin2
✓ cos2 � = r

2 sin2
✓.

)
r̂ = sin ✓ cos� x̂ + sin ✓ sin� ŷ + cos ✓ ẑ.

✓̂ = cos ✓ cos� x̂+ cos ✓ sin� ŷ� sin ✓ ẑ.

�̂ = � sin� x̂ + cos� ŷ.

Check: r̂·̂r = sin2
✓(cos2 �+ sin2

�) + cos2 ✓ = sin2
✓ + cos2 ✓ = 1, X

✓̂·�̂ = � cos ✓ sin� cos�+ cos ✓ sin� cos� = 0, X etc.

sin ✓ r̂ = sin2
✓ cos� x̂ + sin2

✓ sin� ŷ + sin ✓ cos ✓ ẑ.

cos ✓ ✓̂ = cos2 ✓ cos� x̂ + cos2 ✓ sin� ŷ � sin ✓ cos ✓ ẑ.

Add these:
(1) sin ✓ r̂ + cos ✓ ✓̂ = + cos� x̂ + sin� ŷ;
(2) �̂ = � sin� x̂ + cos� ŷ.

Multiply (1) by cos�, (2) by sin�, and subtract:

x̂ = sin ✓ cos� r̂ + cos ✓ cos� ✓̂ � sin� �̂.

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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CHAPTER 1. VECTOR ANALYSIS 15

Multiply (1) by sin�, (2) by cos�, and add:

ŷ = sin ✓ sin� r̂ + cos ✓ sin� ✓̂ + cos� �̂.

cos ✓ r̂ = sin ✓ cos ✓ cos� x̂ + sin ✓ cos ✓ sin� ŷ + cos2 ✓ ẑ.

sin ✓ ✓̂ = sin ✓ cos ✓ cos� x̂ + sin ✓ cos ✓ sin� ŷ � sin2
✓ ẑ.

Subtract these:

ẑ = cos ✓ r̂� sin ✓ ✓̂.

Problem 1.39

(a) r·v1 = 1
r2

@
@r (r2

r
2) = 1

r2 4r
3 = 4r

R
(r·v1)d⌧ =

R
(4r)(r2 sin ✓ dr d✓ d�) = (4)

R R
0 r

3
dr
R ⇡
0 sin ✓ d✓

R
2⇡
0 d� = (4)

⇣
R4

4

⌘
(2)(2⇡) = 4⇡R

4

R
v1·da =

R
(r2

r̂)·(r2 sin ✓ d✓ d� r̂) = r
4
R ⇡
0 sin ✓ d✓

R 2⇡
0 d� = 4⇡R

4 X (Note: at surface of sphere r = R.)

(b) r·v2 = 1
r2

@
@r

�
r
2 1

r2

�
= 0 )

R
(r·v2)d⌧ = 0

R
v2·da =

R �
1
r2 r̂
�
(r2 sin ✓ d✓ d� r̂) =

R
sin ✓ d✓ d� = 4⇡.

They don’t agree! The point is that this divergence is zero except at the origin, where it blows up, so our
calculation of

R
(r·v2) is incorrect. The right answer is 4⇡.

Problem 1.40

r·v = 1
r2

@
@r (r2

r cos ✓) + 1
r sin ✓

@
@✓ (sin ✓ r sin ✓) + 1

r sin ✓
@

@� (r sin ✓ cos�)
= 1

r2 3r
2 cos ✓ + 1

r sin ✓ r 2 sin ✓ cos ✓ + 1
r sin ✓ r sin ✓(� sin�)

= 3 cos ✓ + 2 cos ✓ � sin� = 5 cos ✓ � sin�
R
(r·v)d⌧ =

R
(5 cos ✓ � sin�) r

2 sin ✓ dr d✓ d� =
R R
0 r

2
dr
R ✓

2
0

hR 2⇡
0 (5 cos ✓ � sin�) d�

i
d✓ sin ✓

,!2⇡(5 cos ✓)
=
⇣

R3

3

⌘
(10⇡)

R ⇡
2

0 sin ✓ cos ✓ d✓

,! sin2 ✓
2

���
⇡
2

0
= 1

2

= 5⇡
3 R

3
.

Two surfaces—one the hemisphere: da = R
2 sin ✓ d✓ d� r̂; r = R; � : 0! 2⇡, ✓ : 0! ⇡

2 .R
v·da =

R
(r cos ✓)R2 sin ✓ d✓ d� = R

3
R ⇡

2
0 sin ✓ cos ✓ d✓

R 2⇡
0 d� = R

3
�

1
2

�
(2⇡) = ⇡R

3
.

other the flat bottom: da = (dr)(r sin ✓ d�)(+✓̂) = r dr d� ✓̂ (here ✓ = ⇡
2 ). r : 0! R, � : 0! 2⇡.R

v·da =
R
(r sin ✓)(r dr d�) =

R R
0 r

2
dr
R 2⇡
0 d� = 2⇡R3

3 .

Total:
R
v·da = ⇡R

3 + 2
3⇡R

3 = 5
3⇡R

3. X

Problem 1.41 rt = (cos ✓ + sin ✓ cos�)r̂ + (� sin ✓ + cos ✓ cos�)✓̂ + 1
sin ✓/ (� sin ✓/ sin�)�̂

r2
t = r·(rt)

= 1
r2

@
@r

�
r
2(cos ✓ + sin ✓ cos�)

�
+ 1

r sin ✓
@
@✓ (sin ✓(� sin ✓ + cos ✓ cos�)) + 1

r sin ✓
@

@� (� sin�)
= 1

r2 2r(cos ✓ + sin ✓ cos�) + 1
r sin ✓ (�2 sin ✓ cos ✓ + cos2 ✓ cos�� sin2

✓ cos�)� 1
r sin ✓ cos�

= 1
r sin ✓ [2 sin ✓ cos ✓ + 2 sin2

✓ cos�� 2 sin ✓ cos ✓ + cos2 ✓ cos�� sin2
✓ cos�� cos�]

= 1
r sin ✓

⇥
(sin2

✓ + cos2 ✓) cos�� cos�
⇤

= 0.
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16 CHAPTER 1. VECTOR ANALYSIS

) r2
t = 0

Check: r cos ✓ = z, r sin ✓ cos� = x ) in Cartesian coordinates t = x + z. Obviously Laplacian is zero.

Gradient Theorem:
R b
a rt·dl = t(b)� t(a)

Segment 1: ✓ = ⇡
2 , � = 0, r : 0! 2. dl = dr r̂; rt·dl = (cos ✓ + sin ✓ cos�)dr = (0 + 1)dr = dr.R

rt·dl =
R 2
0 dr = 2.

Segment 2: ✓ = ⇡
2 , r = 2, � : 0! ⇡

2 . dl = r sin ✓ d� �̂ = 2 d� �̂.

rt·dl = (� sin�)(2 d�) = �2 sin� d�.
R

rt·dl = �
R ⇡

2
0 2 sin� d� = 2 cos�|

⇡
2
0 = �2.

Segment 3: r = 2, � = ⇡
2 ; ✓ : ⇡

2 ! 0.

dl = r d✓ ✓̂ = 2 d✓ ✓̂; rt·dl = (� sin ✓ + cos ✓ cos�)(2 d✓) = �2 sin ✓ d✓.R
rt·dl = �

R 0
⇡
2

2 sin ✓ d✓ = 2 cos ✓|0⇡
2

= 2.

Total:
R b
a rt·dl = 2� 2 + 2 = 2 . Meanwhile, t(b)� t(a) = [2(1 + 0)]� [0( )] = 2. X

Problem 1.42 From Fig. 1.42, ŝ = cos� x̂ + sin� ŷ; �̂ = � sin� x̂ + cos� ŷ; ẑ = ẑ

Multiply first by cos�, second by sin�, and subtract:
ŝ cos�� �̂ sin� = cos2 � x̂ + cos� sin� ŷ + sin2

� x̂� sin� cos� ŷ = x̂(sin2
�+ cos2 �) = x̂.

So x̂ = cos� ŝ� sin� �̂.

Multiply first by sin�, second by cos�, and add:
ŝ sin�+ �̂ cos� = sin� cos� x̂ + sin2

� ŷ � sin� cos� x̂ + cos2 � ŷ = ŷ(sin2
�+ cos2 �) = ŷ.

So ŷ = sin� ŝ + cos� �̂. ẑ = ẑ.

Problem 1.43

(a) r·v = 1
s

@
@s

�
s s(2 + sin2

�)
�

+ 1
s

@
@� (s sin� cos�) + @

@z (3z)
= 1

s 2s(2 + sin2
�) + 1

s s(cos2 �� sin2
�) + 3

= 4 + 2 sin2
�+ cos2 �� sin2

�+ 3
= 4 + sin2

�+ cos2 �+ 3 = 8.

(b)
R
(r·v)d⌧ =

R
(8)s ds d� dz = 8

R 2
0 s ds

R ⇡
2

0 d�
R 5
0 dz = 8(2)

�
⇡
2

�
(5) = 40⇡.

Meanwhile, the surface integral has five parts:
top: z = 5, da = s ds d� ẑ; v·da = 3z s ds d� = 15s ds d�.

R
v·da = 15

R 2
0 s ds

R ⇡
2

0 d� = 15⇡.

bottom: z = 0, da = �s ds d� ẑ; v·da = �3z s ds d� = 0.
R
v·da = 0.

back: � = ⇡
2 , da = ds dz �̂; v·da = s sin� cos� ds dz = 0.

R
v·da = 0.

left: � = 0, da = �ds dz �̂; v·da = �s sin� cos� ds dz = 0.
R
v·da = 0.

front: s = 2, da = s d� dz ŝ; v·da = s(2 + sin2
�)s d� dz = 4(2 + sin2

�)d� dz.R
v·da = 4

R ⇡
2

0 (2 + sin2
�)d�

R 5
0 dz = (4)(⇡ + ⇡

4 )(5) = 25⇡.

So
H
v·da = 15⇡ + 25⇡ = 40⇡. X

(c) r⇥v =
⇣

1
s

@
@� (3z)� @

@z (s sin� cos�)
⌘
ŝ +

�
@
@z

�
s(2 + sin2

�)
�
� @

@s (3z)
�
�̂

+ 1
s

⇣
@
@s (s2 sin� cos�)� @

@�

�
s(2 + sin2

�)
�⌘

ẑ

= 1
s (2s sin� cos�� s 2 sin� cos�) ẑ = 0.
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CHAPTER 1. VECTOR ANALYSIS 17

Problem 1.44

(a) 3(32)� 2(3)� 1 = 27� 6� 1 = 20.

(b) cos⇡ = -1.

(c) zero.

(d) ln(�2 + 3) = ln 1 = zero.

Problem 1.45

(a)
R 2
�2(2x + 3) 1

3�(x) dx = 1
3 (0 + 3) = 1.

(b) By Eq. 1.94, �(1� x) = �(x� 1), so 1 + 3 + 2 = 6.

(c)
R 1
�1 9x

2 1
3 �(x + 1

3 ) dx = 9
�
� 1

3

�2 1
3 = 1

3 .

(d) 1 (if a > b), 0 (if a < b).

Problem 1.46

(a)
R1
�1 f(x)

⇥
x

d
dx�(x)

⇤
dx = x f(x)�(x)|1�1 �

R1
�1

d
dx (x f(x)) �(x) dx.

The first term is zero, since �(x) = 0 at ±1; d
dx (x f(x)) = x

df
dx + dx

dxf = x
df
dx + f.

So the integral is �
R1
�1

⇣
x

df
dx + f

⌘
�(x) dx = 0� f(0) = �f(0) = �

R1
�1 f(x)�(x) dx.

So, x
d
dx�(x) = ��(x). qed

(b)
R1
�1 f(x) d✓

dxdx = f(x)✓(x)|1�1 �
R1
�1

df
dx✓(x)dx = f(1)�

R1
0

df
dxdx = f(1)� (f(1)� f(0))

= f(0) =
R1
�1 f(x)�(x) dx. So d✓

dx = �(x). qed

Problem 1.47

(a) ⇢(r) = q�
3(r� r

0). Check:
R
⇢(r)d⌧ = q

R
�
3(r� r

0) d⌧ = q. X

(b) ⇢(r) = q�
3(r� a)� q�

3(r).

(c) Evidently ⇢(r) = A�(r �R). To determine the constant A, we require

Q =
R
⇢ d⌧ =

R
A�(r �R)4⇡r

2
dr = A 4⇡R

2
. So A = Q

4⇡R2 . ⇢(r) = Q
4⇡R2 �(r �R).

Problem 1.48

(a) a
2 + a·a + a

2 = 3a
2
.

(b)
R
(r� b)2 1

53 �
3(r) d⌧ = 1

125b
2 = 1

125 (42 + 32) = 1
5 .

(c) c
2 = 25 + 9 + 4 = 38 > 36 = 62, so c is outside V, so the integral is zero.

(d) (e� (2 x̂ + 2 ŷ + 2 ẑ))2 = (1 x̂ + 0 ŷ + (�1) ẑ)2 = 1 + 1 = 2 < (1.5)2 = 2.25, so e is inside V,
and hence the integral is e·(d� e) = (3, 2, 1)·(�2, 0, 2) = �6 + 0 + 2 = -4.

Problem 1.49

First method: use Eq. 1.99 to write J =
R

e
�r
�
4⇡�3(r)

�
d⌧ = 4⇡e

�0 = 4⇡.

Second method: integrating by parts (use Eq. 1.59).
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18 CHAPTER 1. VECTOR ANALYSIS

J = �
Z

V

r̂

r2
·r(e�r) d⌧ +

I

S

e
�r r̂

r2
· da. But r

�
e
�r
�

=
✓
@

@r
e
�r

◆
r̂ = �e

�r
r̂.

=
Z

1
r2

e
�r4⇡r

2
dr +

Z
e
�r r̂

r2
· r2 sin ✓ d✓ d� r̂ = 4⇡

RZ

0

e
�r

dr + e
�R

Z
sin ✓ d✓ d�

= 4⇡
�
�e

�r
���R

0
+ 4⇡e

�R = 4⇡
�
�e

�R + e
�0
�

+ 4⇡e
�R = 4⇡.X

�
Here R =1, so e

�R = 0.
�

Problem 1.50 (a) r·F1 = @
@x (0) + @

@y (0) + @
@z

�
x

2
�

= 0 ; r·F2 = @x
@x + @y

@y + @z
@z = 1 + 1 + 1 = 3

r⇥F1 =

������

x̂ ŷ ẑ
@
@x

@
@y

@
@z

0 0 x
2

������
= �ŷ

@

@x

�
x

2
�

= �2xŷ ; r⇥F2 =

������

x̂ ŷ ẑ
@
@x

@
@y

@
@z

x y z

������
= 0

F2 is a gradient; F1 is a curl U2 = 1
2

�
x

3 + y
2 + z

2
�

would do (F2 = rU2).

For A1, we want
⇣

@Ay

@z �
@Az
@y

⌘
=
�

@Ax
@z �

@Az
@x

�
= 0; @Ay

@x �
@Ax
@y = x

2
. Ay = x3

3 , Ax = Az = 0 would do it.

A1 = 1
3x

2
ŷ (F1 = r⇥A1) . (But these are not unique.)

(b) r·F3 = @
@x (yz) + @

@y (xz) + @
@z (xy) = 0; r⇥F3 =

������

x̂ ŷ ẑ
@
@x

@
@y

@
@z

yz xz xy

������
= x̂ (x � x) + ŷ (y � y) + ẑ (z � z) = 0.

So F3 can be written as the gradient of a scalar (F3 = rU3) and as the curl of a vector (F3 = r⇥A3). In
fact, U3 = xyz does the job. For the vector potential, we have

8
><

>:

@Az
@y �

@Ay

@z = yz, which suggests Az = 1
4y

2
z + f(x, z); Ay = � 1

4yz
2 + g(x, y)

@Ax
@z �

@Az
@x = xz, suggesting Ax = 1

4z
2
x + h(x, y); Az = � 1

4zx
2 + j(y, z)

@Ay

@x �
@Ax
@y = xy, so Ay = 1

4x
2
y + k(y, z); Ax = � 1

4xy
2 + l(x, z)

9
>=

>;

Putting this all together: A3 = 1
4

�
x
�
z
2 � y

2
�
x̂ + y

�
x

2 � z
2
�
ŷ + z

�
y
2 � x

2
�
ẑ
 

(again, not unique).

Problem 1.51

(d) ) (a): r⇥F = r⇥(�rU) = 0 (Eq. 1.44 – curl of gradient is always zero).
(a) ) (c):

H
F · dl =

R
(r⇥F) · da = 0 (Eq. 1.57–Stokes’ theorem).

(c) ) (b):
R b
a I

F · dl�
R b
a II

F · dl =
R b
a I

F · dl +
R a
b II

F · dl =
H

F · dl = 0, so

Z b

a I

F · dl =
Z b

a II

F · dl.

(b) ) (c): same as (c) ) (b), only in reverse; (c) ) (a): same as (a)) (c).
Problem 1.52

(d) ) (a): r·F = r·(r⇥W) = 0 (Eq 1.46—divergence of curl is always zero).
(a) ) (c):

H
F · da =

R
(r·F) d⌧ = 0 (Eq. 1.56—divergence theorem).
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(c) ) (b):
R

I F · da�
R

II F · da =
H

F · da = 0, so
Z

I
F · da =

Z

II
F · da.

(Note: sign change because for
H

F · da, da is outward, whereas for surface II it is inward.)
(b) ) (c): same as (c) ) (b), in reverse; (c)) (a): same as (a)) (c) .
Problem 1.53

In Prob. 1.15 we found that r·va = 0; in Prob. 1.18 we found that r⇥vc = 0. So
vc can be written as the gradient of a scalar; va can be written as the curl of a vector.

(a) To find t:

(1) @t
@x = y

2 ) t = y
2
x + f(y, z)

(2) @t
@y =

�
2xy + z

2
�

(3) @t
@z = 2yz

From (1) & (3) we get @f
@z = 2yz ) f = yz

2 + g(y) ) t = y
2
x + yz

2 + g(y), so @t
@y = 2xy + z

2 + @g
@y =

2xy + z
2 (from (2)) ) @g

@y = 0. We may as well pick g = 0; then t = xy
2 + yz

2.

(b) To find W: @Wz
@y �

@Wy

@z = x
2; @Wx

@z �
@Wz
@x = 3z2

x; @Wy

@x �
@Wx
@y = �2xz.

Pick Wx = 0; then

@Wz

@x
= �3xz

2 )Wz = �3
2
x

2
z
2 + f(y, z)

@Wy

@x
= �2xz )Wy = �x

2
z + g(y, z).

@Wz
@y �

@Wy

@z = @f
@y + x

2 � @g
@z = x

2 ) @f
@y �

@g
@z = 0. May as well pick f = g = 0.

W = �x
2
z ŷ � 3

2x
2
z
2
ẑ.

Check: r⇥W =

������

x̂ ŷ ẑ
@
@x

@
@y

@
@z

0 �x
2
z � 3

2x
2
z
2

������
= x̂

�
x

2
�

+ ŷ
�
3xz

2
�

+ ẑ (�2xz).X

You can add any gradient (rt) to W without changing its curl, so this answer is far from unique. Some
other solutions:
W = xz

3
x̂� x

2
z ŷ;

W =
�
2xyz + xz

3
�

x̂ + x
2
y ẑ;

W = xyz x̂� 1
2x

2
z ŷ + 1

2x
2
�
y � 3z

2
�

ẑ.
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Problem 1.54

r·v =
1
r2

@

@r

�
r
2
r
2 cos ✓

�
+

1
r sin ✓

@

@✓

�
sin ✓ r

2 cos�
�

+
1

r sin ✓
@

@�

�
�r

2 cos ✓ sin�
�

=
1
r2

4r
3 cos ✓ +

1
r sin ✓

cos ✓ r
2 cos�+

1
r sin ✓

�
�r

2 cos ✓ cos�
�

=
r cos ✓
sin ✓

[4 sin ✓ + cos�� cos�] = 4r cos ✓.

Z
(r·v) d⌧ =

Z
(4r cos ✓)r2 sin ✓ dr d✓ d� = 4

RZ

0

r
3
dr

⇡/2Z

0

cos ✓ sin ✓ d✓

⇡/2Z

0

d�

=
�
R

4
�✓1

2

◆⇣
⇡

2

⌘
= ⇡R4

4 .

Surface consists of four parts:
(1) Curved: da = R

2 sin ✓ d✓ d� r̂; r = R. v · da =
�
R

2 cos ✓
� �

R
2 sin ✓ d✓ d�

�
.

Z
v · da = R

4

⇡/2Z

0

cos ✓ sin ✓ d✓

⇡/2Z

0

d� = R
4

✓
1
2

◆⇣
⇡

2

⌘
=
⇡R

4

4
.

(2) Left: da = �r dr d✓ �̂; � = 0. v · da =
�
r
2 cos ✓ sin�

�
(r dr d✓) = 0.

R
v · da = 0.

(3) Back: da = r dr d✓ �̂; � = ⇡/2. v · da =
�
�r

2 cos ✓ sin�
�
(r dr d✓) = �r

3 cos ✓ dr d✓.

Z
v · da =

RZ

0

r
3
dr

⇡/2Z

0

cos ✓ d✓ = �
✓

1
4
R

4

◆
(+1) = �1

4
R

4
.

(4) Bottom: da = r sin ✓ dr d� ✓̂; ✓ = ⇡/2. v · da =
�
r
2 cos�

�
(r dr d�) .

Z
v · da =

RZ

0

r
3
dr

⇡/2Z

0

cos� d� =
1
4
R

4
.

Total:
H

v · da = ⇡R
4
/4 + 0� 1

4R
4 + 1

4R
4 = ⇡R4

4 . X
Problem 1.55

r⇥v =

������

x̂ ŷ ẑ
@
@x

@
@y

@
@z

ay bx 0

������
= ẑ (b� a). So

R
(r⇥v) · da = (b� a)⇡R

2
.

v · dl = (ay x̂ + bx ŷ) · (dx x̂ + dy ŷ + dz ẑ) = ay dx + bx dy; x
2 + y

2 = R
2 ) 2x dx + 2y dy = 0,

so dy = �(x/y) dx. So v · dl = ay dx + bx(�x/y) dx = 1
y

�
ay

2 � bx
2
�

dx.
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For the “upper” semicircle, y =
p

R2 � x2, so v · dl = a(R2�x2)�bx2

p
R2�x2 dx.

Z
v · dl =

�RZ

R

aR
2 � (a + b)x2

p
R2 � x2

dx =
⇢

aR
2 sin�1

⇣
x

R

⌘
� (a + b)


�x

2

p
R2 � x2 +

R
2

2
sin�1

⇣
x

R

⌘������
�R

+R

=
1
2
R

2(a� b) sin�1(x/R)
����
�R

+R

=
1
2
R

2(a� b)
�
sin�1(�1)� sin�1(+1)

�
=

1
2
R

2(a� b)
⇣
�⇡

2
� ⇡

2

⌘

=
1
2
⇡R

2(b� a).

And the same for the lower semicircle (y changes sign, but the limits on the integral are reversed) soH
v · dl = ⇡R

2(b� a). X
Problem 1.56

(1) x = z = 0; dx = dz = 0; y : 0! 1. v · dl = (yz
2) dy = 0;

R
v · dl = 0.

(2) x = 0; z = 2�2y; dz = �2 dy; y : 1! 0. v ·dl = (yz
2) dy+(3y+z) dz = y(2�2y)2 dy�(3y+2�2y)2 dy;

Z
v · dl = 2

0Z

1

(2y
3 � 4y

2 + y � 2) dy = 2
✓

y
4

2
� 4y

3

3
+

y
2

2
� 2y

◆����
0

1

=
14
3

.

(3) x = y = 0; dx = dy = 0; z : 2! 0. v · dl = (3y + z) dz = z dz;

Z
v · dl =

0Z

2

z dz =
z
2

2

���
0

2
= �2.

Total:
H

v · dl = 0 + 14
3 � 2 = 8

3 .

Meanwhile, Stokes’ thereom says
H

v · dl =
R

(r⇥v) · da. Here da = dy dz x̂, so all we need is
(r⇥v)x = @

@y (3y + z)� @
@z (yz

2) = 3� 2yz. Therefore

Z
(r⇥v) · da =

Z Z
(3� 2yz) dy dz =

Z 1

0

Z 2�2y

0
(3� 2yz) dz

�
dy

=
Z 1

0

⇥
3(2� 2y)� 2y

1
2 (2� 2y)2

⇤
dy =

Z 1

0
(�4y

3 + 8y
2 � 10y + 6) dy

=
�
�y

4 + 8
3y

3 � 5y
2 + 6y

����
1

0
= �1 + 8

3 � 5 + 6 = 8
3 . X

Problem 1.57

Start at the origin.

(1) ✓ = ⇡
2 , � = 0; r : 0! 1. v · dl =

�
r cos2 ✓

�
(dr) = 0.

R
v · dl = 0.

(2) r = 1, ✓ = ⇡
2 ; � : 0! ⇡/2. v · dl = (3r)(r sin ✓ d�) = 3 d�.

R
v · dl = 3

⇡/2R

0
d� = 3⇡

2 .
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(3) � = ⇡
2 ; r sin ✓ = y = 1, so r = 1

sin ✓ , dr = �1
sin2 ✓ cos ✓ d✓, ✓ : ⇡

2 ! ✓0 ⌘ tan�1(1/2).

v · dl =
�
r cos2 ✓

�
(dr)� (r cos ✓ sin ✓)(r d✓) =

cos2 ✓
sin ✓

✓
� cos ✓

sin2
✓

◆
d✓ � cos ✓ sin ✓

sin2
✓

d✓

= �
✓

cos3 ✓
sin3

✓
+

cos ✓
sin ✓

◆
d✓ = �cos ✓

sin ✓

✓
cos2 ✓ + sin2

✓

sin2
✓

◆
d✓ = � cos ✓

sin3
✓

d✓.

Therefore
Z

v · dl = �
✓0Z

⇡/2

cos ✓
sin3

✓
d✓ =

1
2 sin2

✓

����
✓0

⇡/2

=
1

2 · (1/5)
� 1

2 · (1)
=

5
2
� 1

2
= 2.

(4) ✓ = ✓0, � = ⇡
2 ; r :

p
5! 0. v · dl =

�
r cos2 ✓

�
(dr) = 4

5r dr.

Z
v · dl =

4
5

0Z

p
5

r dr =
4
5

r
2

2

����
0

p
5

= �4
5
· 5
2

= �2.

Total:

I
v · dl = 0 +

3⇡
2

+ 2� 2 = 3⇡
2 .

Stokes’ theorem says this should equal
R

(r⇥v) · da

r⇥v =
1

r sin ✓


@

@✓
(sin ✓ 3r)� @

@�
(�r sin ✓ cos ✓)

�
r̂ +

1
r


1

sin ✓
@

@�

�
r cos2 ✓

�
� @

@r
(r3r)

�
✓̂

+
1
r


@

@r
(�rr cos ✓ sin ✓)� @

@✓

�
r cos2 ✓

��
�̂

=
1

r sin ✓
[3r cos ✓] r̂ +

1
r
[�6r] ✓̂ +

1
r
[�2r cos ✓ sin ✓ + 2r cos ✓ sin ✓] �̂

= 3 cot ✓ r̂� 6 ✓̂.

(1) Back face: da = �r dr d✓ �̂; (r⇥v) · da = 0.
R

(r⇥v) · da = 0.

(2) Bottom: da = �r sin ✓ dr d� ✓̂; (r⇥v) · da = 6r sin ✓ dr d�. ✓ = ⇡
2 , so (r⇥v) · da = 6r dr d�

Z
(r⇥v) · da =

1Z

0

6r dr

⇡/2Z

0

d� = 6 · 1
2
· ⇡

2
=

3⇡
2

. X

Problem 1.58

v · dl = y dz.

(1) Left side: z = a� x; dz = �dx; y = 0. Therefore
R

v · dl = 0.

(2) Bottom: dz = 0. Therefore
R

v · dl = 0.
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protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



CHAPTER 1. VECTOR ANALYSIS 23

(3) Back: z = a� 1
2y; dz = �1/2 dy; y : 2a! 0.

R
v · dl =

0R

2a
y
�
� 1

2 dy
�

= � 1
2

y2

2

���
0

2a
= 4a2

4 = a
2
.

Meanwhile, r⇥v = x̂, so
R

(r⇥v) · da is the projection of this surface on the x y plane = 1
2 · a · 2a = a

2. X
Problem 1.59

r·v =
1
r2

@

@r

�
r
2
r
2 sin ✓

�
+

1
r sin ✓

@

@✓

�
sin ✓ 4r

2 cos ✓
�

+
1

r sin ✓
@

@�

�
r
2 tan ✓

�

=
1
r2

4r
3 sin ✓ +

1
r sin ✓

4r
2
�
cos2 ✓ � sin2

✓
�

=
4r

sin ✓
�
sin2

✓ + cos2 ✓ � sin2
✓
�

= 4r
cos2 ✓
sin ✓

.

Z
(r·v) d⌧ =

Z ✓
4r

cos2 ✓
sin ✓

◆�
r
2 sin ✓ dr d✓ d�

�
=

RZ

0

4r
3
dr

⇡/6Z

0

cos2 ✓ d✓

2⇡Z

0

d� =
�
R

4
�
(2⇡)


✓

2
+

sin 2✓
4

�����
⇡/6

0

= 2⇡R
4

✓
⇡

12
+

sin 60�

4

◆
=
⇡R

4

6

 
⇡ + 3

p
3

2

!
= ⇡R4

12

�
2⇡ + 3

p
3
�
.

Surface coinsists of two parts:

(1) The ice cream: r = R; � : 0! 2⇡; ✓ : 0! ⇡/6; da = R
2 sin ✓ d✓ d� r̂; v·da =

�
R

2 sin ✓
� �

R
2 sin ✓ d✓ d�

�
=

R
4 sin2

✓ d✓ d�.

Z
v·da = R

4

⇡/6Z

0

sin2
✓ d✓

2⇡Z

0

d� =
�
R

4
�
(2⇡)


1
2
✓ � 1

4
sin 2✓

�⇡/6

0

= 2⇡R
4

✓
⇡

12
� 1

4
sin 60�

◆
=
⇡R

4

6

 
⇡ � 3

p
3

2

!

(2) The cone: ✓ = ⇡
6 ; � : 0! 2⇡; r : 0! R; da = r sin ✓ d� dr ✓̂ =

p
3

2 r dr d� ✓̂; v · da =
p

3 r
3
dr d�

Z
v · da =

p
3

RZ

0

r
3
dr

2⇡Z

0

d� =
p

3 · R
4

4
· 2⇡ =

p
3

2
⇡R

4
.

Therefore
R

v · da = ⇡R4

2

⇣
⇡
3 �

p
3

2 +
p

3
⌘

= ⇡R4

12

�
2⇡ + 3

p
3
�
. X.

Problem 1.60

(a) Corollary 2 says
H

(rT )·dl = 0. Stokes’ theorem says
H

(rT )·dl =
R

[r⇥(rT )]·da. So
R

[r⇥(rT )]·da = 0,
and since this is true for any surface, the integrand must vanish: r⇥(rT ) = 0, confirming Eq. 1.44.

(b) Corollary 2 says
H

(r⇥v)·da = 0. Divergence theorem says
H

(r⇥v)·da =
R

r·(r⇥v) d⌧. So
R

r·(r⇥v) d⌧

= 0, and since this is true for any volume, the integrand must vanish: r(r⇥v) = 0, confirming Eq. 1.46.
Problem 1.61

(a) Divergence theorem:
H

v · da =
R

(r·v) d⌧. Let v = cT , where c is a constant vector. Using product
rule #5 in front cover: r·v = r·(cT ) = T (r·c)+ c · (rT ). But c is constant so r·c = 0. Therefore we have:R

c · (rT ) d⌧ =
R

Tc · da. Since c is constant, take it outside the integrals: c ·
R

rT d⌧ = c ·
R

T da. But c
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is any constant vector—in particular, it could be be x̂, or ŷ, or ẑ—so each component of the integral on left
equals corresponding component on the right, and hence

Z
rT d⌧ =

Z
T da. qed

(b) Let v ! (v ⇥ c) in divergence theorem. Then
R

r·(v ⇥ c)d⌧ =
R

(v ⇥ c) · da. Product rule #6 )
r·(v ⇥ c) = c · (r⇥v) � v · (r⇥c) = c · (r⇥v). (Note: r⇥c = 0, since c is constant.) Meanwhile vector
indentity (1) says da · (v ⇥ c) = c · (da⇥ v) = �c · (v ⇥ da). Thus

R
c · (r⇥v) d⌧ = �

R
c · (v ⇥ da). Take c

outside, and again let c be x̂, ŷ, ẑ then:
Z

(r⇥v) d⌧ = �
Z

v ⇥ da. qed

(c) Let v = TrU in divergence theorem:
R

r·(TrU) d⌧ =
R

TrU ·da. Product rule #(5))r·(TrU) =
Tr·(rU) + (rU) · (rT ) = Tr2

U + (rU) · (rT ). Therefore
Z �

Tr2
U + (rU) · (rT )

�
d⌧ =

Z
(TrU) · da. qed

(d) Rewrite (c) with T $ U :
R �

Ur2
T + (rT ) · (rU)

�
d⌧ =

R
(UrT ) ·da. Subtract this from (c), noting

that the (rU) · (rT ) terms cancel:
Z �

Tr2
U � Ur2

T
�

d⌧ =
Z

(TrU � UrT ) · da. qed

(e) Stokes’ theorem:
R

(r⇥v) · da =
H

v · dl. Let v = cT . By Product Rule #(7): r⇥(cT ) = T (r⇥c)�
c⇥ (rT ) = �c⇥ (rT ) (since c is constant). Therefore, �

R
(c⇥ (rT )) · da =

H
Tc · dl. Use vector indentity

#1 to rewrite the first term (c⇥ (rT )) · da = c · (rT ⇥ da). So �
R

c · (rT ⇥ da) =
H

c ·T dl. Pull c outside,
and let c! x̂, ŷ, and ẑ to prove: Z

rT ⇥ da = �
I

T dl. qed

Problem 1.62

(a) da = R
2 sin ✓ d✓ d� r̂. Let the surface be the northern hemisphere. The x̂ and ŷ components clearly integrate

to zero, and the ẑ component of r̂ is cos ✓, so

a =
Z

R
2 sin ✓ cos ✓ d✓ d� ẑ = 2⇡R

2
ẑ

Z ⇡/2

0
sin ✓ cos ✓ d✓ = 2⇡R

2
ẑ
sin2

✓

2

���
⇡/2

0
= ⇡R

2
ẑ.

(b) Let T = 1 in Prob. 1.61(a). Then rT = 0, so
H

da = 0. qed
(c) This follows from (b). For suppose a1 6= a2; then if you put them together to make a closed surface,H

da = a1 � a2 6= 0.

(d) For one such triangle, da = 1
2 (r ⇥ dl) (since r ⇥ dl is the area of the parallelogram, and the direction is

perpendicular to the surface), so for the entire conical surface, a = 1
2

H
r⇥ dl.

(e) Let T = c · r, and use product rule #4: rT = r(c · r) = c ⇥ (r⇥r) + (c · r)r. But r⇥r = 0, and
(c ·r)r = (cx

@
@x + cy

@
@y + cz

@
@z )(x x̂ + y ŷ + z ẑ) = cx x̂ + cy ŷ + cz ẑ = c. So Prob. 1.61(e) says

I
T dl =

I
(c · r) dl = �

Z
(rT )⇥ da = �

Z
c⇥ da = �c⇥

Z
da = �c⇥ a = a⇥ c. qed
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Problem 1.63

(1)

r·v =
1
r2

@

@r

✓
r
2 · 1

r

◆
=

1
r2

@

@r
(r) = 1

r2 .

For a sphere of radius R:
R

v · da =
R �

1
R r̂
�
·
�
R

2 sin ✓ d✓ d� r̂
�

= R
R

sin ✓ d✓ d� = 4⇡R.

R
(r·v) d⌧ =

R �
1
r2

� �
r
2 sin ✓ dr d✓ d�

�
=

 
RR

0
dr

!
�R

sin ✓ d✓ d�
�

= 4⇡R.

9
>=

>;
So divergence
theorem checks.

Evidently there is no delta function at the origin.

r⇥ (rn
r̂) =

1
r2

@

@r

�
r
2
r

n
�

=
1
r2

@

@r

�
r

n+2
�

=
1
r2

(n + 2)rn+1 = (n + 2)rn�1

(except for n = �2, for which we already know (Eq. 1.99) that the divergence is 4⇡�3(r)).

(2) Geometrically, it should be zero. Likewise, the curl in the spherical coordinates obviously gives zero.
To be certain there is no lurking delta function here, we integrate over a sphere of radius R, using
Prob. 1.61(b): If r⇥(rn

r̂) = 0, then
R

(r⇥v) d⌧ = 0
?= �

H
v ⇥ da. But v = r

n
r̂ and da =

R
2 sin ✓ d✓ d� r̂ are both in the r̂ directions, so v ⇥ da = 0. X

Problem 1.64

(a) Since the argument is not a function of angle, Eq. 1.73 says

D = � 1
4⇡

1
r2

d

dr


r
2

✓
�1

2

◆
2r

(r2 + ✏2)3/2

�
=

1
4⇡r2

d

dr


r
3

(r2 + ✏2)3/2

�

=
1

4⇡r2


3r

2

(r2 + ✏2)3/2
� 3

2
r
3 2r

(r2 + ✏2)5/3

�
=

1
4⇡r2

3r
2

(r2 + ✏2)5/2

�
r
2 + ✏

2 � r
2
�

=
3✏2

4⇡(r2 + ✏2)5/2
. X

(b) Setting r ! 0:

D(0, ✏) =
3✏2

4⇡✏5
=

3
4⇡✏3

,

which goes to infinity as ✏! 0. X
(c) From (a) it is clear that D(r, 0) = 0 for r 6= 0. X
(d) Z

D(r, ✏) 4⇡r
2
dr = 3✏2

Z 1

0

r
2

(r2 + ✏2)5/2
dr = 3✏2

✓
1

3✏2

◆
= 1. X

(I looked up the integral.) Note that (b), (c), and (d) are the defining conditions for �3(r).
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Chapter 2

Electrostatics

Problem 2.1

(a) Zero.

(b) F =
1

4⇡✏0
qQ

r2
, where r is the distance from center to each numeral. F points toward the missing q.

Explanation: by superposition, this is equivalent to (a), with an extra �q at 6 o’clock—since the force of all
twelve is zero, the net force is that of �q only.

(c) Zero.

(d)
1

4⇡✏0
qQ

r2
, pointing toward the missing q. Same reason as (b). Note, however, that if you explained (b) as

a cancellation in pairs of opposite charges (1 o’clock against 7 o’clock; 2 against 8, etc.), with one unpaired q

doing the job, then you’ll need a di↵erent explanation for (d).

Problem 2.2

This time the “vertical” components cancel, leaving

E = 1
4⇡✏0

2 q
r 2 sin ✓ x̂, or r

E =
1

4⇡✏0
qd

�
z2 +

�
d
2

�2�3/2
x̂.

- x

z

s
q

s
�q

�
�
�
�
�
�

A
A

A
A

A
A
✓

- E���
AAU

From far away, (z � d), the field goes like E ⇡ 1
4⇡✏0

qd
z3 ẑ, which, as we shall see, is the field of a dipole. (If we

set d! 0, we get E = 0, as is appropriate; to the extent that this configuration looks like a single point charge
from far away, the net charge is zero, so E! 0.)
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Problem 2.3

r

1

Problem 2.3

✲
x

✻z

z

L
︸ ︷︷ ︸

x

✴

dq = λdx
θ

❑
Ez = 1

4πϵ0

∫ L
0

λ dx
η2 cos θ; (η2 = z2 + x2; cos θ = z

η )

= 1
4πϵ0

λz
∫ L
0

1
(z2+x2)3/2

dx

= 1
4πϵ0

λz
[

1
z2

x√
z2+x2

]∣
∣
∣

L

0
= 1

4πϵ0
λ
z

L√
z2+L2

.

Ex = − 1
4πϵ0

∫ L
0

λ dx
η2 sin θ = − 1

4πϵ0
λ

∫
x dx

(x2+z2)3/2

= − 1
4πϵ0

λ
[

− 1√
x2+z2

]∣
∣
∣

L

0
= − 1

4πϵ0
λ

[
1
z − 1√

z2+L2

]

.

E =
1

4πϵ0

λ

z

[(

−1 +
z

√
z2 + L2

)

x̂ +

(
L

√
z2 + L2

)

ẑ

]

.

For z ≫ L you expect it to look like a point charge q = λL: E → 1
4πϵ0

λL
z2 ẑ. It checks, for with z ≫ L the x̂

term → 0, and the ẑ term → 1
4πϵ0

λ
z

L
z ẑ.

Problem 2.4

From Ex. 2.1, with L → a
2 and z →

√

z2 +
(

a
2

)2
(distance from center of edge to P ), field of one edge is:

E1 =
1

4πϵ0

λa
√

z2 + a2

4

√

z2 + a2

4 + a2

4

.

There are 4 sides, and we want vertical components only, so multiply by 4 cos θ = 4 z
q

z2+ a2

4

:

E =
1

4πϵ0

4λaz
(

z2 + a2

4

)
√

z2 + a2

2

ẑ.

Problem 2.5

r

z

θ

❑ “Horizontal” components cancel, leaving: E = 1
4πϵ0

{
∫

λdl
η2 cos θ

}

ẑ.

Here, η2 = r2 + z2, cos θ = z
η (both constants), while

∫

dl = 2πr. So

E =
1

4πϵ0

λ(2πr)z

(r2 + z2)3/2
ẑ.
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Ez = 1
4⇡✏0

R L
0

� dxr 2 cos ✓; (r 2 = z
2 + x

2; cos ✓ = zr )

= 1
4⇡✏0

�z
R L
0

1
(z2+x2)3/2 dx

= 1
4⇡✏0

�z

h
1
z2

xp
z2+x2

i���
L

0
= 1

4⇡✏0
�
z

Lp
z2+L2 .

Ex = � 1
4⇡✏0

R L
0

� dxr 2 sin ✓ = � 1
4⇡✏0

�
R

x dx
(x2+z2)3/2

= � 1
4⇡✏0

�

h
� 1p

x2+z2

i���
L

0
= � 1

4⇡✏0
�

h
1
z �

1p
z2+L2

i
.

E =
1

4⇡✏0
�

z

✓
�1 +

zp
z2 + L2

◆
x̂ +

✓
Lp

z2 + L2

◆
ẑ

�
.

For z � L you expect it to look like a point charge q = �L: E ! 1
4⇡✏0

�L
z2 ẑ. It checks, for with z � L the x̂

term ! 0, and the ẑ term ! 1
4⇡✏0

�
z

L
z ẑ.

Problem 2.4

From Ex. 2.2, with L! a
2 and z !

q
z2 +

�
a
2

�2 (distance from center of edge to P ), field of one edge is:

E1 =
1

4⇡✏0
�aq

z2 + a2

4

q
z2 + a2

4 + a2

4

.

There are 4 sides, and we want vertical components only, so multiply by 4 cos ✓ = 4 zq
z2+ a2

4

:

E =
1

4⇡✏0
4�az

�
z2 + a2

4

�q
z2 + a2

2

ẑ.

Problem 2.5

1

Problem 2.3

✲x

✻
z

z
L

︸ ︷︷ ︸x
✴
dq = λdxηθ❑

Ez = 1
4πϵ0

∫ L
0

λ dx
η2 cos θ; (η2 = z2 + x2; cos θ = z

η )

= 1
4πϵ0

λz
∫ L
0

1
(z2+x2)3/2

dx

= 1
4πϵ0

λz
[

1
z2

x√
z2+x2

]∣
∣
∣

L

0
= 1

4πϵ0
λ
z

L√
z2+L2

.

Ex = − 1
4πϵ0

∫ L
0

λ dx
η2 sin θ = − 1

4πϵ0
λ

∫
x dx

(x2+z2)3/2

= − 1
4πϵ0

λ
[

− 1√
x2+z2

]∣
∣
∣

L

0
= − 1

4πϵ0
λ

[
1
z − 1√

z2+L2

]

.

E =
1

4πϵ0

λ

z

[(

−1 +
z

√
z2 + L2

)

x̂ +

(
L

√
z2 + L2

)

ẑ

]

.

For z ≫ L you expect it to look like a point charge q = λL: E → 1
4πϵ0

λL
z2 ẑ. It checks, for with z ≫ L the x̂

term → 0, and the ẑ term → 1
4πϵ0

λ
z

L
z ẑ.

Problem 2.4

From Ex. 2.1, with L → a
2 and z →

√

z2 +
(

a
2

)2
(distance from center of edge to P ), field of one edge is:

E1 =
1

4πϵ0

λa
√

z2 + a2

4

√

z2 + a2

4 + a2

4

.

There are 4 sides, and we want vertical components only, so multiply by 4 cos θ = 4 z
q

z2+ a2

4

:

E =
1

4πϵ0

4λaz
(

z2 + a2

4

)
√

z2 + a2

2

ẑ.

Problem 2.5

r

z

θ

❑ “Horizontal” components cancel, leaving: E = 1
4πϵ0

{
∫

λdl
η2 cos θ

}

ẑ.

Here, η2 = r2 + z2, cos θ = z
η (both constants), while

∫

dl = 2πr. So

E =
1

4πϵ0

λ(2πr)z

(r2 + z2)3/2
ẑ.
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“Horizontal” components cancel, leaving: E = 1
4⇡✏0

nR
�dlr 2 cos ✓

o
ẑ.

Here, r 2 = r
2 + z

2, cos ✓ = zr (both constants), while
R

dl = 2⇡r. So
r

E =
1

4⇡✏0
�(2⇡r)z

(r2 + z2)3/2
ẑ.

Problem 2.6

Break it into rings of radius r, and thickness dr, and use Prob. 2.5 to express the field of each ring. Total
charge of a ring is � · 2⇡r · dr = � · 2⇡r, so � = �dr is the “line charge” of each ring.

Ering =
1

4⇡✏0
(�dr)2⇡rz

(r2 + z2)3/2
; Edisk =

1
4⇡✏0

2⇡�z

Z R

0

r

(r2 + z2)3/2
dr.

Edisk =
1

4⇡✏0
2⇡�z


1
z
� 1p

R2 + z2

�
ẑ.

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



28 CHAPTER 2. ELECTROSTATICS

For R� z the second term ! 0, so Eplane = 1
4⇡✏0

2⇡�ẑ =
�

2✏0
ẑ.

For z � R, 1p
R2+z2 = 1

z

⇣
1 + R2

z2

⌘�1/2
⇡ 1

z

⇣
1� 1

2
R2

z2

⌘
, so [ ] ⇡ 1

z �
1
z + 1

2
R2

z3 = R2

2z3 ,

and E = 1
4⇡✏0

2⇡R2�
2z2 = 1

4⇡✏0
Q
z2 , where Q = ⇡R

2
�. X

Problem 2.7

E is clearly in the z direction. From the diagram,
dq = �da = �R

2 sin ✓ d✓ d�,

r 2 = R
2 + z

2 � 2Rz cos ✓,
cos = z�R cos ✓r . r

So

1

Contents

❂
x

✲ y

✻
z

φ

R

z

θ

ψ

Ez =
1

4πϵ0

∫
σR2 sin θ dθ dφ(z − R cos θ)

(R2 + z2 − 2Rz cos θ)3/2
.

∫

dφ = 2π.

=
1

4πϵ0
(2πR2σ)

∫ π

0

(z − R cos θ) sin θ

(R2 + z2 − 2Rz cos θ)3/2
dθ. Let u = cos θ; du = − sin θ dθ;

{

θ = 0 ⇒ u = +1
θ = π ⇒ u = −1

}

.

=
1

4πϵ0
(2πR2σ)

∫ 1

−1

z − Ru

(R2 + z2 − 2Rzu)3/2
du. Integral can be done by partial fractions—or look it up.

=
1

4πϵ0
(2πR2σ)

[
1

z2

zu − R√
R2 + z2 − 2Rzu

]1

−1

=
1

4πϵ0

2πR2σ

z2

{
(z − R)

|z − R|
−

(−z − R)

|z + R|

}

.

For z > R (outside the sphere), Ez = 1
4πϵ0

4πR2σ
z2 = 1

4πϵ0
q
z2 , so E =

1

4πϵ0

q

z2
ẑ.

For z < R (inside), Ez = 0, so E = 0.

Problem 2.8
According to Prob. 2.7, all shells interior to the point (i.e. at smaller r) contribute as though their charge

were concentrated at the center, while all exterior shells contribute nothing. Therefore:

E(r) =
1

4πϵ0

Qint

r2
r̂,

where Qint is the total charge interior to the point. Outside the sphere, all the charge is interior, so

E =
1

4πϵ0

Q

r2
r̂.

Inside the sphere, only that fraction of the total which is interior to the point counts:
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Ez =
1

4⇡✏0

Z
�R

2 sin ✓ d✓ d�(z �R cos ✓)
(R2 + z2 � 2Rz cos ✓)3/2

.
R

d� = 2⇡.

=
1

4⇡✏0
(2⇡R

2
�)
Z ⇡

0

(z �R cos ✓) sin ✓
(R2 + z2 � 2Rz cos ✓)3/2

d✓. Let u = cos ✓; du = � sin ✓ d✓;
⇢
✓ = 0) u = +1
✓ = ⇡ ) u = �1

�
.

=
1

4⇡✏0
(2⇡R

2
�)
Z 1

�1

z �Ru

(R2 + z2 � 2Rzu)3/2
du. Integral can be done by partial fractions—or look it up.

=
1

4⇡✏0
(2⇡R

2
�)


1
z2

zu�Rp
R2 + z2 � 2Rzu

�1

�1

=
1

4⇡✏0
2⇡R

2
�

z2

⇢
(z �R)
|z �R| �

(�z �R)
|z + R|

�
.

For z > R (outside the sphere), Ez = 1
4⇡✏0

4⇡R2�
z2 = 1

4⇡✏0
q
z2 , so E =

1
4⇡✏0

q

z2
ẑ.

For z < R (inside), Ez = 0, so E = 0.

Problem 2.8

According to Prob. 2.7, all shells interior to the point (i.e. at smaller r) contribute as though their charge
were concentrated at the center, while all exterior shells contribute nothing. Therefore:

E(r) =
1

4⇡✏0
Qint

r2
r̂,

where Qint is the total charge interior to the point. Outside the sphere, all the charge is interior, so

E =
1

4⇡✏0
Q

r2
r̂.

Inside the sphere, only that fraction of the total which is interior to the point counts:

Qint =
4
3⇡r

3

4
3⇡R3

Q =
r
3

R3
Q, so E =

1
4⇡✏0

r
3

R3
Q

1
r2

r̂ =
1

4⇡✏0
Q

R3
r.

Problem 2.9

(a) ⇢ = ✏0r·E = ✏0
1
r2

@
@r

�
r
2 · kr

3
�

= ✏0
1
r2 k(5r

4) = 5✏0kr
2
.
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(b) By Gauss’s law: Qenc = ✏0

H
E·da = ✏0(kR

3)(4⇡R
2) = 4⇡✏0kR

5
.

By direct integration: Qenc =
R
⇢ d⌧ =

R R
0 (5✏0kr

2)(4⇡r
2
dr) = 20⇡✏0k

R R
0 r

4
dr = 4⇡✏0kR

5
.X

Problem 2.10

Think of this cube as one of 8 surrounding the charge. Each of the 24 squares which make up the surface
of this larger cube gets the same flux as every other one, so:

2

Qint =
4
3πr3

4
3πR3

Q =
r3

R3
Q, so E =

1

4πϵ0

r3

R3
Q

1

r2
r̂ =

1

4πϵ0

Q

R3
r.

Problem 2.9

(a) ρ = ϵ0∇·E = ϵ0
1
r2

∂
∂r

(

r2 · kr3
)

= ϵ0
1
r2 k(5r4) = 5ϵ0kr2.

(b) By Gauss’s law: Qenc = ϵ0
∮

E·da = ϵ0(kR3)(4πR2) = 4πϵ0kR5.

By direct integration: Qenc =
∫

ρ dτ =
∫ R
0 (5ϵ0kr2)(4πr2dr) = 20πϵ0k

∫ R
0 r4dr = 4πϵ0kR5.!

Problem 2.10
Think of this cube as one of 8 surrounding the charge. Each of the 24 squares which make up the surface

of this larger cube gets the same flux as every other one, so:

∫

one
face

E·da =
1

24

∫

whole
large
cube

E·da.

The latter is 1
ϵ0

q, by Gauss’s law. Therefore

∫

one
face

E·da =
q

24ϵ0
.

Problem 2.11

✲
r

✙
Gaussian surface: Inside:

∮

E·da = E(4πr2) = 1
ϵ0

Qenc = 0 ⇒ E = 0.

✲ Gaussian surface: Outside: E(4πr2) = 1
ϵ0

(σ4πR2) ⇒ E =
σR2

ϵ0r2
r̂.
} (As in Prob. 2.7.)

Problem 2.12

✒r

❄
R

✙
Gaussian surface

∮

E·da = E · 4πr2 = 1
ϵ0

Qenc = 1
ϵ0

4
3πr3ρ. So

E =
1

3ϵ0
ρrr̂.

Since Qtot = 4
3πR2ρ, E = 1

4πϵ0
Q
R3 r̂ (as in Prob. 2.8).

Problem 2.13

✻s

︸ ︷︷ ︸

l

✠

Gaussian surface ∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 1
ϵ0

λl. So

E =
λ

2πϵ0s
ŝ (same as Ex. 2.1).

Problem 2.14
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Z

one
face

E·da =
1
24

Z

whole
large
cube

E·da.

The latter is 1
✏0

q, by Gauss’s law. Therefore
Z

one
face

E·da =
q

24✏0
.

Problem 2.11

2

Qint =
4
3πr3

4
3πR3

Q =
r3

R3
Q, so E =

1

4πϵ0

r3

R3
Q

1

r2
r̂ =

1

4πϵ0

Q

R3
r.

Problem 2.9

(a) ρ = ϵ0∇·E = ϵ0
1
r2

∂
∂r

(

r2 · kr3
)

= ϵ0
1
r2 k(5r4) = 5ϵ0kr2.

(b) By Gauss’s law: Qenc = ϵ0
∮

E·da = ϵ0(kR3)(4πR2) = 4πϵ0kR5.

By direct integration: Qenc =
∫

ρ dτ =
∫ R
0 (5ϵ0kr2)(4πr2dr) = 20πϵ0k

∫ R
0 r4dr = 4πϵ0kR5.!

Problem 2.10
Think of this cube as one of 8 surrounding the charge. Each of the 24 squares which make up the surface

of this larger cube gets the same flux as every other one, so:

∫

one
face

E·da =
1

24

∫

whole
large
cube

E·da.

The latter is 1
ϵ0

q, by Gauss’s law. Therefore

∫

one
face

E·da =
q

24ϵ0
.

Problem 2.11

✲
r

✙
Gaussian surface: Inside:

∮

E·da = E(4πr2) = 1
ϵ0

Qenc = 0 ⇒ E = 0.

✲ Gaussian surface: Outside: E(4πr2) = 1
ϵ0

(σ4πR2) ⇒ E =
σR2

ϵ0r2
r̂.
} (As in Prob. 2.7.)

Problem 2.12

✒r

❄
R

✙
Gaussian surface

∮

E·da = E · 4πr2 = 1
ϵ0

Qenc = 1
ϵ0

4
3πr3ρ. So

E =
1

3ϵ0
ρrr̂.

Since Qtot = 4
3πR2ρ, E = 1

4πϵ0
Q
R3 r̂ (as in Prob. 2.8).

Problem 2.13

✻s

︸ ︷︷ ︸

l

✠

Gaussian surface ∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 1
ϵ0

λl. So

E =
λ

2πϵ0s
ŝ (same as Ex. 2.1).

Problem 2.14
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Problem 2.12

2

Qint =
4
3πr3

4
3πR3

Q =
r3

R3
Q, so E =

1

4πϵ0

r3

R3
Q

1

r2
r̂ =

1

4πϵ0

Q

R3
r.

Problem 2.9

(a) ρ = ϵ0∇·E = ϵ0
1
r2

∂
∂r

(

r2 · kr3
)

= ϵ0
1
r2 k(5r4) = 5ϵ0kr2.

(b) By Gauss’s law: Qenc = ϵ0
∮

E·da = ϵ0(kR3)(4πR2) = 4πϵ0kR5.

By direct integration: Qenc =
∫

ρ dτ =
∫ R
0 (5ϵ0kr2)(4πr2dr) = 20πϵ0k

∫ R
0 r4dr = 4πϵ0kR5.!

Problem 2.10
Think of this cube as one of 8 surrounding the charge. Each of the 24 squares which make up the surface

of this larger cube gets the same flux as every other one, so:

∫

one
face

E·da =
1

24

∫

whole
large
cube

E·da.

The latter is 1
ϵ0

q, by Gauss’s law. Therefore

∫

one
face

E·da =
q

24ϵ0
.

Problem 2.11

✲
r

✙
Gaussian surface: Inside:

∮

E·da = E(4πr2) = 1
ϵ0

Qenc = 0 ⇒ E = 0.

✲ Gaussian surface: Outside: E(4πr2) = 1
ϵ0

(σ4πR2) ⇒ E =
σR2

ϵ0r2
r̂.
} (As in Prob. 2.7.)

Problem 2.12

✒r

❄
R

✙
Gaussian surface

∮

E·da = E · 4πr2 = 1
ϵ0

Qenc = 1
ϵ0

4
3πr3ρ. So

E =
1

3ϵ0
ρrr̂.

Since Qtot = 4
3πR2ρ, E = 1

4πϵ0
Q
R3 r̂ (as in Prob. 2.8).

Problem 2.13

✻s

︸ ︷︷ ︸

l

✠

Gaussian surface ∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 1
ϵ0

λl. So

E =
λ

2πϵ0s
ŝ (same as Ex. 2.1).

Problem 2.14
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H
E·da = E · 4⇡r

2 = 1
✏0

Qenc = 1
✏0

4
3⇡r

3
⇢. So

E =
1

3✏0
⇢rr̂.

Since Qtot = 4
3⇡R

3
⇢, E = 1

4⇡✏0
Q
R3 r̂ (as in Prob. 2.8).

Problem 2.13

1

Contents

Problem 2.13

✻s

︸ ︷︷ ︸

l

✠

Gaussian surface ∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 1
ϵ0

λl. So

E =
λ

2πϵ0s
ŝ (same as Ex. 2.1).

Problem 2.14

✒r ✙
Gaussian surface

Problem 2.15

(i) Qenc = 0, so E = 0.

(ii)
∮

E·da = E(4πr2) = 1
ϵ0

Qenc = 1
ϵ0

∫

ρ dτ = 1
ϵ0

∫
k
r̄2 r̄2 sin θ dr̄ dθ dφ

= 4πk
ϵ0

∫ r
a dr̄ = 4πk

ϵ0
(r − a) ∴ E =

k

ϵ0

(
r − a

r2

)

r̂.

(iii) E(4πr2) = 4πk
ϵ0

∫ b
a dr̄ = 4πk

ϵ0
(b − a), so

E =
k

ϵ0

(
b − a

r2

)

r̂.

✲
r

✻|E|

a b

Problem 2.16
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H
E·da = E · 2⇡s · l = 1

✏0
Qenc = 1

✏0
�l. So

E =
�

2⇡✏0s
ŝ (same as Eq. 2.9).

Problem 2.14

1

Contents

Problem 2.13

✻s

︸ ︷︷ ︸

l

✠

Gaussian surface ∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 1
ϵ0

λl. So

E =
λ

2πϵ0s
ŝ (same as Ex. 2.1).

Problem 2.14

✒r ✙
Gaussian surface

Problem 2.15

(i) Qenc = 0, so E = 0.

(ii)
∮

E·da = E(4πr2) = 1
ϵ0

Qenc = 1
ϵ0

∫

ρ dτ = 1
ϵ0

∫
k
r̄2 r̄2 sin θ dr̄ dθ dφ

= 4πk
ϵ0

∫ r
a dr̄ = 4πk

ϵ0
(r − a) ∴ E =

k

ϵ0

(
r − a

r2

)

r̂.

(iii) E(4πr2) = 4πk
ϵ0

∫ b
a dr̄ = 4πk

ϵ0
(b − a), so

E =
k

ϵ0

(
b − a

r2

)

r̂.

✲
r

✻|E|

a b

Problem 2.16
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H
E·da = E · 4⇡r

2 = 1
✏0

Qenc = 1
✏0

R
⇢ d⌧ = 1

✏0

R
(kr̄)(r̄2 sin ✓ dr̄ d✓ d�)

= 1
✏0

k 4⇡
R r
0 r̄

3
dr̄ = 4⇡k

✏0
r4

4 = ⇡k
✏0

r
4
.

) E =
1

4⇡✏0
⇡kr

2
r̂.
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Problem 2.15

(i) Qenc = 0, so E = 0.

(ii)
H

E·da = E(4⇡r
2) = 1

✏0
Qenc = 1

✏0

R
⇢ d⌧ = 1

✏0

R
k
r̄2 r̄

2 sin ✓ dr̄ d✓ d�

= 4⇡k
✏0

R r
a dr̄ = 4⇡k

✏0
(r � a) ) E =

k

✏0

✓
r � a

r2

◆
r̂.

(iii) E(4⇡r
2) = 4⇡k

✏0

R b
a dr̄ = 4⇡k

✏0
(b� a), so

E =
k

✏0

✓
b� a

r2

◆
r̂.

1

Contents

Problem 2.13

✻s

︸ ︷︷ ︸

l

✠

Gaussian surface ∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 1
ϵ0

λl. So

E =
λ

2πϵ0s
ŝ (same as Ex. 2.1).

Problem 2.14

✒r ✙
Gaussian surface

Problem 2.15

(i) Qenc = 0, so E = 0.

(ii)
∮

E·da = E(4πr2) = 1
ϵ0

Qenc = 1
ϵ0

∫

ρ dτ = 1
ϵ0

∫
k
r̄2 r̄2 sin θ dr̄ dθ dφ

= 4πk
ϵ0

∫ r
a dr̄ = 4πk

ϵ0
(r − a) ∴ E =

k

ϵ0

(
r − a

r2

)

r̂.

(iii) E(4πr2) = 4πk
ϵ0

∫ b
a dr̄ = 4πk

ϵ0
(b − a), so

E =
k

ϵ0

(
b − a

r2

)

r̂.

✲
r

✻|E|

a b

Problem 2.16
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Problem 2.16

(i)

1

Contents

Problem 2.13

Problem 2.16

(i)

l

✛ Gaussian surface
∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 1
ϵ0

ρπs2l;

E =
ρs

2ϵ0
ŝ.

(ii)

l

✛ Gaussian surface✻
s ∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 1
ϵ0

ρπa2l;

E =
ρa2

2ϵ0s
ŝ.

(iii)

l

✛ Gaussian surface
✻

s
∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 0;

E = 0.

✲
s

✻|E|

a b
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H
E·da = E · 2⇡s · l = 1

✏0
Qenc = 1

✏0
⇢⇡s

2
l;

E =
⇢s

2✏0
ŝ.

(ii)

1

Contents

Problem 2.13

Problem 2.16

(i)

l

✛ Gaussian surface
∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 1
ϵ0

ρπs2l;

E =
ρs

2ϵ0
ŝ.

(ii)

l

✛ Gaussian surface✻
s ∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 1
ϵ0

ρπa2l;

E =
ρa2

2ϵ0s
ŝ.

(iii)

l

✛ Gaussian surface
✻

s
∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 0;

E = 0.

✲
s

✻|E|

a b
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H
E·da = E · 2⇡s · l = 1

✏0
Qenc = 1

✏0
⇢⇡a

2
l;

E =
⇢a

2

2✏0s
ŝ.

(iii)

1

Contents

Problem 2.13

Problem 2.16

(i)

l

✛ Gaussian surface
∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 1
ϵ0

ρπs2l;

E =
ρs

2ϵ0
ŝ.

(ii)

l

✛ Gaussian surface✻
s ∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 1
ϵ0

ρπa2l;

E =
ρa2

2ϵ0s
ŝ.

(iii)

l

✛ Gaussian surface
✻

s
∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 0;

E = 0.

✲
s

✻|E|

a b
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H
E·da = E · 2⇡s · l = 1

✏0
Qenc = 0;

E = 0.

1

Contents

Problem 2.13

Problem 2.16

(i)

l

✛ Gaussian surface
∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 1
ϵ0

ρπs2l;

E =
ρs

2ϵ0
ŝ.

(ii)

l

✛ Gaussian surface✻
s ∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 1
ϵ0

ρπa2l;

E =
ρa2

2ϵ0s
ŝ.

(iii)

l

✛ Gaussian surface
✻

s
∮

E·da = E · 2πs · l = 1
ϵ0

Qenc = 0;

E = 0.

✲
s

✻|E|

a b
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Problem 2.17 On the x z plane E = 0 by symmetry. Set up a Gaussian “pillbox” with one face in this plane
and the other at y.

1

Contents

Problem 2.17

On the x z plane E = 0 by symmetry. Set up a Gaussian “pillbox” with one face in this plane and the
other at y.

y✲ ✛

❂

Gaussian pillbox

Qenc = 1
ϵ0

Adρ ⇒ E =
ρ

ϵ0
d ŷ (for y > d).

✲

✻E

y
−d

d

ρd
ϵ0

Problem 2.18

From Prob. 2.12, the field inside the positive sphere is E+ = ρ
3ϵ0

r+, where r+ is the vector from the positive
center to the point in question. Likewise, the field of the negative sphere is − ρ

3ϵ0
r−. So the total field is

E =
ρ

3ϵ0
(r+ − r−)

But (see diagram) r+ − r− = d. So E =
ρ

3ϵ0
d.

✕ ✯✛

+

−
r+

r−

d
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R
E·da = E ·A = 1

✏0
Qenc = 1

✏0
Ay⇢;

E =
⇢

✏0
y ŷ (for |y| < d).
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Qenc = 1
✏0

Ad⇢) E =
⇢

✏0
d ŷ (for y > d).

2

Problem 2.17

On the x z plane E = 0 by symmetry. Set up a Gaussian “pillbox” with one face in this plane and the
other at y.

y✲ ✛

❂

Gaussian pillbox
∫

E·da = E · A = 1
ϵ0

Qenc = 1
ϵ0

Ayρ;

E =
ρ

ϵ0
y ŷ (for |y| < d).

Qenc = 1
ϵ0

Adρ ⇒ E =
ρ

ϵ0
d ŷ (for y > d).

✲

✻E

y
−d

d

ρd
ϵ0

Problem 2.18
From Prob. 2.12, the field inside the positive sphere is E+ = ρ

3ϵ0
r+, where r+ is the vector from the positive

center to the point in question. Likewise, the field of the negative sphere is − ρ
3ϵ0

r−. So the total field is

E =
ρ

3ϵ0
(r+ − r−)

But (see diagram) r+ − r− = d. So E =
ρ

3ϵ0
d.

✕ ✯✛

+

−
r+

r−

d

Problem 2.19

∇×E =
1

4πϵ0
∇×

∫
η̂̂η̂η

η2
ρ dτ =

1

4πϵ0

∫ [

∇×

(
η̂̂η̂η

η2

)]

ρ dτ (since ρ depends on r′, not r)

= 0 (since ∇×

(
η̂̂η̂η

η2

)

= 0, from Prob. 1.62).

Problem 2.20

(1) ∇×E1 = k

∣
∣
∣
∣
∣
∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

xy 2yz 3zx

∣
∣
∣
∣
∣
∣

= k [x̂(0 − 2y) + ŷ(0 − 3z) + ẑ(0 − x)] ≠ 0,

so E1 is an impossible electrostatic field.

(2) ∇×E2 = k

∣
∣
∣
∣
∣
∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

y2 2xy + z2 2yz

∣
∣
∣
∣
∣
∣

= k [x̂(2z − 2z) + ŷ(0 − 0) + ẑ(2y − 2y)] = 0,

so E2 is a possible electrostatic field.
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Problem 2.18

From Prob. 2.12, the field inside the positive sphere is E+ = ⇢
3✏0

r+, where r+ is the vector from the positive
center to the point in question. Likewise, the field of the negative sphere is � ⇢

3✏0
r�. So the total field is

E =
⇢

3✏0
(r+ � r�)

But (see diagram) r+ � r� = d. So E =
⇢

3✏0
d. r

r
�
�
��

������*�

+

�
r+

r�

d

Problem 2.19

r⇥E =
1

4⇡✏0
r⇥

Z r̂
r 2 ⇢ d⌧ =

1
4⇡✏0

Z 
r⇥

✓ r̂
r 2

◆�
⇢ d⌧ (since ⇢ depends on r

0, not r)

= 0 (since r⇥
✓ r̂

r 2

◆
= 0, from Prob. 1.63).

Problem 2.20

(1) r⇥E1 = k

������

x̂ ŷ ẑ
@
@x

@
@y

@
@z

xy 2yz 3zx

������
= k [x̂(0� 2y) + ŷ(0� 3z) + ẑ(0� x)] 6= 0,

so E1 is an impossible electrostatic field.

(2) r⇥E2 = k

������

x̂ ŷ ẑ
@
@x

@
@y

@
@z

y
2 2xy + z

2 2yz

������
= k [x̂(2z � 2z) + ŷ(0� 0) + ẑ(2y � 2y)] = 0,

so E2 is a possible electrostatic field.

Let’s go by the indicated path:

⇢
⇢

⇢
⇢

⇢=
x

- y

6
z

⇢
⇢

⇢⇢=
I

-
II

6
III

r(x0, y0, z0)E·dl = (y2
dx + (2xy + z

2)dy + 2yz dz)k

Step I: y = z = 0; dy = dz = 0. E·dl = ky
2
dx = 0.

Step II: x = x0, y : 0! y0, z = 0. dx = dz = 0.

E·dl = k(2xy + z
2)dy = 2kx0y dy.R

II E·dl = 2kx0

R y0

0 y dy = kx0y
2
0 .

Step III : x = x0, y = y0, z : 0! z0; dx = dy = 0.

E·dl = 2kyz dz = 2ky0z dz.
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R
III E·dl = 2y0k

R z0

0 z dz = ky0z
2
0 .

V (x0, y0, z0) = �
(x0,y0,z0)R

0
E·dl = �k(x0y

2
0 + y0z

2
0), or V (x, y, z) = �k(xy

2 + yz
2).

Check : �rV =k[ @
@x (xy2+yz2) x̂+ @

@y (xy2+yz2) ŷ+ @
@z (xy2+yz2) ẑ]=k[y2 x̂+(2xy+z2) ŷ+2yz ẑ]=E. X

Problem 2.21

V (r) = �
R r
1E·dl.

8
<

:

Outside the sphere (r > R) : E = 1
4⇡✏0

q
r2 r̂.

Inside the sphere (r < R) : E = 1
4⇡✏0

q
R3 rr̂.

So for r > R: V (r) = �
R r
1

⇣
1

4⇡✏0
q
r̄2

⌘
dr̄ = 1

4⇡✏0
q
�

1
r̄

����
r

1
=

q

4⇡✏0
1
r
,

and for r < R: V (r) = �
R R
1

⇣
1

4⇡✏0
q
r̄2

⌘
dr̄ �

R r
R

⇣
1

4⇡✏0
q

R3 r̄

⌘
dr̄ = q

4⇡✏0

h
1
R �

1
R3

⇣
r2�R2

2

⌘i

=
q

4⇡✏0
1

2R

✓
3� r

2

R2

◆
.

When r > R, rV = q
4⇡✏0

@
@r

�
1
r

�
r̂ = � q

4⇡✏0
1
r2 r̂, so E = �rV = q

4⇡✏0
1
r2 r̂. X

When r < R, rV = q
4⇡✏0

1
2R

@
@r

⇣
3� r2

R2

⌘
r̂ = q

4⇡✏0
1

2R

�
� 2r

R2

�
r̂ = � q

4⇡✏0
r

R3 r̂; so E = �rV = 1
4⇡✏0

q
R3 rr̂.X

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

r

V(r)

(In the figure, r is in units of R, and V (r) is in units of q/4⇡✏0R.)

Problem 2.22

E = 1
4⇡✏0

2�
s ŝ (Prob. 2.13). In this case we cannot set the reference point at 1, since the charge itself

extends to 1. Let’s set it at s = a. Then

V (s) = �
R s

a

⇣
1

4⇡✏0
2�
s̄

⌘
ds̄ = � 1

4⇡✏0
2� ln

⇣
s

a

⌘
.

(In this form it is clear why a =1 would be no good—likewise the other “natural” point, a = 0.)

rV = � 1
4⇡✏0

2� @
@s

�
ln
�

s
a

��
ŝ = � 1

4⇡✏0
2� 1

s ŝ = �E. X
Problem 2.23

V (0) = �
R 0
1E·dl = �

R b
1
�

k
✏0

(b�a)
r2

�
dr �

R a
b

�
k
✏0

(r�a)
r2

�
dr �

R 0
a (0)dr = k

✏0

(b�a)
b � k

✏0

�
ln
�

a
b

�
+ a

�
1
a �

1
b

��

= k
✏0

�
1� a

b � ln
�

a
b

�
� 1 + a

b

 
=

k

✏0
ln
✓

b

a

◆
.

Problem 2.24

Using Eq. 2.22 and the fields from Prob. 2.16:

V (b)� V (0) = �
R b
0 E·dl = �

R a
0 E·dl�

R b
a E·dl = � ⇢

2✏0

R a
0 s ds� ⇢a2

2✏0

R b
a

1
sds

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



CHAPTER 2. ELECTROSTATICS 33

= �
⇣

⇢
2✏0

⌘
s2

2

���
a

0
+ ⇢a2

2✏0
ln s|ba = �⇢a

2

4✏0

✓
1 + 2 ln

✓
b

a

◆◆
.

Problem 2.25

(a) V =
1

4⇡✏0
2qq

z2 +
�

d
2

�2 .

(b) V = 1
4⇡✏0

R L
�L

� dxp
z2+x2 = �

4⇡✏0
ln(x +

p
z2 + x2)

��L
�L

=
�

4⇡✏0
ln

"
L +
p

z2 + L2

�L +
p

z2 + L2

#
=

�

2⇡✏0
ln

 
L +
p

z2 + L2

z

!
. r

1

Contents

Problem 2.25

(a) V =
1

4πϵ0

2q
√

z2 +
(

d
2

)2
.

(b) V = 1
4πϵ0

∫ L
−L

λ dx√
z2+x2

= λ
4πϵ0

ln(x +
√

z2 + x2)
∣
∣
L

−L

=
λ

4πϵ0
ln

[

L +
√

z2 + L2

−L +
√

z2 + L2

]

= λ
2πϵ0

ln
(

L+
√

z2+L2

z

)

.

x

z

(c) V = 1
4πϵ0

∫ R
0

σ 2πr dr√
r2+z2

= 1
4πϵ0

2πσ (
√

r2 + z2)
∣
∣
R

0
=

σ

2ϵ0

(√

R2 + z2 − z
)

.

In each case, by symmetry ∂V
∂y = ∂V

∂x = 0. ∴ E = −∂V
∂z ẑ.

(a) E = − 1
4πϵ0

2q
(

− 1
2

)
2z

“

z2+( d
2 )

2
”3/2 ẑ =

1

4πϵ0

2qz
(

z2 +
(

d
2

)2)3/2
ẑ (agrees with Prob. 2.2a).

(b) E = − λ
4πϵ0

{
1

(L+
√

z2+L2)
1
2

1√
z2+L2

2z − 1
(−L+

√
z2+L2)

1
2

1√
z2+L2

2z
}

ẑ

= − λ
4πϵ0

z√
z2+L2

{
−L+

√
z2+L2−L−

√
z2+L2

(z2+L2)−L2

}

ẑ =
2Lλ

4πϵ0

1

z
√

z2 + L2
ẑ (agrees with Ex. 2.1).

(c) E = − σ
2ϵ0

{
1
2

1√
R2+z2

2z − 1
}

ẑ =
σ

2ϵ0

[

1 −
z√

R2 + z2

]

ẑ (agrees with Prob. 2.6).

If the right-hand charge in (a) is −q, then V = 0 , which, naively, suggests E = −∇V = 0, in contradiction
with the answer to Prob. 2.2b. The point is that we only know V on the z axis, and from this we cannot
hope to compute Ex = −∂V

∂x or Ey = −∂V
∂y . That was OK in part (a), because we knew from symmetry that

Ex = Ey = 0. But now E points in the x direction, so knowing V on the z axis is insufficient to determine E.

c⃝2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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(c) V =
1

4⇡✏0

Z R

0

� 2⇡r drp
r2 + z2

=
1

4⇡✏0
2⇡� (

p
r2 + z2)

���
R

0
=

�

2✏0

⇣p
R2 + z2 � z

⌘
.

In each case, by symmetry @V
@y = @V

@x = 0. ) E = �@V
@z ẑ.

(a) E = � 1
4⇡✏0

2q

✓
�1

2

◆
2z

⇣
z2 +

�
d
2

�2⌘3/2
ẑ =

1
4⇡✏0

2qz

�
z2 +

�
d
2

�2�3/2
ẑ (agrees with Ex. 2.1).

(b) E = � �

4⇡✏0

⇢
1

(L +
p

z2 + L2)
1
2

1p
z2 + L2

2z � 1
(�L +

p
z2 + L2)

1
2

1p
z2 + L2

2z

�
ẑ

= � �

4⇡✏0
zp

z2 + L2

(
�L +

p
z2 + L2 � L�

p
z2 + L2

(z2 + L2)� L2

)
ẑ =

2L�

4⇡✏0
1

z
p

z2 + L2
ẑ (agrees with Ex. 2.2).

(c) E = � �

2✏0

⇢
1
2

1p
R2 + z2

2z � 1
�

ẑ =
�

2✏0


1� zp

R2 + z2

�
ẑ (agrees with Prob. 2.6).

If the right-hand charge in (a) is �q, then V = 0 , which, naively, suggests E = �rV = 0, in contradiction
with the answer to Prob. 2.2. The point is that we only know V on the z axis, and from this we cannot hope
to compute Ex = �@V

@x or Ey = �@V
@y . That was OK in part (a), because we knew from symmetry that

Ex = Ey = 0. But now E points in the x direction, so knowing V on the z axis is insu�cient to determine E.

Problem 2.26

2

✲

✻

a

b
h

h
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r

r̄

V (a) =
1

4⇡✏0

Z p
2h

0

✓
�2⇡r

r
◆

dr =
2⇡�
4⇡✏0

1p
2
(
p

2h) =
�h

2✏0
(where r = r /

p
2)
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V (b) =
1

4⇡✏0

Z p
2h

0

✓
�2⇡r

r̄
◆

dr (where r̄ =
q

h2 + r 2 �
p

2hr )

=
2⇡�
4⇡✏0

1p
2

Z p
2h

0

rp
h2 + r 2 �

p
2hr

dr

=
�

2
p

2✏0

q
h2 + r 2 �

p
2hr +

hp
2

ln(2
q

h2 + r 2 �
p

2hr + 2r �p2h)
������

p
2h

0

=
�

2
p

2✏0


h +

hp
2

ln(2h + 2
p

2h�
p

2h)� h� hp
2

ln(2h�
p

2h)
�

=
�

2
p

2✏0

hp
2

h
ln(2h +

p
2h)� ln(2h�

p
2h)
i

=
�h

4✏0
ln

 
2 +
p

2
2�
p

2

!
=
�h

4✏0
ln

 
(2 +

p
2)2

2

!

=
�h

2✏0
ln(1 +

p
2). ) V (a)� V (b) =

�h

2✏0

h
1� ln(1 +

p
2)
i
.

Problem 2.27

3

Problem 2.27

︷ ︸︸ ︷
z−L

2

︸ ︷︷ ︸

x

︷ ︸︸ ︷
L

dx
✲ ✛

Cut the cylinder into slabs, as shown in the figure, and
use result of Prob. 2.25c, with z → x and σ → ρ dx:

V = ρ
2ϵ0

z+L/2∫

z−L/2

(√
R2 + x2 − x

)

dx

= ρ
2ϵ0

1
2

[

x
√

R2 + x2 + R2 ln(x +
√

R2 + x2) − x2
]∣
∣
z+L/2

z−L/2

= ρ
4ϵ0

8

<

:

(z+ L
2 )

q

R2+(z+ L
2 )2−(z−L

2 )
q

R2+(z−L
2 )2

+R2 ln

2

4

z+ L
2

+

r

R2+(z+ L
2 )2

z−
L
2

+

r

R2+(z−
L
2 )2

3

5−2zL

9

=

;

.

(Note: −
(

z + L
2

)2
+

(

z − L
2

)2
= −z2 − zL − L2

4 + z2 − zL + L2

4 = −2zL.)

E = −∇V = −ẑ
∂V

∂z
= −

ẑρ

4ϵ0

{√

R2 +

(

z +
L

2

)2

+

(

z + L
2

)2

√

R2 +
(

z + L
2

)2
−

√

R2 +

(

z −
L

2

)2

−
(

z − L
2

)2

√

R2 +
(

z − L
2

)2

+ R2

[ 1 +
z+ L

2
q

R2+(z+ L
2 )2

z + L
2 +

√

R2 +
(

z + L
2

)2
−

1 +
z−L

2
q

R2+(z−L
2 )2

z − L
2 +

√

R2 +
(

z − L
2

)2

︸ ︷︷ ︸

1
√

R2 +
(

z + L
2

)2
−

1
√

R2 +
(

z − L
2

)2

]

− 2L

}

E = −
ẑρ

4ϵ0

⎧

⎨

⎩
2

√

R2 +

(

z +
L

2

)2

− 2

√

R2 +

(

z −
L

2

)2

− 2L

⎫

⎬

⎭

=
ρ

2ϵ0

⎡

⎣L −

√

R2 +

(

z +
L

2

)2

+

√

R2 +

(

z −
L

2

)2
⎤

⎦ ẑ.

Problem 2.28

Orient axes so P is on z axis.

❂x

✲ y

✻
z

φ

r

P

z
θ

V = 1
4πϵ0

∫ ρ
η dτ.

{

Here ρ is constant, dτ = r2 sin θ dr dθ dφ,
η =

√
z2 + r2 − 2rz cos θ.

V = ρ
4πϵ0

∫ r2 sin θ dr dθ dφ√
z2+r2−2rz cos θ

;
∫ 2π
0 dφ = 2π.

∫ π
0

sin θ√
z2+r2−2rz cos θ

dθ = 1
rz

(√
r2 + z2 − 2rz cos θ

)∣
∣
π

0
= 1

rz

(√
r2 + z2 + 2rz −

√
r2 + z2 − 2rz

)

= 1
rz (r + z − |r − z|) =

{

2/z , if r < z,
2/r , if r > z.

}
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Cut the cylinder into slabs, as shown in the figure, and
use result of Prob. 2.25c, with z ! x and � ! ⇢ dx:

V = ⇢
2✏0

z+L/2R

z�L/2

�p
R2 + x2 � x

�
dx

= ⇢
2✏0

1
2

⇥
x
p

R2 + x2 + R
2 ln(x +

p
R2 + x2)� x

2
⇤��z+L/2

z�L/2

= ⇢
4✏0

8
<

:(z+ L
2 )

q
R2+(z+ L

2 )2�(z�L
2 )

q
R2+(z�L

2 )2
+R2 ln

2

4
z+ L

2 +
r

R2+(z+ L
2 )2

z�L
2 +

r
R2+(z�L

2 )2

3

5�2zL

9
=

;.

(Note: �
�
z + L

2

�2 +
�
z � L

2

�2 = �z
2 � zL� L2

4 + z
2 � zL + L2

4 = �2zL.)

E = �rV = �ẑ
@V

@z
= � ẑ⇢

4✏0

(s

R2 +
✓

z +
L

2

◆2

+
�
z + L

2

�2
q

R2 +
�
z + L

2

�2�

s

R2 +
✓

z � L

2

◆2

�
�
z � L

2

�2
q

R2 +
�
z � L

2

�2

+ R
2

" 1 + z+ L
2q

R2+(z+ L
2 )2

z + L
2 +

q
R2 +

�
z + L

2

�2 �
1 + z�L

2q
R2+(z�L

2 )2

z � L
2 +

q
R2 +

�
z � L

2

�2
| {z }

1q
R2 +

�
z + L

2

�2 �
1q

R2 +
�
z � L

2

�2

#
� 2L

)

E = � ẑ⇢

4✏0

8
<

:2

s

R2 +
✓

z +
L

2

◆2

� 2

s

R2 +
✓

z � L

2

◆2

� 2L

9
=

;
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=
⇢

2✏0

2

4L�

s

R2 +
✓

z +
L

2

◆2

+

s

R2 +
✓

z � L

2

◆2
3

5 ẑ.

Problem 2.28

Orient axes so P is on z axis.

1

Hello

❂
x

✲ y

✻
z

φ

r

P

z
θ
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V = 1
4⇡✏0

R ⇢r d⌧.

⇢
Here ⇢ is constant, d⌧ = r

2 sin ✓ dr d✓ d�,
r

r =
p

z2 + r2 � 2rz cos ✓.

V = ⇢
4⇡✏0

R r2 sin ✓ dr d✓ d�p
z2+r2�2rz cos ✓

;
R 2⇡
0 d� = 2⇡.

R ⇡
0

sin ✓p
z2+r2�2rz cos ✓

d✓ = 1
rz

�p
r2 + z2 � 2rz cos ✓

���⇡
0

= 1
rz

�p
r2 + z2 + 2rz �

p
r2 + z2 � 2rz

�

= 1
rz (r + z � |r � z|) =

⇢
2/z , if r < z,

2/r , if r > z.

�

) V = ⇢
4⇡✏0

· 2⇡ · 2
(

zR

0

1
z r

2
dr +

RR
z

1
r r

2
dr

)
= ⇢

✏0

n
1
z

z3

3 + R2�z2

2

o
= ⇢

2✏0

⇣
R

2 � z2

3

⌘
.

But ⇢ = q
4
3 ⇡R3 , so V (z) = 1

2✏0
3q

4⇡R3

⇣
R

2 � z2

3

⌘
= q

8⇡✏0R

⇣
3� z2

R2

⌘
; V (r) =

q

8⇡✏0R

✓
3� r

2

R2

◆
. X

Problem 2.29

r2
V = 1

4⇡✏0
r2
R� ⇢

r

�
d⌧ = 1

4⇡✏0

R
⇢(r0)

�
r2 1r

�
d⌧ (since ⇢ is a function of r

0, not r)

= 1
4⇡✏0

R
⇢(r0)[�4⇡�3(r� r

0)] d⌧ = � 1
✏0
⇢(r). X

Problem 2.30.

(a) Ex. 2.5: Eabove = �
2✏0

n̂; Ebelow = � �
2✏0

n̂ (n̂ always pointing up); Eabove �Ebelow = �
✏0

n̂. X

Ex. 2.6: At each surface, E = 0 one side and E = �
✏0

other side, so �E = �
✏0

. X

Prob. 2.11: Eout = �R2

✏0r2 r̂ = �
✏0

r̂ ; Ein = 0 ; so �E = �
✏0

r̂. X

(b) Outside:
H
E·da = E(2⇡s)l = 1

✏0
Qenc = �

✏0
(2⇡R)l) E = �

✏0
R
s ŝ = �

✏0
ŝ (at surface).

Inside: Qenc = 0, so E = 0. ) �E = �
✏0

ŝ. X

1

Contents

Problem 2.30.

(a) Ex. 2.4: Eabove = σ
2ϵ0

n̂; Ebelow = − σ
2ϵ0

n̂ (n̂ always pointing up); Eabove − Ebelow = σ
ϵ0

n̂. !

Ex. 2.5: At each surface, E = 0 one side and E = σ
ϵ0

other side, so ∆E = σ
ϵ0

. !

Prob. 2.11: Eout = σR2

ϵ0r2 r̂ = σ
ϵ0

r̂ ; Ein = 0 ; so ∆E = σ
ϵ0

r̂. !

(b) Outside:
∮

E·da = E(2πs)l = 1
ϵ0

Qenc = 1
ϵ0

(2πR)l ⇒ E = σ
ϵ0

R
s ŝ = σ

ϵ0
ŝ (at surface).

Inside: Qenc = 0, so E = 0. ∴ ∆E = σ
ϵ0

ŝ. !

✻
s ✻R

︸ ︷︷ ︸

l

(c) Vout = R2σ
ϵ0r = Rσ

ϵ0
(at surface); Vin = Rσ

ϵ0
; so Vout = Vin. !

∂Vout

∂r = −R2σ
ϵ0r2 = − σ

ϵ0
(at surface); ∂Vin

∂r = 0 ; so ∂Vout

∂r − ∂Vin

∂r = − σ
ϵ0

. !

Problem 2.31

(a) V = 1
4πϵ0

∑ qi

rij
= 1

4πϵ0

{
−q
a + q√

2a
+ −q

a

}

= q
4πϵ0a

(

−2 + 1√
2

)

.

∴ W4 = qV =
q2

4πϵ0a

(

−2 +
1
√

2

)

.

(2)
+

(3)
−

(4)
+

(1)
−

(b) W1 = 0, W2 = 1
4πϵ0

(
−q2

a

)

; W3 = 1
4πϵ0

(
q2

√
2 a

− q2

a

)

; W4 = (see (a)).

Wtot = 1
4πϵ0

q2

a

{

−1 + 1√
2
− 1 − 2 + 1√

2

}

=
1

4πϵ0

2q2

a

(

−2 +
1
√

2

)

.

c⃝2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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(c) Vout = R2�
✏0r = R�

✏0
(at surface); Vin = R�

✏0
; so Vout = Vin. X

@Vout
@r = �R2�

✏0r2 = � �
✏0

(at surface); @Vin
@r = 0 ; so @Vout

@r �
@Vin
@r = � �

✏0
. X
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Problem 2.31

(a) V = 1
4⇡✏0

P qi

rij
= 1

4⇡✏0

n
�q
a + qp

2a
+ �q

a

o
= q

4⇡✏0a

⇣
�2 + 1p

2

⌘
.

) W4 = qV =
q
2

4⇡✏0a

✓
�2 +

1p
2

◆
.

r
(2)

+ r
(3)

�

r(4)
+

r(1)
�

(b) W1 = 0, W2 = 1
4⇡✏0

⇣
�q2

a

⌘
; W3 = 1

4⇡✏0

⇣
q2
p

2 a
� q2

a

⌘
; W4 = (see (a)).

Wtot = 1
4⇡✏0

q2

a

n
�1 + 1p

2
� 1� 2 + 1p

2

o
=

1
4⇡✏0

2q
2

a

✓
�2 +

1p
2

◆
.

Problem 2.32

Conservation of energy (kinetic plus potential):

1
2
mAv

2
A +

1
2
mBv

2
B +

1
4⇡✏0

qAqB

r
= E.

At release vA = vB = 0, r = a, so

E =
1

4⇡✏0
qAqB

a
.

When they are very far apart (r !1) the potential energy is zero, so

1
2
mAv

2
A +

1
2
mBv

2
B =

1
4⇡✏0

qAqB

a
.

Meanwhile, conservation of momentum says mAvA = mBvB , or vB = (mA/mB)vA. So

1
2
mAv

2
A +

1
2
mB

✓
mA

mB

◆2

v
2
A =

1
2

✓
mA

mB

◆
(mA + mB)v2

A =
1

4⇡✏0
qAqB

a
.

vA =

s
1

2⇡✏0
qAqB

(mA + mB)a

✓
mA

mB

◆
; vB =

s
1

2⇡✏0
qAqB

(mA + mB)a

✓
mB

mA

◆
.

Problem 2.33

From Eq. 2.42, the energy of one charge is

W =
1
2
qV =

1
2
(2)

1X

n=1

1
4⇡✏0

(�1)n
q
2

na
=

q
2

4⇡✏0a

1X

1

(�1)n

n
.

(The factor of 2 out front counts the charges to the left as well as to the right of q.) The sum is � ln 2 (you
can get it from the Taylor expansion of ln(1 + x):

ln(1 + x) = x� 1
2
x

2 +
1
3
x

3 � 1
4
x

4 + · · ·

with x = 1. Evidently ↵ = ln 2 .

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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Problem 2.34

(a) W = 1
2

R
⇢V d⌧ . From Prob. 2.21 (or Prob. 2.28): V = ⇢

2✏0

⇣
R

2 � r2

3

⌘
= 1

4⇡✏0
q

2R

⇣
3� r2

R2

⌘

W =
1
2
⇢

1
4⇡✏0

q

2R

Z R

0

✓
3� r

2

R2

◆
4⇡r

2
dr =

q⇢

4✏0R


3
r
3

3
� 1

R2

r
5

5

�����
R

0

=
q⇢

4✏0R

✓
R

3 � R
3

5

◆

=
q⇢

5✏0
R

2 =
qR

2

5✏0
q

4
3⇡R3

=
1

4⇡✏0

✓
3
5

q
2

R

◆
.

(b) W = ✏0
2

R
E

2
d⌧ . Outside (r > R) E = 1

4⇡✏0
q
r2 r̂ ; Inside (r < R) E = 1

4⇡✏0
q

R3 rr̂.

) W =
✏0

2
1

(4⇡✏0)2
q
2

(Z 1

R

1
r4

(r24⇡ dr) +
Z R

0

⇣
r

R3

⌘2
(4⇡r

2
dr)

)

=
1

4⇡✏0
q
2

2

(✓
�1

r

◆����
1

R

+
1

R6

✓
r
5

5

◆����
R

0

)
=

1
4⇡✏0

q
2

2

✓
1
R

+
1

5R

◆
=

1
4⇡✏0

3
5

q
2

R
.X

(c) W = ✏0
2

� H
S V E·da +

R
V E

2
d⌧
 
, where V is large enough to enclose all the charge, but otherwise

arbitrary. Let’s use a sphere of radius a > R. Here V = 1
4⇡✏0

q
r .

W =
✏0

2

( Z

r=a

✓
1

4⇡✏0
q

r

◆✓
1

4⇡✏0
q

r2

◆
r
2 sin ✓ d✓ d�+

Z R

0
E

2
d⌧ +

Z a

R

✓
1

4⇡✏0
q

r2

◆2

(4⇡r
2
dr)

)

=
✏0

2

⇢
q
2

(4⇡✏0)2
1
a
4⇡ +

q
2

(4⇡✏0)2
4⇡
5R

+
1

(4⇡✏0)2
4⇡q

2

✓
�1

r

◆����
a

R

�

=
1

4⇡✏0
q
2

2

⇢
1
a

+
1

5R
� 1

a
+

1
R

�
=

1
4⇡✏0

3
5

q
2

R
.X

As a ! 1, the contribution from the surface integral
⇣

1
4⇡✏0

q2

2a

⌘
goes to zero, while the volume integral

⇣
1

4⇡✏0
q2

2a ( 6a
5R � 1)

⌘
picks up the slack.

Problem 2.35

2

Problem 2.32

(a) W = 1
2

∫

ρV dτ . From Prob. 2.21 (or Prob. 2.28): V = ρ
2ϵ0

(

R2 − r2

3

)

= 1
4πϵ0

q
2R

(

3 − r2

R2

)

W =
1

2
ρ

1

4πϵ0

q

2R

∫ R

0

(

3 −
r2

R2

)

4πr2dr =
qρ

4ϵ0R

[

3
r3

3
−

1

R2

r5

5

]∣
∣
∣
∣

R

0

=
qρ

4ϵ0R

(

R3 −
R3

5

)

=
qρ

5ϵ0
R2 =

qR2

5ϵ0

q
4
3πR3

=
1

4πϵ0

(
3

5

q2

R

)

.

(b) W = ϵ0
2

∫

E2dτ . Outside (r > R) E = 1
4πϵ0

q
r2 r̂ ; Inside (r < R) E = 1

4πϵ0
q

R3 rr̂.

∴ W =
ϵ0
2

1

(4πϵ0)2
q2

{
∫ ∞

R

1

r4
(r24π dr) +

∫ R

0

( r

R3

)2
(4πr2dr)

}

=
1

4πϵ0

q2

2

{(

−
1

r

)∣
∣
∣
∣

∞

R

+
1

R6

(
r5

5

)∣
∣
∣
∣

R

0

}

=
1

4πϵ0

q2

2

(
1

R
+

1

5R

)

=
1

4πϵ0

3

5

q2

R
."

(c) W = ϵ0
2

{ ∮

S V E·da +
∫

V E2dτ
}

, where V is large enough to enclose all the charge, but otherwise
arbitrary. Let’s use a sphere of radius a > R. Here V = 1

4πϵ0
q
r .

W =
ϵ0
2

{
∫

r=a

(
1

4πϵ0

q

r

) (
1

4πϵ0

q

r2

)

r2 sin θ dθ dφ +

∫ R

0
E2dτ +

∫ a

R

(
1

4πϵ0

q

r2

)2

(4πr2dr)

}

=
ϵ0
2

{
q2

(4πϵ0)2
1

a
4π +

q2

(4πϵ0)2
4π

5R
+

1

(4πϵ0)2
4πq2

(

−
1

r

)∣
∣
∣
∣

a

R

}

=
1

4πϵ0

q2

2

{
1

a
+

1

5R
−

1

a
+

1

R

}

=
1

4πϵ0

3

5

q2

R
."

As a → ∞, the contribution from the surface integral
(

1
4πϵ0

q2

2a

)

goes to zero, while the volume integral
(

1
4πϵ0

q2

2a ( 6a
5R − 1)

)

picks up the slack.

Problem 2.33

q̄

✯
r

✮
dq̄
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dW = dq̄ V = dq̄

✓
1

4⇡✏0

◆
q̄

r
, (q̄ = charge on sphere of radius r).

q̄ =
4
3
⇡r

3
⇢ = q

r
3

R3
(q = total charge on sphere).

dq̄ = 4⇡r
2
dr ⇢ =

4⇡r
2

4
3⇡R3

q dr =
3q

R3
r
2
dr.

dW =
1

4⇡✏0

✓
qr

3

R3

◆
1
r

✓
3q

R3
r
2
dr

◆
=

1
4⇡✏0

3q
2

R6
r
4
dr

W =
1

4⇡✏0
3q

2

R6

Z R

0
r
4
dr =

1
4⇡✏0

3q
2

R6

R
5

5
=

1
4⇡✏0

✓
3
5

q
2

R

◆
.X
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Problem 2.36

(a) W = ✏0
2

R
E

2
d⌧. E = 1

4⇡✏0
q
r2 (a < r < b), zero elsewhere.

W = ✏0
2

⇣
q

4⇡✏0

⌘2 R b
a

�
1
r2

�2 4⇡r
2
dr = q2

8⇡✏0

R b
a

1
r2 =

q
2

8⇡✏0

✓
1
a
� 1

b

◆
.

(b) W1 = 1
8⇡✏0

q2

a , W2 = 1
8⇡✏0

q2

b , E1 = 1
4⇡✏0

q
r2 r̂ (r > a), E2 = 1

4⇡✏0
�q
r2 r̂ (r > b). So

E1 ·E2 =
⇣

1
4⇡✏0

⌘2 �q2

r4 , (r > b), and hence
R

E1 ·E2 d⌧ = �
⇣

1
4⇡✏0

⌘2
q
2
R1

b
1
r4 4⇡r

2
dr = � q2

4⇡✏0b .

Wtot = W1 + W2 + ✏0

R
E1 ·E2 d⌧ = 1

8⇡✏0
q
2
�

1
a + 1

b �
2
b

�
= q2

8⇡✏0

�
1
a �

1
b

�
.X

Problem 2.37

r

a

x

y

z

b

q

q2

q1

r

E1 =
1

4⇡✏0
q1

r2
r̂; E2 =

1
4⇡✏0

q2

r 2 r̂ ; Wi = ✏0
q1q2

(4⇡✏0)2

Z
1

r2 r 2 cos� r
2 sin ✓ dr d✓ d�,

where (from the figure)

r =
p

r2 + a2 � 2ra cos ✓, cos� =
(r � a cos ✓)

r .

Therefore
Wi =

q1q2

(4⇡)2✏0
2⇡
Z

(r � a cos ✓)
r 3 sin ✓ dr d✓.

It’s simplest to do the r integral first, changing variables to r :

2r dr = (2r � 2a cos ✓) dr ) (r � a cos ✓) dr = r dr .

As r : 0!1, r : a!1, so

Wi =
q1q2

8⇡✏0

Z ⇡

0

✓Z 1

a

1
r 2 dr

◆
sin ✓ d✓.

The r integral is 1/a, so

Wi =
q1q2

8⇡✏0a

Z ⇡

0
sin ✓ d✓ =

q1q2

4⇡✏0a
.

Of course, this is precisely the interaction energy of two point charges.
Problem 2.38

(a) �R =
q

4⇡R2
; �a =

�q

4⇡a2
; �b =

q

4⇡b2
.
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(b) V (0) = �
R 0
1E·dl = �

R b
1
�

1
4⇡✏0

q
r2

�
dr �

R a
b (0)dr �

R R
a

�
1

4⇡✏0
q
r2

�
dr �

R 0
R(0)dr =

1
4⇡✏0

⇣
q

b
+

q

R
� q

a

⌘
.

(c) �b ! 0 (the charge “drains o↵”); V (0) = �
R a
1(0)dr �

R R
a

�
1

4⇡✏0
q
r2

�
dr �

R 0
R(0)dr =

1
4⇡✏0

⇣
q

R
� q

a

⌘
.

Problem 2.39

(a) �a = � qa

4⇡a2
; �b = � qb

4⇡b2
; �R =

qa + qb

4⇡R2
.

(b) Eout =
1

4⇡✏0
qa + qb

r2
r̂, where r = vector from center of large sphere.

(c) Ea =
1

4⇡✏0
qa

r2
a

r̂a, Eb =
1

4⇡✏0
qb

r
2
b

r̂b, where ra (rb) is the vector from center of cavity a (b).

(d) Zero.

(e) �R changes (but not �a or �b); Eoutside changes (but not Ea or Eb); force on qa and qb still zero.
Problem 2.40

(a) No. For example, if it is very close to the wall, it will induce charge of the opposite sign on the wall,
and it will be attracted.

(b) No. Typically it will be attractive, but see footnote 12 for an extraordinary counterexample.

Problem 2.41

Between the plates, E = 0; outside the plates E = �/✏0 = Q/✏0A. So

P =
✏0

2
E

2 =
✏0

2
Q

2

✏
2
0A

2
=

Q
2

2✏0A2
.

Problem 2.42

Inside, E = 0; outside, E = 1
4⇡✏0

Q
r2 r̂; so

3

Problem 2.34

(a) W = ϵ0
2

∫

E2 dτ. E = 1
4πϵ0

q
r2 (a < r < b), zero elsewhere.

W = ϵ0
2

(
q

4πϵ0

)2 ∫ b
a

(
1
r2

)2
4πr2dr = q2

8πϵ0

∫ b
a

1
r2 =

q2

8πϵ0

(
1

a
−

1

b

)

.

(b) W1 = 1
8πϵ0

q2

a , W2 = 1
8πϵ0

q2

b , E1 = 1
4πϵ0

q
r2 r̂ (r > a), E2 = 1

4πϵ0
−q
r2 r̂ (r > b). So

E1 · E2 =
(

1
4πϵ0

)2 −q2

r4 , (r > b), and hence
∫

E1 · E2 dτ = −
(

1
4πϵ0

)2
q2

∫ ∞
b

1
r4 4πr2dr = − q2

4πϵ0b .

Wtot = W1 + W2 + ϵ0
∫

E1 ·E2 dτ = 1
8πϵ0

q2
(

1
a + 1

b − 2
b

)

= q2

8πϵ0

(
1
a − 1

b

)

.!

Problem 2.35

(a) σR =
q

4πR2
; σa =

−q

4πa2
; σb =

q

4πb2
.

(b) V (0) = −
∫ 0
∞ E·dl = −

∫ b
∞

(
1

4πϵ0
q
r2

)

dr −
∫ a

b (0)dr −
∫ R

a

(
1

4πϵ0
q
r2

)

dr −
∫ 0

R(0)dr =
1

4πϵ0

(q

b
+

q

R
−

q

a

)

.

(c) σb → 0 (the charge “drains off”); V (0) = −
∫ a
∞(0)dr −

∫ R
a

(
1

4πϵ0
q
r2

)

dr −
∫ 0

R(0)dr =
1

4πϵ0

( q

R
−

q

a

)

.

Problem 2.36

(a) σa = −
qa

4πa2
; σb = −

qb

4πb2
; σR =

qa + qb

4πR2
.

(b) Eout =
1

4πϵ0

qa + qb

r2
r̂, where r = vector from center of large sphere.

(c) Ea =
1

4πϵ0

qa

r2
a

r̂a, Eb =
1

4πϵ0

qb

r2
b

r̂b, where ra (rb) is the vector from center of cavity a (b).

(d) Zero.

(e) σR changes (but not σa or σb); Eoutside changes (but not Ea or Eb); force on qa and qb still zero.

Problem 2.37

Between the plates, E = 0; outside the plates E = σ/ϵ0 = Q/ϵ0A. So

P =
ϵ0
2

E2 =
ϵ0
2

Q2

ϵ20A
2

=
Q2

2ϵ0A2
.

Problem 2.38

Inside, E = 0; outside, E = 1
4πϵ0

Q
r2 r̂; so

✻z

✒E
θ

Eave = 1
2

1
4πϵ0

Q
R2 r̂; fz = σ(Eave)z ; σ = Q

4πR2 .

Fz =
∫

fzda =
∫( Q

4πR2

)
1
2

(
1

4πϵ0
Q
R2

)

cos θ R2 sin θ dθ dφ

= 1
2ϵ0

( Q
4πR

)2
2π

∫ π/2
0 sin θ cos θ dθ = 1

πϵ0

( Q
4R

)2 (
1
2 sin2 θ

)∣
∣
π/2

0
= 1

2πϵ0

( Q
4R

)2
=

Q2

32πR2ϵ0
.
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Eave = 1
2

1
4⇡✏0

Q
R2 r̂; fz = �(Eave)z; � = Q

4⇡R2 .

Fz =
R

fzda =
R� Q

4⇡R2

�
1
2

�
1

4⇡✏0
Q
R2

�
cos ✓R

2 sin ✓ d✓ d�

= 1
2✏0

� Q
4⇡R

�22⇡
R ⇡/2
0 sin ✓ cos ✓ d✓ = 1

⇡✏0

� Q
4R

�2 � 1
2 sin2

✓
���⇡/2

0
= 1

2⇡✏0

� Q
4R

�2 =
Q

2

32⇡R2✏0
.

Problem 2.43

Say the charge on the inner cylinder is Q, for a length L. The field is given by Gauss’s law:R
E·da = E · 2⇡s · L = 1

✏0
Qenc = 1

✏0
Q) E = Q

2⇡✏0L
1
s ŝ. Potential di↵erence between the cylinders is

V (b)� V (a) = �
Z b

a
E·dl = � Q

2⇡✏0L

Z b

a

1
s
ds = � Q

2⇡✏0L
ln
✓

b

a

◆
.

As set up here, a is at the higher potential, so V = V (a)� V (b) = Q
2⇡✏0L ln

�
b
a

�
.
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C = Q
V = 2⇡✏0L

ln( b
a ) , so capacitance per unit length is

2⇡✏0
ln
�

b
a

� .

Problem 2.44

(a) W = (force)⇥(distance) = (pressure)⇥(area)⇥(distance) =
✏0

2
E

2
A✏.

(b) W = (energy per unit volume)⇥(decrease in volume) =
⇣
✏0

E2

2

⌘
(A✏). Same as (a), confirming that the

energy lost is equal to the work done.
Problem 2.45

4

Problem 2.39

Say the charge on the inner cylinder is Q, for a length L. The field is given by Gauss’s law:
∫

E·da = E · 2πs · L = 1
ϵ0

Qenc = 1
ϵ0

Q ⇒ E = Q
2πϵ0L

1
s ŝ. Potential difference between the cylinders is

V (b) − V (a) = −
∫ b

a
E·dl = −

Q

2πϵ0L

∫ b

a

1

s
ds = −

Q

2πϵ0L
ln

(
b

a

)

.

As set up here, a is at the higher potential, so V = V (a) − V (b) = Q
2πϵ0L ln

(
b
a

)

.

C = Q
V = 2πϵ0L

ln( b
a )

, so capacitance per unit length is
2πϵ0
ln

(
b
a

) .

Problem 2.40

(a) W = (force)×(distance) = (pressure)×(area)×(distance) =
ϵ0
2

E2Aϵ.

(b) W = (energy per unit volume)×(decrease in volume) =
(

ϵ0 E2

2

)

(Aϵ). Same as (a), confirming that the

energy lost is equal to the work done.

Problem 2.41

✲ ✛ da
2

✛ ✲a

✛ ✲a+da

✲ ✛ da
2

From Prob. 2.4, the field at height z above the center of a square loop (side a) is

E =
1

4πϵ0

4λaz
(

z2 + a2

4

)
√

z2 + a2

2

ẑ.

Here λ → σ da
2 (see figure), and we integrate over a from 0 to ā:

E =
1

4πϵ0
2σz

∫ ā

0

a da
(

z2 + a2

4

)
√

z2 + a2

2

. Let u =
a2

4
, so a da = 2 du.

=
1

4πϵ0
4σz

∫ ā2/4

0

du

(u + z2)
√

2u + z2
=

σz

πϵ0

[

2

z
tan−1

(√
2u + z2

z

)]ā2/4

0

=
2σ

πϵ0

{

tan−1

(
√

ā2

2 + z2

z

)

− tan−1(1)

}

;

E =
2σ

πϵ0

[

tan−1

√

1 +
a2

2z2
−

π

4

]

ẑ.

a → ∞ (infinite plane): E = 2σ
πϵ0

[

tan−1(∞) − π
4

]

= 2σ
πϵ0

(
π
2 − π

4

)

= σ
2ϵ0

. !

z ≫ a (point charge): Let f(x) = tan−1
√

1 + x − π
4 , and expand as a Taylor series:

f(x) = f(0) + xf ′(0) +
1

2
x2f ′′(0) + · · ·
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From Prob. 2.4, the field at height z above the center of a square loop (side a) is

E =
1

4⇡✏0
4�az

�
z2 + a2

4

�q
z2 + a2

2

ẑ.

Here �! �
da
2 (see figure), and we integrate over a from 0 to ā:

E =
1

4⇡✏0
2�z

Z ā

0

a da

�
z2 + a2

4

�q
z2 + a2

2

. Let u =
a
2

4
, so a da = 2 du.

=
1

4⇡✏0
4�z

Z ā2/4

0

du

(u + z2)
p

2u + z2
=

�z

⇡✏0

"
2
z

tan�1

 p
2u + z2

z

!#ā2/4

0

=
2�
⇡✏0

(
tan�1

 q ā2

2 + z2

z

!
� tan�1(1)

)
;

E =
2�
⇡✏0

"
tan�1

r
1 +

a2

2z2
� ⇡

4

#
ẑ =

�

⇡✏0
tan�1

 
a
2

4z

p
z2 + (a2/2)

!
ẑ.

a!1 (infinite plane): E = 2�
⇡✏0

⇥
tan�1(1)� ⇡

4

⇤
= 2�

⇡✏0

�
⇡
2 �

⇡
4

�
= �

2✏0
. X

z � a (point charge): Let f(x) = tan�1
p

1 + x� ⇡
4 , and expand as a Taylor series:

f(x) = f(0) + xf
0(0) +

1
2
x

2
f
00(0) + · · ·

Here f(0) = tan�1(1)� ⇡
4 = ⇡

4 �
⇡
4 = 0; f

0(x) = 1
1+(1+x)

1
2

1p
1+x

= 1
2(2+x)

p
1+x

, so f
0(0) = 1

4 , so

f(x) =
1
4
x + ( )x2 + ( )x3 + · · ·

Thus (since a2

2z2 = x⌧ 1), E ⇡ 2�
⇡✏0

⇣
1
4

a2

2z2

⌘
= 1

4⇡✏0
�a2

z2 = 1
4⇡✏0

q
z2 . X
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Problem 2.46

⇢ = ✏0r·E = ✏0

⇢
1
r2

@

@r

✓
r
2 3k

r

◆
+

1
r sin ✓

@

@✓

✓
sin ✓

2k sin ✓ cos ✓ sin�
r

◆
+

1
r sin ✓

@

@�

✓
k sin ✓ cos�

r

◆�

= ✏0


1
r2

3k +
1

r sin ✓
2k sin�(2 sin ✓ cos2 ✓ � sin3

✓)
r

+
1

r sin ✓
(�k sin ✓ sin�)

r

�

=
k✏0

r2

⇥
3 + 2 sin�(2 cos2 ✓ � sin2

✓)� sin�
⇤

=
k✏0

r2

⇥
3 + sin�(4 cos2 ✓ � 2 + 2 cos2 ✓ � 1)

⇤

=
3k✏0

r2

⇥
1 + sin�(2 cos2 ✓ � 1)

⇤
=

3k✏0

r2
(1 + sin� cos 2✓).

Problem 2.47

From Prob. 2.12, the field inside a uniformly charged sphere is: E = 1
4⇡✏0

Q
R3 r. So the force per unit volume

is f = ⇢E =
� Q

4
3 ⇡R3

�� Q
4⇡✏0R3

�
r = 3

✏0

� Q
4⇡R3

�2
r, and the force in the z direction on d⌧ is:

dFz = fz d⌧ =
3
✏0

✓
Q

4⇡R3

◆2

r cos ✓(r2 sin ✓ dr d✓ d�).

The total force on the “northern” hemisphere is:

Fz =
Z

fz d⌧ =
3
✏0

✓
Q

4⇡R3

◆2 Z R

0
r
3
dr

Z ⇡/2

0
cos ✓ sin ✓ d✓

Z 2⇡

0
d�

=
3
✏0

✓
Q

4⇡R3

◆2✓
R

4

4

◆ 
sin2

✓

2

����
⇡/2

0

!
(2⇡) =

3Q
2

64⇡✏0R2
.

Problem 2.48

5

Here f(0) = tan−1(1) − π
4 = π

4 − π
4 = 0; f ′(x) = 1

1+(1+x)
1
2

1√
1+x

= 1
2(2+x)

√
1+x

, so f ′(0) = 1
4 , so

f(x) =
1

4
x + ( )x2 + ( )x3 + · · ·

Thus (since a2

2z2 = x ≪ 1), E ≈ 2σ
πϵ0

(
1
4

a2

2z2

)

= 1
4πϵ0

σa2

z2 = 1
4πϵ0

q
z2 . !

Problem 2.42

ρ = ϵ0∇·E = ϵ0

{
1

r2

∂

∂r

(

r2 A

r

)

+
1

r sin θ

∂

∂φ

(
B sin θ cosφ

r

)}

= ϵ0

[
1

r2
A +

1

r sin θ

B sin θ

r
(− sinφ)

]

=
ϵ0
r2

(A − B sin φ).

Problem 2.43

From Prob. 2.12, the field inside a uniformly charged sphere is: E = 1
4πϵ0

Q
R3 r. So the force per unit volume

is f = ρE =
( Q

4
3
πR3

)( Q
4πϵ0R3

)

r = 3
ϵ0

( Q
4πR3

)2
r, and the force in the z direction on dτ is:

dFz = fz dτ =
3

ϵ0

(
Q

4πR3

)2

r cos θ(r2 sin θ dr dθ dφ).

The total force on the “northern” hemisphere is:

Fz =

∫

fz dτ =
3

ϵ0

(
Q

4πR3

)2 ∫ R

0
r3dr

∫ π/2

0
cos θ sin θ dθ

∫ 2π

0
dφ

=
3

ϵ0

(
Q

4πR3

)2 (
R4

4

)
(

sin2 θ

2

∣
∣
∣
∣

π/2

0

)

(2π) =
3Q2

64πϵ0R2
.

Problem 2.44

R

R
θ

Vcenter =
1

4πϵ0

∫
σ

η
da =

1

4πϵ0

σ

R

∫

da =
1

4πϵ0

σ

R
(2πR2) =

σR

2ϵ0

Vpole =
1

4πϵ0

∫
σ

η
da , with

{

da = 2πR2 sin θ dθ,

η2 = R2 + R2 − 2R2 cos θ = 2R2(1 − cos θ).

=
1

4πϵ0

σ(2πR2)

R
√

2

∫ π/2

0

sin θ dθ
√

1 − cos θ
=

σR

2
√

2ϵ0
(2
√

1 − cos θ)
∣
∣
∣

π/2

0

=
σR
√

2ϵ0
(1 − 0) =

σR
√

2ϵ0
. ∴ Vpole − Vcenter =

σR

2ϵ0
(
√

2 − 1).

Problem 2.45

First let’s determine the electric field inside and outside the sphere, using Gauss’s law:

ϵ0

∮

E·da = ϵ04πr2E = Qenc =

∫

ρ dτ =

∫

(kr̄)r̄2 sin θ dr̄ dθ dφ = 4πk

∫ r

0
r̄3dr̄ =

{

πkr4 (r < R),

πkR4 (r > R).
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Vcenter =
1

4⇡✏0

Z
�

r da =
1

4⇡✏0
�

R

Z
da =

1
4⇡✏0

�

R
(2⇡R

2) =
�R

2✏0
r

Vpole =
1

4⇡✏0

Z
�

r da , with

(
da = 2⇡R

2 sin ✓ d✓,

r 2 = R
2 + R

2 � 2R
2 cos ✓ = 2R

2(1� cos ✓).

=
1

4⇡✏0
�(2⇡R

2)
R
p

2

Z ⇡/2

0

sin ✓ d✓p
1� cos ✓

=
�R

2
p

2✏0
(2
p

1� cos ✓)
���
⇡/2

0

=
�Rp
2✏0

(1� 0) =
�Rp
2✏0

. ) Vpole � Vcenter =
�R

2✏0
(
p

2� 1).

Problem 2.49

First let’s determine the electric field inside and outside the sphere, using Gauss’s law:

✏0

I
E·da = ✏04⇡r

2
E = Qenc =

Z
⇢ d⌧ =

Z
(kr̄)r̄2 sin ✓ dr̄ d✓ d� = 4⇡k

Z r

0
r̄
3
dr̄ =

(
⇡kr

4 (r < R),
⇡kR

4 (r > R).

So E = k
4✏0

r
2
r̂ (r < R); E = kR4

4✏0r2 r̂ (r > R).
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Method I :

W =
✏0

2

Z
E

2
d⌧ (Eq. 2.45) =

✏0

2

Z R

0

✓
kr

2

4✏0

◆2

4⇡r
2
dr +

✏0

2

Z 1

R

✓
kR

4

4✏0r2

◆2

4⇡r
2
dr

= 4⇡
✏0

2

✓
k

4✏0

◆2
(Z R

0
r
6
dr + R

8

Z 1

R

1
r2

dr

)
=
⇡k

2

8✏0

⇢
R

7

7
+ R

8

✓
�1

r

◆����
1

R

�
=
⇡k

2

8✏0

✓
R

7

7
+ R

7

◆

=
⇡k

2
R

7

7✏0
.

Method II :

W =
1
2

Z
⇢V d⌧ (Eq. 2.43).

For r < R, V (r) = �
Z r

1
E·dl = �

Z R

1

✓
kR

4

4✏0r2

◆
dr �

Z r

R

✓
kr

2

4✏0

◆
dr = � k

4✏0

(
R

4

✓
�1

r

◆����
R

1
+

r
3

3

����
r

R

)

= � k

4✏0

✓
�R

3 +
r
3

3
� R

3

3

◆
=

k

3✏0

✓
R

3 � r
3

4

◆
.

) W =
1
2

Z R

0
(kr)


k

3✏0

✓
R

3 � r
3

4

◆�
4⇡r

2
dr =

2⇡k
2

3✏0

Z R

0

✓
R

3
r
3 � 1

4
r
6

◆
dr

=
2⇡k

2

3✏0

⇢
R

3 R
4

4
� 1

4
R

7

7

�
=
⇡k

2
R

7

2 · 3✏0

✓
6
7

◆
=
⇡k

2
R

7

7✏0
. X

Problem 2.50

E = �rV = �A
@

@r

✓
e
��r

r

◆
r̂ = �A

⇢
r(��)e��r � e

��r

r2

�
r̂ = Ae

��r(1 + �r)
r̂

r2
.

⇢ = ✏0r·E = ✏0A
�
e
��r(1 + �r)r·

�
r̂
r2

�
+ r̂

r2 ·r
�
e
��r(1 + �r)

� 
. But r·

�
r̂
r2

�
= 4⇡�3(r) (Eq. 1.99), and

e
��r(1 + �r)�3(r) = �

3(r) (Eq. 1.88). Meanwhile,
r
�
e
��r(1 + �r)

�
= r̂

@
@r

�
e
��r(1 + �r)

�
= r̂

�
��e

��r(1 + �r) + e
��r

�
 

= r̂(��2
re
��r).

So r̂
r2 ·r

�
e
��r(1 + �r)

�
= ��2

r e
��r, and ⇢ = ✏0A


4⇡�3(r)� �

2

r
e
��r

�
.

Q =
Z
⇢ d⌧ = ✏0A

⇢
4⇡
Z
�
3(r) d⌧ � �2

Z
e
��r

r
4⇡r

2
dr

�
= ✏0A

✓
4⇡ � �24⇡

Z 1

0
re
��r

dr

◆
.

But
R1
0 re

��r
dr = 1

�2 , so Q = 4⇡✏0A
⇣
1� �2

�2

⌘
= zero.

Problem 2.51

V =
1

4⇡✏0

Z
�

r da =
�

4⇡✏0

Z R

0

Z 2⇡

0

1p
R2 + s2 � 2Rs cos�

s ds d�.

Let u ⌘ s/R. Then

V =
2�R

4⇡✏0

Z 1

0

 Z ⇡

0

up
1 + u2 � 2u cos�

d�

!
du.

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



CHAPTER 2. ELECTROSTATICS 43

The (double) integral is a pure number; Mathematica says it is 2. So

V =
�R

⇡✏0
.

Problem 2.52

(a) Potential of +� is V+ = � �
2⇡✏0

ln
� s+

a

�
, where s+ is distance from �+ (Prob. 2.22).

Potential of �� is V� = + �
2⇡✏0

ln
� s�

a

�
, where s� is distance from ��.

) Total V =
�

2⇡✏0
ln
✓

s�
s+

◆
.

Now s+ =
p

(y � a)2 + z2, and s� =
p

(y + a)2 + z2, so

V (x, y, z) = �
2⇡✏0

ln
✓p

(y+a)2+z2p
(y�a)2+z2

◆
=

�

4⇡✏0
ln

(y + a)2 + z

2

(y � a)2 + z2

�
.

7

∴ Total V =
λ

2πϵ0
ln

(
s−
s+

)

.

Now s+ =
√

(y − a)2 + z2, and s− =
√

(y + a)2 + z2, so

V (x, y, z) = λ
2πϵ0

ln

(√
(y+a)2+z2

√
(y−a)2+z2

)

=
λ

4πϵ0
ln

[
(y + a)2 + z2

(y − a)2 + z2

]

.

✲
y

✻
z

−λ λ

(x, y, z)

a a

s−

s+

(b) Equipotentials are given by (y+a)2+z2

(y−a)2+z2 = e(4πϵ0V0/λ) = k = constant. That is:

y2 + 2ay + a2 + z2 = k(y2 − 2ay + a2 + z2) ⇒ y2(k − 1) + z2(k − 1) + a2(k − 1) − 2ay(k + 1) = 0, or

y2 + z2 + a2 − 2ay
(

k+1
k−1

)

= 0. The equation for a circle, with center at (y0, 0) and radius R, is

(y − y0)2 + z2 = R2, or y2 + z2 + (y2
0 − R2) − 2yy0 = 0.

Evidently the equipotentials are circles, with y0 = a
(

k+1
k−1

)

and

a2 = y2
0 − R2 ⇒ R2 = y2

0 − a2 = a2
(

k+1
k−1

)2
− a2 = a2 (k2+2k+1−k2+2k−1)

(k−1)2 = a2 4k
(k−1)2 , or

R = 2a
√

k
|k−1| ; or, in terms of V0:

y0 = a
e4πϵ0V0/λ + 1

e4πϵ0V0/λ − 1
= a

e2πϵ0V0/λ + e−2πϵ0V0/λ

e2πϵ0V0/λ − e−2πϵ0V0/λ
= a coth

(
2πϵ0V0

λ

)

.

R = 2a
e2πϵ0V0/λ

e4πϵ0V0/λ − 1
= a

2

(e2πϵ0V0/λ − e−2πϵ0V0/λ)
=

a

sinh
(

2πϵ0V0

λ

) = a csch

(
2πϵ0V0

λ

)

.

✲
y

✻
z

λ−λ y0

✒
R

Problem 2.48

(a) ∇2V = − ρ
ϵ0

(Eq. 2.24), so
d2V

dx2
= −

1

ϵ0
ρ.

(b) qV = 1
2mv2 → v =

√

2qV

m
.

(c) dq = Aρ dx ; dq
dt = aρdx

dt = Aρv = I (constant). (Note: ρ, hence also I, is negative.)
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(b) Equipotentials are given by (y+a)2+z2

(y�a)2+z2 = e
(4⇡✏0V0/�) = k = constant. That is:

y
2 + 2ay + a

2 + z
2 = k(y2 � 2ay + a

2 + z
2)) y

2(k � 1) + z
2(k � 1) + a

2(k � 1)� 2ay(k + 1) = 0, or
y
2 + z

2 + a
2 � 2ay

⇣
k+1
k�1

⌘
= 0. The equation for a circle, with center at (y0, 0) and radius R, is

(y � y0)2 + z
2 = R

2, or y
2 + z

2 + (y2
0 �R

2)� 2yy0 = 0.
Evidently the equipotentials are circles, with y0 = a

⇣
k+1
k�1

⌘
and

a
2 = y

2
0 �R

2 ) R
2 = y

2
0 � a

2 = a
2
⇣

k+1
k�1

⌘2
� a

2 = a
2 (k2+2k+1�k2+2k�1)

(k�1)2 = a
2 4k

(k�1)2 , or

R = 2a
p

k
|k�1| ; or, in terms of V0:

y0 = a
e
4⇡✏0V0/� + 1

e4⇡✏0V0/� � 1
= a

e
2⇡✏0V0/� + e

�2⇡✏0V0/�

e2⇡✏0V0/� � e�2⇡✏0V0/�
= a coth

✓
2⇡✏0V0

�

◆
.

R = 2a
e
2⇡✏0V0/�

e4⇡✏0V0/� � 1
= a

2
(e2⇡✏0V0/� � e�2⇡✏0V0/�)

=
a

sinh
�

2⇡✏0V0
�

� = a csch
✓

2⇡✏0V0

�

◆
.

7

∴ Total V =
λ

2πϵ0
ln

(
s−
s+

)

.

Now s+ =
√

(y − a)2 + z2, and s− =
√

(y + a)2 + z2, so

V (x, y, z) = λ
2πϵ0

ln

(√
(y+a)2+z2

√
(y−a)2+z2

)

=
λ

4πϵ0
ln

[
(y + a)2 + z2

(y − a)2 + z2

]

.

✲
y

✻
z

−λ λ

(x, y, z)

a a

s−

s+

(b) Equipotentials are given by (y+a)2+z2

(y−a)2+z2 = e(4πϵ0V0/λ) = k = constant. That is:

y2 + 2ay + a2 + z2 = k(y2 − 2ay + a2 + z2) ⇒ y2(k − 1) + z2(k − 1) + a2(k − 1) − 2ay(k + 1) = 0, or

y2 + z2 + a2 − 2ay
(

k+1
k−1

)

= 0. The equation for a circle, with center at (y0, 0) and radius R, is

(y − y0)2 + z2 = R2, or y2 + z2 + (y2
0 − R2) − 2yy0 = 0.

Evidently the equipotentials are circles, with y0 = a
(

k+1
k−1

)

and

a2 = y2
0 − R2 ⇒ R2 = y2

0 − a2 = a2
(

k+1
k−1

)2
− a2 = a2 (k2+2k+1−k2+2k−1)

(k−1)2 = a2 4k
(k−1)2 , or

R = 2a
√

k
|k−1| ; or, in terms of V0:

y0 = a
e4πϵ0V0/λ + 1

e4πϵ0V0/λ − 1
= a

e2πϵ0V0/λ + e−2πϵ0V0/λ

e2πϵ0V0/λ − e−2πϵ0V0/λ
= a coth

(
2πϵ0V0

λ

)

.

R = 2a
e2πϵ0V0/λ

e4πϵ0V0/λ − 1
= a

2

(e2πϵ0V0/λ − e−2πϵ0V0/λ)
=

a

sinh
(

2πϵ0V0

λ

) = a csch

(
2πϵ0V0

λ

)

.

✲
y

✻
z

λ−λ y0

✒
R

Problem 2.48

(a) ∇2V = − ρ
ϵ0

(Eq. 2.24), so
d2V

dx2
= −

1

ϵ0
ρ.

(b) qV = 1
2mv2 → v =

√

2qV

m
.

(c) dq = Aρ dx ; dq
dt = aρdx

dt = Aρv = I (constant). (Note: ρ, hence also I, is negative.)
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Problem 2.53

(a) r2
V = � ⇢

✏0
(Eq. 2.24), so

d
2
V

dx2
= � 1

✏0
⇢.

(b) qV = 1
2mv

2 ! v =
r

2qV

m
.

(c) dq = A⇢ dx ; dq
dt = a⇢

dx
dt = A⇢v = I (constant). (Note: ⇢, hence also I, is negative.)

(d) d2V
dx2 = � 1

✏0
⇢ = � 1

✏0
I

Av = � I
✏0A

q
m

2qV )
d
2
V

dx2
= �V

�1/2 , where � = � I
✏0A

q
m
2q .

(Note: I is negative, so � is positive; q is positive.)

(e) Multiply by V
0 = dV

dx :

V
0 dV

0

dx
= �V

�1/2 dV

dx
)
Z

V
0
dV

0 = �

Z
V
�1/2

dV ) 1
2
V
02 = 2�V

1/2 + constant.

But V (0) = V
0(0) = 0 (cathode is at potential zero, and field at cathode is zero), so the constant is zero, and

V
02 = 4�V

1/2 ) dV

dx
= 2
p
� V

1/4 ) V
�1/4

dV = 2
p
� dx;

Z
V
�1/4

dV = 2
p
�

Z
dx) 4

3
V

3/4 = 2
p
� x + constant.

But V (0) = 0, so this constant is also zero.

V
3/4 =

3
2
p
� x, so V (x) =

✓
3
2
p
�

◆4/3

x
4/3

, or V (x) =
✓

9
4
�

◆2/3

x
4/3 =

✓
81I

2
m

32✏20A2q

◆1/3

x
4/3

.

Interms of V0 (instead of I): V (x) = V0

⇣
x

d

⌘4/3
(see graph).

Without space-charge, V would increase linearly: V (x) = V0

�
x
d

�
.

⇢ = �✏0
d
2
V

dx2
= �✏0V0

1
d4/3

4
3
· 1
3
x
�2/3 = � 4✏0V0

9(d2x)2/3
.

v =
r

2q

m

p
V =

p
2qV0/m

⇣
x

d

⌘2/3
.

8

(d) d2V
dx2 = − 1

ϵ0
ρ = − 1

ϵ0
I

Av = − I
ϵ0A

√
m

2qV ⇒
d2V

dx2
= βV −1/2 , where β = − I

ϵ0A

√
m
2q .

(Note: I is negative, so β is positive; q is positive.)

(e) Multiply by V ′ = dV
dx :

V ′ dV ′

dx
= βV −1/2 dV

dx
⇒

∫

V ′ dV ′ = β

∫

V −1/2 dV ⇒
1

2
V

′2 = 2βV 1/2 + constant.

But V (0) = V ′(0) = 0 (cathode is at potential zero, and field at cathode is zero), so the constant is zero, and

V
′2 = 4βV 1/2 ⇒

dV

dx
= 2

√

β V 1/4 ⇒ V −1/4dV = 2
√

β dx;
∫

V −1/4 dV = 2
√

β

∫

dx ⇒
4

3
V 3/4 = 2

√

β x + constant.

But V (0) = 0, so this constant is also zero.

V 3/4 =
3

2

√

β x, so V (x) =

(
3

2

√

β

)4/3

x4/3, or V (x) =

(
9

4
β

)2/3

x4/3 =

(
81I2m

32ϵ20A
2q

)1/3

x4/3.

Interms of V0 (instead of I): V (x) = V0

(x

d

)4/3
(see graph).

Without space-charge, V would increase linearly: V (x) = V0

(
x
d

)

.

ρ = −ϵ0
d2V

dx2
= −ϵ0V0

1

d4/3

4

3
·
1

3
x−2/3 = −

4ϵ0V0

9(d2x)2/3
.

v =

√

2q

m

√
V =

√

2qV0/m
(x

d

)2/3
.

✲
x

✻V

V0

d

without

with

(f) V (d) = V0 =
(

81I2m
32ϵ20A2q

)1/3
d4/3 ⇒ V 3

0 = 81md4

32ϵ20A2q
I2 ; I2 = 32ϵ20A2q

81md4 V 3
0 ;

I =
4
√

2 ϵ0A
√

q
9
√

m d2 V 3/2
0 = KV 3/2

0 , where K =
4ϵ0A

9d2

√

2q

m
.

Problem 2.49

(a) E =
1

4πϵ0

∫
ρη̂̂η̂η

η2

(

1 +
η

λ

)

e−η/λdτ.

(b) Yes. The field of a point charge at the origin is radial and symmetric, so ∇×E = 0, and hence this is also
true (by superposition) for any collection of charges.

(c) V = −
∫ r

∞
E·dl = −

1

4πϵ0
q

∫ r

∞

1

r2

(

1 +
r

λ

)

e−r/λdr

=
1

4πϵ0
q

∫ ∞

r

1

r2

(

1 +
r

λ

)

e−r/λdr =
q

4πϵ0

{∫ ∞

r

1

r2
e−r/λdr +

1

λ

∫ ∞

r

1

r
e−r/λdr

}

.
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protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.

(f) V (d) = V0 =
⇣

81I2m
32✏20A2q

⌘1/3
d
4/3 ) V

3
0 = 81md4

32✏20A2q
I
2 ; I

2 = 32✏20A2q
81md4 V

3
0 ;

I = 4
p

2 ✏0A
p

q
9
p

m d2 V
3/2
0 = KV

3/2
0 , where K =

4✏0A
9d2

r
2q

m
.

Problem 2.54

(a) E =
1

4⇡✏0

Z
⇢ r̂
r 2

✓
1 +

r
�

◆
e
�r /�

d⌧.
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(b) Yes. The field of a point charge at the origin is radial and symmetric, so r⇥E = 0, and hence this is
also true (by superposition) for any collection of charges.

(c) V = �
Z r

1
E·dl = � 1

4⇡✏0
q

Z r

1

1
r2

⇣
1 +

r

�

⌘
e
�r/�

dr

=
1

4⇡✏0
q

Z 1

r

1
r2

⇣
1 +

r

�

⌘
e
�r/�

dr =
q

4⇡✏0

⇢Z 1

r

1
r2

e
�r/�

dr +
1
�

Z 1

r

1
r
e
�r/�

dr

�
.

Now
R

1
r2 e

�r/�
dr = � e�r/�

r � 1
�

R
e�r/�

r dr  � exactly right to kill the last term. Therefore

V (r) =
q

4⇡✏0

(
�e

�r/�

r

����
1

r

)
=

q

4⇡✏0
e
�r/�

r
.

(d)
I

S
E·da =

1
4⇡✏0� q

1
R2�

✓
1 +

R

�

◆
e
�R/� 4⇡� R

2� =
q

✏0

✓
1 +

R

�

◆
e
�R/�

.

Z

V
V d⌧ =

q

4⇡✏0�

Z R

0

e
�r/�

r
r
2 4⇡� dr =

q

✏0

Z R

0
re
�r/�

dr =
q

✏0


e
�r/�

(1/�)2
⇣
� r

�
� 1
⌘�R

0

= �
2 q

✏0

⇢
�e

�R/�

✓
1 +

R

�

◆
+ 1
�

.

)
I

S
E·da +

1
�2

Z

V
V d⌧ =

q

✏0

⇢✓
1 +

R

�

◆
e
�R/� �

✓
1 +

R

�

◆
e
�R/� + 1

�
=

q

✏0
. qed

(e) Does the result in (d) hold for a nonspherical surface? Suppose we
make a “dent” in the sphere—pushing a patch (area R

2 sin ✓ d✓ d�)
from radius R out to radius S (area S

2 sin ✓ d✓ d�).

9

Now
∫

1
r2 e−r/λdr = − e−r/λ

r − 1
λ

∫
e−r/λ

r dr ←− exactly right to kill the last term. Therefore

V (r) =
q

4πϵ0

{

−
e−r/λ

r

∣
∣
∣
∣

∞

r

}

=
q

4πϵ0

e−r/λ

r
.

(d)
∮

S
E·da =

1

4πϵ0!
q

1

R2!

(

1 +
R

λ

)

e−R/λ 4π! R2! =
q

ϵ0

(

1 +
R

λ

)

e−R/λ.

∫

V
V dτ =

q

4πϵ0!

∫ R

0

e−r/λ

r
r2 4π! dr =

q

ϵ0

∫ R

0
re−r/λdr =

q

ϵ0

[
e−r/λ

(1/λ)2

(

−
r

λ
− 1

)]R

0

= λ2 q

ϵ0

{

−e−R/λ

(

1 +
R

λ

)

+ 1

}

.

∴

∮

S
E·da +

1

λ2

∫

V
V dτ =

q

ϵ0

{(

1 +
R

λ

)

e−R/λ −
(

1 +
R

λ

)

e−R/λ + 1

}

=
q

ϵ0
. qed

(e) Does the result in (d) hold for a nonspherical surface? Suppose we
make a “dent” in the sphere—pushing a patch (area R2 sin θ dθ dφ)
from radius R out to radius S (area S2 sin θ dθ dφ). q

R
S

∆

∮

E·da =
q

4πϵ0

{
1

S2

(

1 +
S

λ

)

e−S/λ(S2 sin θ dθ dφ) −
1

R2

(

1 +
R

λ

)

e−R/λ(R2 sin θ dθ dφ)

}

=
q

4πϵ0

[(

1 +
S

λ

)

e−S/λ −
(

1 +
R

λ

)

e−R/λ

]

sin θ dθ dφ.

∆
1

λ2

∫

V dτ =
1

λ2

q

4πϵ0

∫
e−r/λ

r
r2 sin θ dr dθ dφ =

1

λ2

q

4πϵ0
sin θ dθ dφ

∫ S

R
re−r/λdr

= −
q

4πϵ0
sin θ dθ dφ

(

e−r/λ
(

1 +
r

λ

))∣
∣
∣

S

R

= −
q

4πϵ0

[(

1 +
S

λ

)

e−S/λ −
(

1 +
R

λ

)

e−R/λ

]

sin θ dθ dφ.

So the change in 1
λ2

∫

V dτ exactly compensates for the change in
∮

E·da, and we get 1
ϵ0

q for the total using
the dented sphere, just as we did with the perfect sphere. Any closed surface can be built up by successive
distortions of the sphere, so the result holds for all shapes. By superposition, if there are many charges inside,

the total is 1
ϵ0

Qenc. Charges outside do not contribute (in the argument above we found that for this

volume
∮

E·da + 1
λ2

∫

V dτ = 0—and, again, the sum is not changed by distortions of the surface, as long as q
remains outside. So the new “Gauss’s Law” holds for any charge configuration.

(f) In differential form, “Gauss’s law” reads: ∇·E +
1

λ2
V =

1

ϵ0
ρ, or, putting it all in terms of E:

∇·E−
1

λ2

∫

E·dl =
1

ϵ0
ρ. Since E = −∇V , this also yields “Poisson’s equation”: −∇2V +

1

λ2
V =

1

ϵ0
ρ.
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reproduced, in any form or by any means, without permission in writing from the publisher.

�
I

E·da =
q

4⇡✏0

⇢
1
S2

✓
1 +

S

�

◆
e
�S/�(S2 sin ✓ d✓ d�)� 1

R2

✓
1 +

R

�

◆
e
�R/�(R2 sin ✓ d✓ d�)

�

=
q

4⇡✏0

✓
1 +

S

�

◆
e
�S/� �

✓
1 +

R

�

◆
e
�R/�

�
sin ✓ d✓ d�.

�
1
�2

Z
V d⌧ =

1
�2

q

4⇡✏0

Z
e
�r/�

r
r
2 sin ✓ dr d✓ d� =

1
�2

q

4⇡✏0
sin ✓ d✓ d�

Z S

R
re
�r/�

dr

= � q

4⇡✏0
sin ✓ d✓ d�

⇣
e
�r/�

⇣
1 +

r

�

⌘⌘���
S

R

= � q

4⇡✏0

✓
1 +

S

�

◆
e
�S/� �

✓
1 +

R

�

◆
e
�R/�

�
sin ✓ d✓ d�.

So the change in 1
�2

R
V d⌧ exactly compensates for the change in

H
E·da, and we get 1

✏0
q for the total using

the dented sphere, just as we did with the perfect sphere. Any closed surface can be built up by successive
distortions of the sphere, so the result holds for all shapes. By superposition, if there are many charges inside,
the total is 1

✏0
Qenc. Charges outside do not contribute (in the argument above we found that

9

Now
∫

1
r2 e−r/λdr = − e−r/λ

r − 1
λ

∫
e−r/λ

r dr ←− exactly right to kill the last term. Therefore

V (r) =
q

4πϵ0

{

−
e−r/λ

r

∣
∣
∣
∣

∞

r

}

=
q

4πϵ0

e−r/λ

r
.

(d)
∮

S
E·da =

1

4πϵ0!
q

1

R2!

(

1 +
R

λ

)

e−R/λ 4π! R2! =
q

ϵ0

(

1 +
R

λ

)

e−R/λ.

∫

V
V dτ =

q

4πϵ0!

∫ R

0

e−r/λ

r
r2 4π! dr =

q

ϵ0

∫ R

0
re−r/λdr =

q

ϵ0

[
e−r/λ

(1/λ)2

(

−
r

λ
− 1

)]R

0

= λ2 q

ϵ0

{

−e−R/λ

(

1 +
R

λ

)

+ 1

}

.

∴

∮

S
E·da +

1

λ2

∫

V
V dτ =

q

ϵ0

{(

1 +
R

λ

)

e−R/λ −
(

1 +
R

λ

)

e−R/λ + 1

}

=
q

ϵ0
. qed

(e) Does the result in (d) hold for a nonspherical surface? Suppose we
make a “dent” in the sphere—pushing a patch (area R2 sin θ dθ dφ)
from radius R out to radius S (area S2 sin θ dθ dφ). q

R
S

∆

∮

E·da =
q

4πϵ0

{
1

S2

(

1 +
S

λ

)

e−S/λ(S2 sin θ dθ dφ) −
1

R2

(

1 +
R

λ

)

e−R/λ(R2 sin θ dθ dφ)

}

=
q

4πϵ0

[(

1 +
S

λ

)

e−S/λ −
(

1 +
R

λ

)

e−R/λ

]

sin θ dθ dφ.

∆
1

λ2

∫

V dτ =
1

λ2

q

4πϵ0

∫
e−r/λ

r
r2 sin θ dr dθ dφ =

1

λ2

q

4πϵ0
sin θ dθ dφ

∫ S

R
re−r/λdr

= −
q

4πϵ0
sin θ dθ dφ

(

e−r/λ
(

1 +
r

λ

))∣
∣
∣

S

R

= −
q

4πϵ0

[(

1 +
S

λ

)

e−S/λ −
(

1 +
R

λ

)

e−R/λ

]

sin θ dθ dφ.

So the change in 1
λ2

∫

V dτ exactly compensates for the change in
∮

E·da, and we get 1
ϵ0

q for the total using
the dented sphere, just as we did with the perfect sphere. Any closed surface can be built up by successive
distortions of the sphere, so the result holds for all shapes. By superposition, if there are many charges inside,

the total is 1
ϵ0

Qenc. Charges outside do not contribute (in the argument above we found that for this

volume
∮

E·da + 1
λ2

∫

V dτ = 0—and, again, the sum is not changed by distortions of the surface, as long as q
remains outside. So the new “Gauss’s Law” holds for any charge configuration.

(f) In differential form, “Gauss’s law” reads: ∇·E +
1

λ2
V =

1

ϵ0
ρ, or, putting it all in terms of E:

∇·E−
1

λ2

∫

E·dl =
1

ϵ0
ρ. Since E = −∇V , this also yields “Poisson’s equation”: −∇2V +

1

λ2
V =

1

ϵ0
ρ.
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for this volume
H
E·da + 1

�2

R
V d⌧ = 0—and, again, the sum is not changed by distortions of the surface, as

long as q remains outside). So the new “Gauss’s Law” holds for any charge configuration.
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(f) In di↵erential form, “Gauss’s law” reads: r·E +
1
�2

V =
1
✏0
⇢, or, putting it all in terms of E:

r·E� 1
�2

Z
E·dl =

1
✏0
⇢. Since E = �rV , this also yields “Poisson’s equation”: �r2

V +
1
�2

V =
1
✏0
⇢.

2

∆
1

λ2

∫

V dτ =
1

λ2

q

4πϵ0

∫

e−r/λ

r
r2 sin θ dr dθ dφ =

1

λ2

q

4πϵ0
sin θ dθ dφ

∫ S

R
re−r/λdr

= −
q

4πϵ0
sin θ dθ dφ

(

e−r/λ
(

1 +
r

λ

))
∣

∣

∣

S

R

= −
q

4πϵ0

[(

1 +
S

λ

)

e−S/λ −
(

1 +
R

λ

)

e−R/λ

]

sin θ dθ dφ.

So the change in 1
λ2

∫

V dτ exactly compensates for the change in
∮

E·da, and we get 1
ϵ0

q for the total using
the dented sphere, just as we did with the perfect sphere. Any closed surface can be built up by successive
distortions of the sphere, so the result holds for all shapes. By superposition, if there are many charges inside,

the total is 1
ϵ0

Qenc. Charges outside do not contribute (in the argument above we found that for this

volume
∮

E·da + 1
λ2

∫

V dτ = 0—and, again, the sum is not changed by distortions of the surface, as long as q
remains outside. So the new “Gauss’s Law” holds for any charge configuration.

(f) In differential form, “Gauss’s law” reads: ∇·E +
1

λ2
V =

1

ϵ0
ρ, or, putting it all in terms of E:

∇·E−
1

λ2

∫

E·dl =
1

ϵ0
ρ. Since E = −∇V , this also yields “Poisson’s equation”: −∇2V +

1

λ2
V =

1

ϵ0
ρ.

V E

ρ

✣

✢
✲

✛

❪

❫
E=−∇V

V =−
R

E·dl
(∇

2 −
1

λ
2
)V

=
−

ρ
ϵ 0

V
=

1
4
π

ϵ 0
R

ρ e
−

/
λ dτ

∇
·E

−
1λ
2

R

E
·d

l=
ρϵ

0 ;∇
×

E
=
0

E
=

14
π

ϵ
0 R

ρ
2 (1+

λ )e
−

/
λ

dτ

Problem 2.50

ρ = ϵ0∇·E = ϵ0
∂
∂x(ax) = ϵ0a (constant everywhere).

The same charge density would be compatible (as far as Gauss’s law is concerned) with E = ayŷ, for
instance, or E = (a

3
)r, etc. The point is that Gauss’s law (and ∇×E = 0) by themselves do not determine

the field—like any differential equations, they must be supplemented by appropriate boundary conditions.
Ordinarily, these are so “obvious” that we impose them almost subconsciously (“E must go to zero far from
the source charges”)—or we appeal to symmetry to resolve the ambiguity (“the field must be the same—in
magnitude—on both sides of an infinite plane of surface charge”). But in this case there are no natural
boundary conditions, and no persuasive symmetry conditions, to fix the answer. The question “What is the
electric field produced by a uniform charge density filling all of space?” is simply ill-posed : it does not give
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r

r
r

r

r

r̂

(g) Refer to ”Gauss’s law” in di↵erential form (f). Since E is zero, inside a conductor (otherwise charge would
move, and in such a direction as to cancel the field), V is constant (inside), and hence ⇢ is uniform, throughout
the volume. Any “extra” charge must reside on the surface. (The fraction at the surface depends on �, and
on the shape of the conductor.)
Problem 2.55

⇢ = ✏0r·E = ✏0
@
@x (ax) = ✏0a (constant everywhere).

The same charge density would be compatible (as far as Gauss’s law is concerned) with E = ayŷ, for
instance, or E = (a

3 )r, etc. The point is that Gauss’s law (and r⇥E = 0) by themselves do not determine

the field—like any di↵erential equations, they must be supplemented by appropriate boundary conditions.
Ordinarily, these are so “obvious” that we impose them almost subconsciously (“E must go to zero far from
the source charges”)—or we appeal to symmetry to resolve the ambiguity (“the field must be the same—in
magnitude—on both sides of an infinite plane of surface charge”). But in this case there are no natural
boundary conditions, and no persuasive symmetry conditions, to fix the answer. The question “What is the
electric field produced by a uniform charge density filling all of space?” is simply ill-posed : it does not give
us su�cient information to determine the answer. (Incidentally, it won’t help to appeal to Coulomb’s law⇣
E = 1

4⇡✏0

R
⇢

r̂r 2 d⌧

⌘
—the integral is hopelessly indefinite, in this case.)

Problem 2.56

Compare Newton’s law of universal gravitation to Coulomb’s law:

F = �G
m1m2

r2
r̂; F =

1
4⇡✏0

q1q2

r2
r̂.

Evidently 1
4⇡✏0

! G and q ! m. The gravitational energy of a sphere (translating Prob. 2.34) is therefore

Wgrav =
3
5
G

M
2

R
.
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Now, G = 6.67 ⇥ 10�11 N m2/kg2, and for the sun M = 1.99 ⇥ 1030 kg, R = 6.96 ⇥ 108 m, so the sun’s
gravitational energy is W = 2.28⇥ 1041 J. At the current rate this energy would be dissipated in a time

t =
W

P
=

2.28⇥ 1041

3.86⇥ 1026
= 5.90⇥ 1014 s = 1.87⇥ 107 years.

Problem 2.57

First eliminate z, using the formula for the ellipsoid:

�(x, y) =
Q

4⇡ab

1p
c2(x2/a4) + c2(y2/b4) + 1� (x2/a2)� (y2/b2)

.

Now (for parts (a) and (b)) set c! 0, “squashing” the ellipsoid down to an ellipse in the x y plane:

�(x, y) =
Q

2⇡ab

1p
1� (x/a)2 � (y/b)2

.

(I multiplied by 2 to count both surfaces.)

(a) For the circular disk, set a = b = R and let r ⌘
p

x2 + y2. �(r) =
Q

2⇡R

1p
R2 � r2

.

(b) For the ribbon, let Q/2b ⌘ ⇤, and then take the limit b!1: �(x) =
⇤
2⇡

1p
a2 � x2

.

(c) Let b = c, r ⌘
p

y2 + z2, making an ellipsoid of revolution:

x
2

a2
+

r
2

c2
= 1, with � =

Q

4⇡ac2

1p
x2/a4 + r2/c4

.

The charge on a ring of width dx is

dq = �2⇡r ds, where ds =
p

dx2 + dr2 = dx

p
1 + (dr/dx)2.

Now
2x dx

a2
+

2r dr

c2
= 0) dr

dx
= �c

2
x

a2r
, so ds = dx

r
1 +

c4x2

a4r2
= dx

c
2

r

p
x2/a4 + r2/c4. Thus

�(x) =
dq

dx
= 2⇡r

Q

4⇡ac2

1p
x2/a4 + r2/c4

c
2

r

p
x2/a4 + r2/c4 =

Q

2a
. (Constant!)
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Problem 2.58

b

x

y

r q(0,-a)

(  ,      )a_
2

a_
2

(  ,-     )a_
2

a_
2÷3

÷3

(a) One such point is on the x axis (see diagram) at x = r. Here the field is

Ex =
q

4⇡✏0


1

(a + r)2
� 2

cos ✓
b2

�
= 0, or

2 cos ✓
b2

=
1

(a + r)2
.

Now,

cos ✓ =
(a/2)� r

b
; b

2 =
⇣

a

2
� r

⌘2
+

 p
3

2
a

!2

= (a2 � ar + r
2).

Therefore
2[(a/2)� r]

(a2 � ar + r2)3/2
=

1
(a + r)2

. To simplify, let
r

a
⌘ u :

(1� 2u)
(1� u + u2)3/2

=
1

(1 + u)2
, or (1� 2u)2(1 + u)4 = (1� u + u

2)3.
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Multiplying out each side:

1� 6u
2 � 4u

3 + 9u
4 + 12u

5 + 4u
6 = 1� 3u + 6u

2 � 7u
3 + 6u

4 � 3u
5 + u

6
,

or
3u� 12u

2 + 3u
3 + 3u

4 + 15u
5 + 3u

6 = 0.

u = 0 is a solution (of course—the center of the triangle); factoring out 3u we are left with a quintic equation:

1� 4u + u
2 + u

3 + 5u
4 + u

5 = 0.

According to Mathematica, this has two complex roots, and one negative root. The two remaining solutions are
u = 0.284718 and u = 0.626691. The latter is outside the triangle, and clearly spurious. So r = 0.284718 a.
(The other two places where E = 0 are at the symmetrically located points, of course.)

b

x

y

r
q+ _q

+ _b

(       )a_
÷2

a_
÷2

,

(b) For the square:

Ex =
q

4⇡✏0

✓
2
cos ✓+

b
2
+

� 2
cos ✓�

b
2
�

◆
= 0 ) cos ✓+

b
2
+

=
cos ✓�

b
2
�

,

where

cos ✓± =
(a/
p

2)± r

b±
; b

2
± =

✓
ap
2

◆2

+
✓

ap
2
± r

◆2

= a
2 ±
p

2 ar + r
2
.

Thus
(a/
p

2) + r

(a2 +
p

2 ar + r2)3/2
=

(a/
p

2)� r

(a2 �
p

2 ar + r2)3/2
.

To simplify, let w ⌘
p

2 r/a; then

1 + w

(2 + 2w + w2)3/2
=

1� w

(2� 2w + w2)3/2
, or (1 + w)2(2� 2w + w

2)3 = (1� w)2(2 + 2w + w
2)3.

Multiplying out the left side:

8� 8w � 4w
2 + 16w

3 � 10w
4 � 2w

5 + 7w
6 � 4w

7 + w
8 = (same thing with w ! �w).
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The even powers cancel, leaving

8w � 16w
3 + 2w

5 + 4w
7 = 0, or 4� 8v + v

2 + 2v
3 = 0,

where v ⌘ w
2. According to Mathematica, this cubic equation has one negative root, one root that is spurious

(the point lies outside the square), and v = 0.598279, which yields

r =
r

v

2
a = 0.546936 a .

b

x

y

r
q

c
f

a

(a cos(p/5), a sin(p/5))

(-a cos(2p/5), a sin(2p/5))

For the pentagon:

Ex =
q

4⇡✏0

✓
1

(a + r)2
+ 2

cos ✓
b2
� 2

cos�
c2

◆
= 0,

where
cos ✓ =

a cos(2⇡/5) + r

b
, cos� =

a cos(⇡/5)� r

c
;

b
2 = [a cos(2⇡/5) + r]2 + [a sin(2⇡/5)]2 = a

2 + r
2 + 2ar cos(2⇡/5),

c
2 = [a cos(⇡/5)� r]2 + [a sin(⇡/5)]2 = a

2 + r
2 � 2ar cos(⇡/5).

1
(a + r)2

+ 2
r + a cos(2⇡/5)

[a2 + r2 + 2ar cos(2⇡/5)]3/2
+ 2

r � a cos(⇡/5)
[a2 + r2 � 2ar cos(⇡/5)]3/2

= 0.

Mathematica gives the solution r = 0.688917 a.

For an n-sided regular polygon there are evidently n such points, lying on the radial spokes that bisect
the sides; their distance from the center appears to grow monotonically with n: r(3) = 0.285, r(4) = 0.547,
r(5) = 0.689, . . . . As n!1 they fill out a circle that (in the limit) coincides with the ring of charge itself.
Problem 2.59 The theorem is false. For example, suppose the conductor is a neutral sphere and the external
field is due to a nearby positive point charge q. A negative charge will be induced on the near side of the sphere
(and a positive charge on the far side), so the force will be attractive (toward q). If we now reverse the sign of
q, the induced charges will also reverse, but the force will still be attractive.

If the external field is uniform, then the net force on the induced charges is zero, and the total force on the
conductor is QEe, which does switch signs if Ee is reversed. So the “theorem” is valid in this very special case.
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Problem 2.60 The initial configuration consists of a point charge q at the center, �q induced on the inner
surface, and +q on the outer surface. What is the energy of this configuration? Imagine assembling it piece-by-
piece. First bring in q and place it at the origin—this takes no work. Now bring in �q and spread it over the
surface at a—using the method in Prob. 2.35, this takes work �q

2
/(8⇡✏0a). Finally, bring in +q and spread it

over the surface at b—this costs q
2
/(8⇡✏0b). Thus the energy of the initial configuration is

Wi = � q
2

8⇡✏0

✓
1
a
� 1

b

◆
.

The final configuration is a neutral shell and a distant point charge—the energy is zero. Thus the work
necessary to go from the initial to the final state is

W = Wf �Wi =
q
2

8⇡✏0

✓
1
a
� 1

b

◆
.

Problem 2.61

rj

R x

y

(2pj/n)

R

Suppose the n point charges are evenly spaced around the circle, with the jth particle at angle j(2⇡/n).
According to Eq. 2.42, the energy of the configuration is

Wn = n
1
2
qV,

where V is the potential due to the (n� 1) other charges, at charge # n (on the x axis).

V =
1

4⇡✏0
q

n�1X

j=1

1
r j

, r j = 2R sin
✓

j⇡

n

◆

(see the figure). So

Wn =
q
2

4⇡✏0R
n

4

n�1X

j=1

1
sin(j⇡/n)

=
q
2

4⇡✏0R
⌦n.
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Mathematica says

⌦10 =
10
4

9X

j=1

1
sin(j⇡/10)

= 38.6245

⌦11 =
11
4

10X

j=1

1
sin(j⇡/11)

= 48.5757

⌦12 =
12
4

11X

j=1

1
sin(j⇡/12)

= 59.8074

If (n� 1) charges are on the circle (energy ⌦n�1q
2
/4⇡✏0R), and the nth is at the center, the total energy is

Wn = [⌦n�1 + (n� 1)]
q
2

4⇡✏0R
.

For

n = 11 : ⌦10 + 10 = 38.6245 + 10 = 48.6245 > ⌦11

n = 12 : ⌦11 + 11 = 48.5757 + 11 = 59.5757 < ⌦12

Thus a lower energy is achieved for 11 charges if they are all at the rim, but for 12 it is better to put one at
the center.
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Chapter 3

Potential

Problem 3.1

The argument is exactly the same as in Sect. 3.1.4, except that since z < R,
p

z2 + R2 � 2zR = (R � z),

instead of (z � R). Hence Vave =
q

4⇡✏0
1

2zR
[(z + R)� (R� z)] =

1
4⇡✏0

q

R
. If there is more than one charge

inside the sphere, the average potential due to interior charges is
1

4⇡✏0
Qenc

R
, and the average due to exterior

charges is Vcenter, so Vave = Vcenter + Qenc
4⇡✏0R . X

Problem 3.2

A stable equilibrium is a point of local minimum in the potential energy. Here the potential energy is qV .
But we know that Laplace’s equation allows no local minima for V . What looks like a minimum, in the figure,
must in fact be a saddle point, and the box “leaks” through the center of each face.
Problem 3.3

Laplace’s equation in spherical coordinates, for V dependent only on r, reads:

r2
V =

1
r2

d

dr

✓
r
2 dV

dr

◆
= 0) r

2 dV

dr
= c (constant) ) dV

dr
=

c

r2
) V = � c

r
+ k.

Example: potential of a uniformly charged sphere.

In cylindrical coordinates: r2
V =

1
s

d

ds

✓
s
dV

ds

◆
= 0) s

dV

ds
= c) dV

ds
=

c

s
) V = c ln s + k.

Example: potential of a long wire.
Problem 3.4

Refer to Fig. 3.3, letting ↵ be the angle between r and the z axis. Obviously, Eave points in the �ẑ

direction, so

Eave =
1

4⇡R2

I
E da = �ẑ

1
4⇡R2

q

4⇡✏0

Z
1

r 2 cos↵ da.

By the law of cosines,

R
2 = z

2 + r 2 � 2r z cos↵ ) cos↵ =
z
2 + r 2 �R

2

2r z
,

r 2 = R
2 + z

2 � 2Rz cos ✓ ) cos↵
r 2 =

z
2 + r 2 �R

2

2z r 3 =
z �R cos ✓

(R2 + z2 � 2Rz cos ✓)3/2
.
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Eave = �ẑ
q

16⇡2R2✏0

Z
z �R cos ✓

(R2 + z2 � 2Rz cos ✓)3/2
R

2 sin ✓ d✓ d�

= � qẑ

8⇡✏0

Z ⇡

0

z �R cos ✓
(R2 + z2 � 2Rz cos ✓)3/2

sin ✓ d✓ = � qẑ

8⇡✏0

Z 1

�1

z �Ru

(R2 + z2 � 2Rzu)3/2
du

(where u ⌘ cos ✓). The integral is

I =
1

R
p

R2 + z2 � 2Rzu

����
1

�1

� 1
2Rz2

✓p
R2 + z2 � 2Rzu +

R
2 + z

2

p
R2 + z2 � 2Rzu

◆ ����
1

�1

=
1
R

✓
1

|z �R| �
1

z + R

◆
� 1

2Rz2


|z �R|� (z + R) + (R2 + z

2)
✓

1
|z �R| �

1
z + R

◆�
.

(a) If z > R,

I =
1
R

✓
1

z �R
� 1

z + R

◆
� 1

2Rz2


(z �R)� (z + R) + (R2 + z

2)
✓

1
z �R

� 1
z + R

◆�

=
1
R

✓
2R

z2 �R2

◆
� 1

2Rz2


�2R + (R2 + z

2)
2R

z2 �R2

�
=

2
z2

.

So
Eave = � 1

4⇡✏0
q

z2
ẑ,

the same as the field at the center. By superposition the same holds for any collection of charges outside the
sphere.

(b) If z < R,

I =
1
R

✓
1

R� z
� 1

z + R

◆
� 1

2Rz2


(R� z)� (z + R) + (R2 + z

2)
✓

1
R� z

� 1
z + R

◆�

=
1
R

✓
2z

R2 � z2

◆
� 1

2Rz2


�2z + (R2 + z

2)
2z

R2 � z2

�
= 0.

So
Eave = 0.

By superposition the same holds for any collection of charges inside the sphere.
Problem 3.5

Same as proof of second uniqueness theorem, up to the equation
H
S V3E3 · da = �

R
V(E3)2 d⌧ . But on

each surface, either V3 = 0 (if V is specified on the surface), or else E3? = 0 (if @V
@n = �E? is specified). SoR

V(E3)2 = 0, and hence E2 = E1. qed

Problem 3.6

Putting U = T = V3 into Green’s identity:Z

V

⇥
V3r2

V3 + rV3 ·rV3

⇤
d⌧ =

I

S
V3rV3 ·da. But r2

V3 = r2
V1�r2

V2 = � ⇢

✏0
+
⇢

✏0
= 0, and rV3 = �E3.

So
Z

V
E

2
3 d⌧ = �

I

S
V3E3 · da, and the rest is the same as before.

Problem 3.7

Place image charges +2q at z = �d and �q at z = �3d. Total force on +q is

F =
q

4⇡✏0


�2q

(2d)2
+

2q

(4d)2
+
�q

(6d)2

�
ẑ =

q
2

4⇡✏0d2

✓
�1

2
+

1
8
� 1

36

◆
ẑ = � 1

4⇡✏0

✓
29q

2

72d2

◆
ẑ.
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Problem 3.8

(a) From Fig. 3.13: r =
p

r2 + a2 � 2ra cos ✓; r 0 =
p

r2 + b2 � 2rb cos ✓. Therefore:

q
0

r 0 = � R

a

qp
r2 + b2 � 2rb cos ✓

(Eq. 3.15), while b =
R

2

a
(Eq. 3.16).

= � q

�
a
R

�q
r2 + R4

a2 � 2r
R2

a cos ✓
= � qq�

ar
R

�2 + R2 � 2ra cos ✓
.

Therefore:

V (r, ✓) =
1

4⇡✏0

✓
q

r +
q
0

r 0

◆
=

q

4⇡✏0

(
1p

r2 + a2 � 2ra cos ✓
� 1p

R2 + (ra/R)2 � 2ra cos ✓

)
.

Clearly, when r = R, V ! 0.

(b) � = �✏0 @V
@n (Eq. 2.49). In this case, @V

@n = @V
@r at the point r = R. Therefore,

�(✓) = �✏0
✓

q

4⇡✏0

◆⇢
�1

2
(r2 + a

2 � 2ra cos ✓)�3/2(2r � 2a cos ✓)

+
1
2
�
R

2 + (ra/R)2 � 2ra cos ✓
��3/2

✓
a
2

R2
2r � 2a cos ✓

◆�����
r=R

= � q

4⇡

⇢
�(R2 + a

2 � 2Ra cos ✓)�3/2(R� a cos ✓) +
�
R

2 + a
2 � 2Ra cos ✓

��3/2
✓

a
2

R
� a cos ✓

◆�

=
q

4⇡
(R2 + a

2 � 2Ra cos ✓)�3/2


R� a cos ✓ � a

2

R
+ a cos ✓

�

=
q

4⇡R
(R2 � a

2)(R2 + a
2 � 2Ra cos ✓)�3/2

.

qinduced =
Z
� da =

q

4⇡R
(R2 � a

2)
Z

(R2 + a
2 � 2Ra cos ✓)�3/2

R
2 sin ✓ d✓ d�

=
q

4⇡R
(R2 � a

2)2⇡R
2


� 1

Ra
(R2 + a

2 � 2Ra cos ✓)�1/2

�����
⇡

0

=
q

2a
(a2 �R

2)


1p
R2 + a2 + 2Ra

� 1p
R2 + a2 � 2Ra

�
.

But a > R (else q would be inside), so
p

R2 + a2 � 2Ra = a�R.

=
q

2a
(a2 �R

2)


1
(a + R)

� 1
(a�R)

�
=

q

2a
[(a�R)� (a + R)] =

q

2a
(�2R)

= �qR

a
= q

0
.

(c) The force on q, due to the sphere, is the same as the force of the image charge q
0, to wit:

F =
1

4⇡✏0
qq
0

(a� b)2
=

1
4⇡✏0

✓
�R

a
q
2

◆
1

(a�R2/a)2
= � 1

4⇡✏0
q
2
Ra

(a2 �R2)2
.
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To bring q in from infinity to a, then, we do work

W =
q
2
R

4⇡✏0

aZ

1

a

(a2 �R2)2
da =

q
2
R

4⇡✏0


�1

2
1

(a2 �R2)

�����
a

1
= � 1

4⇡✏0
q
2
R

2(a2 �R2)
.

Problem 3.9

4 CHAPTER 3. SPECIAL TECHNIQUES

(c) The force on q, due to the sphere, is the same as the force of the image charge q′, to wit:

F =
1

4πϵ0

qq′

(a − b)2
=

1

4πϵ0

(

−
R

a
q2

)
1

(a − R2/a)2
= −

1

4πϵ0

q2Ra

(a2 − R2)2
.

To bring q in from infinity to a, then, we do work

W =
q2R

4πϵ0

a∫

∞

a

(a2 − R2)2
da =

q2R

4πϵ0

[

−
1

2

1

(a2 − R2)

]∣
∣
∣
∣

a

∞
= −

1

4πϵ0

q2R

2(a2 − R2)
.

Problem 3.8

q′′ q′ q
︸ ︷︷ ︸

a

a − b
︷ ︸︸ ︷

Place a second image charge, q′′, at the center of the sphere;
this will not alter the fact that the sphere is an equipotential,

but merely increase that potential from zero to V0 =
1

4πϵ0

q′′

R
;

q′′ = 4πϵ0V0R at center of sphere.

For a neutral sphere, q′ + q′′ = 0.

F =
1

4πϵ0
q

(
q′′

a2
+

q′

(a − b)2

)

=
qq′

4πϵ0

(

−
1

a2
+

1

(a − b)2

)

=
qq′

4πϵ0

b(2a− b)

a2(a − b)2
=

q(−Rq/a)

4πϵ0

(R2/a)(2a − R2/a)

a2(a − R2/a)2

= −
q2

4πϵ0

(
R

a

)3 (2a2 − R2)

(a2 − R2)2
.

(Drop the minus sign, because the problem asks for the force of attraction.)

Problem 3.9

✲ x

✻
z

✣
y

λ
✲ y

✻
z

+

−

d

d

(y, z)s+

s−

(a) Image problem: λ above, −λ below. Potential was found in Prob. 2.47:

V (y, z) =
2λ

4πϵ0
ln(s−/s+) =

λ

4πϵ0
ln(s2

−/s2
+)

=
λ

4πϵ0
ln

{
y2 + (z + d)2

y2 + (z − d)2

}

(b) σ = −ϵ0
∂V

∂n
. Here

∂V

∂n
=

∂V

∂z
, evaluated at z = 0.

σ(y) = −ϵ0
λ

4πϵ0

{
1

y2 + (z + d)2
2(z + d) −

1

y2 + (z − d)2
2(z − d)

}∣
∣
∣
∣
z=0

= −
2λ

4π

{
d

y2 + d2
−

−d

y2 + d2

}

= −
λd

π(y2 + d2)
.

Check: Total charge induced on a strip of width l parallel to the y axis:

qind = −
lλd

π

∞∫

−∞

1

y2 + d2
dy = −

lλd

π

[
1

d
tan−1

(y

d

)
]∣
∣
∣
∣

∞

−∞
= −

lλd

π

[π

2
−

(

−
π

2

)]

= −λl. Therefore λind = −λ, as it should be.
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Place a second image charge, q
00, at the center of the sphere;

this will not alter the fact that the sphere is an equipotential,

but merely increase that potential from zero to V0 =
1

4⇡✏0
q
00

R
;

q
00 = 4⇡✏0V0R at center of sphere.

For a neutral sphere, q
0 + q

00 = 0.

F =
1

4⇡✏0
q

✓
q
00

a2
+

q
0

(a� b)2

◆
=

qq
0

4⇡✏0

✓
� 1

a2
+

1
(a� b)2

◆

=
qq
0

4⇡✏0
b(2a� b)
a2(a� b)2

=
q(�Rq/a)

4⇡✏0
(R2

/a)(2a�R
2
/a)

a2(a�R2/a)2

= � q
2

4⇡✏0

✓
R

a

◆3 (2a
2 �R

2)
(a2 �R2)2

.

(Drop the minus sign, because the problem asks for the force of attraction.)

Problem 3.10

(a) Image problem: � above, �� below. Potential was found in Prob. 2.52:

2 CHAPTER 3. SPECIAL TECHNIQUES

Chapter 1

Special Techniques

Problem 3.9

✲ x

✻
z

✣
y

λ
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(c) The force on q, due to the sphere, is the same as the force of the image charge q′, to wit:

F =
1

4πϵ0

qq′

(a − b)2
=

1

4πϵ0

(

−
R

a
q2

)
1

(a − R2/a)2
= −

1

4πϵ0

q2Ra

(a2 − R2)2
.

To bring q in from infinity to a, then, we do work

W =
q2R

4πϵ0

a∫

∞

a

(a2 − R2)2
da =

q2R

4πϵ0

[

−
1

2

1

(a2 − R2)

]∣
∣
∣
∣

a

∞
= −

1

4πϵ0

q2R

2(a2 − R2)
.

Problem 3.8

q′′ q′ q
︸ ︷︷ ︸

a

a − b
︷ ︸︸ ︷

Place a second image charge, q′′, at the center of the sphere;
this will not alter the fact that the sphere is an equipotential,

but merely increase that potential from zero to V0 =
1

4πϵ0

q′′

R
;

q′′ = 4πϵ0V0R at center of sphere.

For a neutral sphere, q′ + q′′ = 0.

F =
1

4πϵ0
q

(
q′′

a2
+

q′

(a − b)2

)

=
qq′

4πϵ0

(

−
1

a2
+

1

(a − b)2

)

=
qq′

4πϵ0

b(2a− b)

a2(a − b)2
=

q(−Rq/a)

4πϵ0

(R2/a)(2a − R2/a)

a2(a − R2/a)2

= −
q2

4πϵ0

(
R

a

)3 (2a2 − R2)

(a2 − R2)2
.

(Drop the minus sign, because the problem asks for the force of attraction.)

Problem 3.9

✲ x

✻
z

✣
y

λ
✲ y

✻
z

+

−

d

d

(y, z)s+

s−

(a) Image problem: λ above, −λ below. Potential was found in Prob. 2.47:

V (y, z) =
2λ

4πϵ0
ln(s−/s+) =

λ

4πϵ0
ln(s2

−/s2
+)

=
λ

4πϵ0
ln

{
y2 + (z + d)2

y2 + (z − d)2

}

(b) σ = −ϵ0
∂V

∂n
. Here

∂V

∂n
=

∂V

∂z
, evaluated at z = 0.

σ(y) = −ϵ0
λ

4πϵ0

{
1

y2 + (z + d)2
2(z + d) −

1

y2 + (z − d)2
2(z − d)

}∣
∣
∣
∣
z=0

= −
2λ

4π

{
d

y2 + d2
−

−d

y2 + d2

}

= −
λd

π(y2 + d2)
.

Check: Total charge induced on a strip of width l parallel to the y axis:

qind = −
lλd

π

∞∫

−∞

1

y2 + d2
dy = −

lλd

π

[
1

d
tan−1

(y

d

)
]∣
∣
∣
∣

∞

−∞
= −

lλd

π

[π

2
−

(

−
π

2

)]

= −λl. Therefore λind = −λ, as it should be.

c⃝2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.

V (y, z) =
2�

4⇡✏0
ln(s�/s+) =

�

4⇡✏0
ln(s2

�/s
2
+)

=
�

4⇡✏0
ln
⇢

y
2 + (z + d)2

y2 + (z � d)2

�

(b) � = �✏0
@V

@n
. Here

@V

@n
=
@V

@z
, evaluated at z = 0.

�(y) = �✏0
�

4⇡✏0

⇢
1

y2 + (z + d)2
2(z + d)� 1

y2 + (z � d)2
2(z � d)

�����
z=0

= �2�
4⇡

⇢
d

y2 + d2
� �d

y2 + d2

�
= � �d

⇡(y2 + d2)
.

Check: Total charge induced on a strip of width l parallel to the y axis:

qind = � l�d

⇡

1Z

�1

1
y2 + d2

dy = � l�d

⇡


1
d

tan�1
⇣

y

d

⌘�����
1

�1
= � l�d

⇡

h
⇡

2
�
⇣
�⇡

2

⌘i

= ��l. Therefore �ind = ��, as it should be.
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Problem 3.11

The image configuration is as shown.

V (x, y) =
q

4⇡✏0

(
1p

(x� a)2 + (y � b)2 + z2
+

1p
(x + a)2 + (y + b)2 + z2

� 1p
(x + a)2 + (y � b)2 + z2

� 1p
(x� a)2 + (y + b)2 + z2

)
.

CHAPTER 3. SPECIAL TECHNIQUES 5

Problem 3.10

The image configuration is as shown.

V (x, y) =
q

4πϵ0

{

1
√

(x − a)2 + (y − b)2 + z2
+

1
√

(x + a)2 + (y + b)2 + z2

−
1

√

(x + a)2 + (y − b)2 + z2
−

1
√

(x − a)2 + (y + b)2 + z2

}

.

✲ x

✻
y

q−q

q −q

For this to work, θ must be and integer divisor of 180◦. Thus 180◦, 90◦, 60◦, 45◦, etc., are OK, but no
others. It works for 45◦, say, with the charges as shown.

(Note the strategy: to make the x axis an equipotential (V = 0),
you place the image charge (1) in the reflection point. To make the
45◦ line an equipotential, you place charge (2) at the image point.
But that screws up the x axis, so you must now insert image (3) to
balance (2). Moreover, to make the 45◦ line V = 0 you also need (4),
to balance (1). But now, to restore the x axis to V = 0 you need (5)
to balance (4), and so on.

✲ x

45◦ line

+

− (1)

−
(2)

+
(4)

−

+

−
(5)

+
(3)

why it works for θ = 45◦

✲ x

■135◦ line

+
(0)

−
(1)−

(2)

+
(3)
⇐No good

why it doesn’t work for θ = 135◦

The reason this doesn’t work for arbitrary angles is that you are even-
tually forced to place an image charge within the original region of
interest, and that’s not allowed—all images must go outside the re-
gion, or you’re no longer dealing with the same problem at all.)

Problem 3.11

From Prob. 2.47 (with y0 → d): V =
λ

4πϵ0
ln

[
(x + a)2 + y2

(x − a)2 + y2

]

, where a2 = y0
2 − R2 ⇒ a =

√
d2 − R2,

and
{

a coth(2πϵ0V0/λ) = d
a csch(2πϵ0V0/λ) = R

}

⇒ (dividing)
d

R
= cosh

(
2πϵ0V0

λ

)

, or λ =
2πϵ0V0

cosh−1(d/R)
.

Problem 3.12

V (x, y) =
∞
∑

n=1

Cne−nπx/a sin(nπy/a) (Eq. 3.30), where Cn =
2

a

a∫

0

V0(y) sin(nπy/a) dy (Eq. 3.34).

In this case V0(y) =

{

+V0, for 0 < y < a/2
−V0, for a/2 < y < a

}

. Therefore,

Cn =
2

a
V0

⎧

⎪
⎨

⎪
⎩

a/2∫

0

sin(nπy/a) dy −
a∫

a/2

sin(nπy/a) dy

⎫

⎪
⎬

⎪
⎭

=
2V0

a

{

−
cos(nπy/a)

(nπ/a)

∣
∣
∣
∣

a/2

0

+
cos(nπy/a)

(nπ/a)

∣
∣
∣
∣

a

a/2

}

=
2V0

nπ

{

− cos
(nπ

2

)

+ cos(0) + cos(nπ) − cos
(nπ

2

)}

=
2V0

nπ

{

1 + (−1)n − 2 cos
(nπ

2

)}

.
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F =
q
2

4⇡✏0

⇢
� 1

(2a)2
x̂� 1

(2b)2
ŷ +

1
(2
p

a2 + b2)2
[cos ✓ x̂ + sin ✓ ŷ]

�
,

where cos ✓ = a/
p

a2 + b2, sin ✓ = b/
p

a2 + b2.

F =
q
2

16⇡✏0

⇢
a

(a2 + b2)3/2
� 1

a2

�
x̂ +


b

(a2 + b2)3/2
� 1

b2

�
ŷ

�
.

W =
1
2

1
4⇡✏0


�q

2

(2a)
+
�q

2

(2b)
+

q
2

(2
p

a2 + b2)

�
=

q
2

16⇡✏0


1p

a2 + b2
� 1

a
� 1

b

�
.

For this to work, ✓ must be an integer divisor of 180�. Thus 180�, 90�, 60�, 45�, etc., are OK, but no
others. It works for 45�, say, with the charges as shown.

(Note the strategy: to make the x axis an equipotential (V = 0),
you place the image charge (1) in the reflection point. To make the
45� line an equipotential, you place charge (2) at the image point.
But that screws up the x axis, so you must now insert image (3) to
balance (2). Moreover, to make the 45� line V = 0 you also need (4),
to balance (1). But now, to restore the x axis to V = 0 you need (5)
to balance (4), and so on.

CHAPTER 3. SPECIAL TECHNIQUES 5

Problem 3.10

The image configuration is as shown.

V (x, y) =
q

4πϵ0

{

1
√

(x − a)2 + (y − b)2 + z2
+

1
√

(x + a)2 + (y + b)2 + z2

−
1

√

(x + a)2 + (y − b)2 + z2
−

1
√

(x − a)2 + (y + b)2 + z2

}

.

✲ x

✻
y

q−q

q −q

For this to work, θ must be and integer divisor of 180◦. Thus 180◦, 90◦, 60◦, 45◦, etc., are OK, but no
others. It works for 45◦, say, with the charges as shown.

(Note the strategy: to make the x axis an equipotential (V = 0),
you place the image charge (1) in the reflection point. To make the
45◦ line an equipotential, you place charge (2) at the image point.
But that screws up the x axis, so you must now insert image (3) to
balance (2). Moreover, to make the 45◦ line V = 0 you also need (4),
to balance (1). But now, to restore the x axis to V = 0 you need (5)
to balance (4), and so on.

✲ x

45◦ line

+

− (1)

−
(2)

+
(4)

−

+

−
(5)

+
(3)

why it works for θ = 45◦

✲ x

■135◦ line

+
(0)

−
(1)−

(2)

+
(3)
⇐No good

why it doesn’t work for θ = 135◦

The reason this doesn’t work for arbitrary angles is that you are even-
tually forced to place an image charge within the original region of
interest, and that’s not allowed—all images must go outside the re-
gion, or you’re no longer dealing with the same problem at all.)

Problem 3.11

From Prob. 2.47 (with y0 → d): V =
λ

4πϵ0
ln

[
(x + a)2 + y2

(x − a)2 + y2

]

, where a2 = y0
2 − R2 ⇒ a =

√
d2 − R2,

and
{

a coth(2πϵ0V0/λ) = d
a csch(2πϵ0V0/λ) = R

}

⇒ (dividing)
d

R
= cosh

(
2πϵ0V0

λ

)

, or λ =
2πϵ0V0

cosh−1(d/R)
.

Problem 3.12

V (x, y) =
∞
∑

n=1

Cne−nπx/a sin(nπy/a) (Eq. 3.30), where Cn =
2

a

a∫

0

V0(y) sin(nπy/a) dy (Eq. 3.34).

In this case V0(y) =

{

+V0, for 0 < y < a/2
−V0, for a/2 < y < a

}

. Therefore,

Cn =
2

a
V0

⎧

⎪
⎨

⎪
⎩

a/2∫

0

sin(nπy/a) dy −
a∫

a/2

sin(nπy/a) dy

⎫

⎪
⎬

⎪
⎭

=
2V0

a

{

−
cos(nπy/a)

(nπ/a)

∣
∣
∣
∣

a/2

0

+
cos(nπy/a)

(nπ/a)

∣
∣
∣
∣

a

a/2

}

=
2V0

nπ

{

− cos
(nπ

2

)

+ cos(0) + cos(nπ) − cos
(nπ

2

)}

=
2V0

nπ

{

1 + (−1)n − 2 cos
(nπ

2

)}

.
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Problem 3.10

The image configuration is as shown.

V (x, y) =
q

4πϵ0

{

1
√

(x − a)2 + (y − b)2 + z2
+

1
√

(x + a)2 + (y + b)2 + z2

−
1

√

(x + a)2 + (y − b)2 + z2
−

1
√

(x − a)2 + (y + b)2 + z2

}

.

✲ x

✻
y

q−q

q −q

For this to work, θ must be and integer divisor of 180◦. Thus 180◦, 90◦, 60◦, 45◦, etc., are OK, but no
others. It works for 45◦, say, with the charges as shown.

(Note the strategy: to make the x axis an equipotential (V = 0),
you place the image charge (1) in the reflection point. To make the
45◦ line an equipotential, you place charge (2) at the image point.
But that screws up the x axis, so you must now insert image (3) to
balance (2). Moreover, to make the 45◦ line V = 0 you also need (4),
to balance (1). But now, to restore the x axis to V = 0 you need (5)
to balance (4), and so on.

✲ x

45◦ line

+

− (1)

−
(2)

+
(4)

−

+

−
(5)

+
(3)

why it works for θ = 45◦

✲ x

■135◦ line

+
(0)

−
(1)−

(2)

+
(3)
⇐No good

why it doesn’t work for θ = 135◦

The reason this doesn’t work for arbitrary angles is that you are even-
tually forced to place an image charge within the original region of
interest, and that’s not allowed—all images must go outside the re-
gion, or you’re no longer dealing with the same problem at all.)

Problem 3.11

From Prob. 2.47 (with y0 → d): V =
λ

4πϵ0
ln

[
(x + a)2 + y2

(x − a)2 + y2

]

, where a2 = y0
2 − R2 ⇒ a =

√
d2 − R2,

and
{

a coth(2πϵ0V0/λ) = d
a csch(2πϵ0V0/λ) = R

}

⇒ (dividing)
d

R
= cosh

(
2πϵ0V0

λ

)

, or λ =
2πϵ0V0

cosh−1(d/R)
.

Problem 3.12

V (x, y) =
∞
∑

n=1

Cne−nπx/a sin(nπy/a) (Eq. 3.30), where Cn =
2

a

a∫

0

V0(y) sin(nπy/a) dy (Eq. 3.34).

In this case V0(y) =

{

+V0, for 0 < y < a/2
−V0, for a/2 < y < a

}

. Therefore,

Cn =
2

a
V0

⎧

⎪
⎨

⎪
⎩

a/2∫

0

sin(nπy/a) dy −
a∫

a/2

sin(nπy/a) dy

⎫

⎪
⎬

⎪
⎭

=
2V0

a

{

−
cos(nπy/a)

(nπ/a)

∣
∣
∣
∣

a/2

0

+
cos(nπy/a)

(nπ/a)

∣
∣
∣
∣

a

a/2

}

=
2V0

nπ

{

− cos
(nπ

2

)

+ cos(0) + cos(nπ) − cos
(nπ

2

)}

=
2V0

nπ

{

1 + (−1)n − 2 cos
(nπ

2

)}

.
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The reason this doesn’t work for arbitrary angles is that you are even-
tually forced to place an image charge within the original region of

interest, and that’s not allowed—all images must go outside the re-
gion, or you’re no longer dealing with the same problem at all.)

Problem 3.12

From Prob. 2.52 (with y0 ! d): V =
�

4⇡✏0
ln

(x + a)2 + y

2

(x� a)2 + y2

�
, where a

2 = y0
2 � R

2 ) a =
p

d2 �R2,

and ⇢
a coth(2⇡✏0V0/�) = d

a csch(2⇡✏0V0/�) = R

�
) (dividing)

d

R
= cosh

✓
2⇡✏0V0

�

◆
, or � =

2⇡✏0V0

cosh�1(d/R)
.

Problem 3.13

V (x, y) =
1X

n=1

Cne
�n⇡x/a sin(n⇡y/a) (Eq. 3.30), where Cn =

2
a

aZ

0

V0(y) sin(n⇡y/a) dy (Eq. 3.34).
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In this case V0(y) =
⇢

+V0, for 0 < y < a/2
�V0, for a/2 < y < a

�
. Therefore,

Cn =
2
a
V0

8
><

>:

a/2Z

0

sin(n⇡y/a) dy �
aZ

a/2

sin(n⇡y/a) dy

9
>=

>;
=

2V0

a

(
� cos(n⇡y/a)

(n⇡/a)

����
a/2

0

+
cos(n⇡y/a)

(n⇡/a)

����
a

a/2

)

=
2V0

n⇡

n
� cos

⇣
n⇡

2

⌘
+ cos(0) + cos(n⇡)� cos

⇣
n⇡

2

⌘o
=

2V0

n⇡

n
1 + (�1)n � 2 cos

⇣
n⇡

2

⌘o
.

The term in curly brackets is:
8
>><

>>:

n = 1 : 1� 1� 2 cos(⇡/2) = 0,

n = 2 : 1 + 1� 2 cos(⇡) = 4,

n = 3 : 1� 1� 2 cos(3⇡/2) = 0,

n = 4 : 1 + 1� 2 cos(2⇡) = 0,

9
>>=

>>;
etc. (Zero if n is odd or divisible by 4, otherwise 4.)

Therefore
Cn =

⇢
8V0/n⇡, n = 2, 6, 10, 14, etc. (in general, 4j + 2, for j = 0, 1, 2, ...),
0, otherwise.

So

V (x, y) =
8V0

⇡

X

n=2,6,10,...

e
�n⇡x/a sin(n⇡y/a)

n
=

8V0

⇡

1X

j=0

e
�(4j+2)⇡x/a sin[(4j + 2)⇡y/a]

(4j + 2)
.

Problem 3.14

V (x, y) =
4V0

⇡

X

n=1,3,5,...

1
n

e
�n⇡x/a sin(n⇡y/a) (Eq. 3.36); � = �✏0

@V

@n
(Eq. 2.49).

So

�(y) = �✏0
@

@x

⇢
4V0

⇡

X 1
n

e
�n⇡x/a sin(n⇡y/a)

�����
x=0

= �✏0
4V0

⇡

X 1
n

(�n⇡

a
)e�n⇡x/a sin(n⇡y/a)

����
x=0

=
4✏0V0

a

X

n=1,3,5,...

sin(n⇡y/a).

Or, using the closed form 3.37:

V (x, y) =
2V0

⇡
tan�1

✓
sin(⇡y/a)
sinh(⇡x/a)

◆
) � = �✏0

2V0

⇡

1
1 + sin2(⇡y/a)

sinh2(⇡x/a)

✓
� sin(⇡y/a)
sinh2(⇡x/a)

◆
⇡

a
cosh(⇡x/a)

���
x=0

=
2✏0V0

a

sin(⇡y/a) cosh(⇡x/a)
sin2(⇡y/a) + sinh2(⇡x/a)

����
x=0

=
2✏0V0

a

1
sin(⇡y/a)

.

[Comment: Technically, the series solution for � is defective, since term-by-term di↵erentiation has produced
a (naively) non-convergent sum. More sophisticated definitions of convergence permit one to work with series
of this form, but it is better to sum the series first and then di↵erentiate (the second method.)]
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CHAPTER 3. POTENTIAL 59

Summation of series Eq. 3.36

V (x, y) =
4V0

⇡
I, where I ⌘

X

n=1,3,5,...

1
n

e
�n⇡x/a sin(n⇡y/a).

Now sinw = Im
�
e
iw
�
, so

I = Im

X 1
n

e
�n⇡x/a

e
in⇡y/a = Im

X 1
n
Zn

,

where Z ⌘ e
�⇡(x�iy)/a

. Now

X

1,3,5,...

1
n
Zn =

1X

j=0

1
(2j + 1)

Z(2j+1) =
Z Z

0

8
<

:

1X

j=0

u
2j

9
=

; du

=
ZZ

0

1
1� u2

du =
1
2

ln
✓

1 + Z
1� Z

◆
=

1
2

ln
�
Re

i ✓
�

=
1
2

(lnR + i ✓) ,

where Re
i ✓ = 1+Z

1�Z . Therefore

I = Im

⇢
1
2
(lnR + i ✓)

�
=

1
2
✓. But

1 + Z
1� Z =

1 + e
�⇡(x�iy)/a

1� e�⇡(x�iy)/a
=
�
1 + e

�⇡(x�iy)/a
� �

1� e
�⇡(x+iy)/a

�
�
1� e�⇡(x�iy)/a

� �
1� e�⇡(x+iy)/a

�

=
1 + e

�⇡x/a
�
e
i⇡y/a � e

�i⇡y/a
�
� e

�2⇡x/a

��1� e�⇡(x�iy)/a
��2

=
1 + 2ie

�⇡x/a sin(⇡y/a)� e
�2⇡x/a

��1� e�⇡(x�iy)/a
��2

,

so

tan ✓ =
2e
�⇡x/a sin(⇡y/a)
1� e�2⇡x/a

=
2 sin(⇡y/a)

e⇡x/a � e�⇡x/a
=

sin(⇡y/a)
sinh(⇡x/a)

.

Therefore

I =
1
2

tan�1

✓
sin(⇡y/a)
sinh(⇡x/a)

◆
, and V (x, y) =

2V0

⇡
tan�1

✓
sin(⇡y/a)
sinh(⇡x/a)

◆
.

Problem 3.15

CHAPTER 3. SPECIAL TECHNIQUES 7

where Rei θ = 1+Z
1−Z . Therefore

I = Im

{
1

2
(ln R + i θ)

}

=
1

2
θ. But

1 + Z
1 − Z

=
1 + e−π(x−iy)/a

1 − e−π(x−iy)/a
=

(

1 + e−π(x−iy)/a
) (

1 − e−π(x+iy)/a
)

(

1 − e−π(x−iy)/a
) (

1 − e−π(x+iy)/a
)

=
1 + e−πx/a

(

eiπy/a − e−iπy/a
)

− e−2πx/a

∣
∣1 − e−π(x−iy)/a

∣
∣
2 =

1 + 2ie−πx/a sin(πy/a) − e−2πx/a

∣
∣1 − e−π(x−iy)/a

∣
∣
2 ,

so

tan θ =
2e−πx/a sin(πy/a)

1 − e−2πx/a
=

2 sin(πy/a)

eπx/a − e−πx/a
=

sin(πy/a)

sinh(πx/a)
.

Therefore

I =
1

2
tan−1

(
sin(πy/a)

sinh(πx/a)

)

, and V (x, y) =
2V0

π
tan−1

(
sin(πy/a)

sinh(πx/a)

)

.

Problem 3.14

✲ x

✻
y

✙z

a

b

V = 0

V0(y)

(a)
∂2V

∂x2
+

∂2V

∂y2
= 0, with boundary conditions

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(i) V (x, 0) = 0,
(ii) V (x, a) = 0,
(iii) V (0, y) = 0,
(iv) V (b, y) = V0(y).

⎫

⎪
⎪
⎬

⎪
⎪
⎭

As in Ex. 3.4, separation of variables yields

V (x, y) =
(

Aekx + Be−kx
)

(C sin ky + D cos ky) .

Here (i)⇒ D = 0, (iii)⇒ B = −A, (ii)⇒ ka is an integer multiple of π:

V (x, y) = AC
(

enπx/a − e−nπx/a
)

sin(nπy/a) = (2AC) sinh(nπx/a) sin(nπy/a).

But (2AC) is a constant, and the most general linear combination of separable solutions consistent with (i),
(ii), (iii) is

V (x, y) =
∞
∑

n=1

Cn sinh(nπx/a) sin(nπy/a).

It remains to determine the coefficients Cn so as to fit boundary condition (iv):

∑

Cn sinh(nπb/a) sin(nπy/a) = V0(y). Fourier’s trick ⇒ Cn sinh(nπb/a) =
2

a

a∫

0

V0(y) sin(nπy/a) dy.

Therefore

Cn =
2

a sinh(nπb/a)

a∫

0

V0(y) sin(nπy/a) dy.
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(a)
@

2
V

@x2
+
@

2
V

@y2
= 0, with boundary conditions

8
>><

>>:

(i) V (x, 0) = 0,

(ii) V (x, a) = 0,

(iii) V (0, y) = 0,

(iv) V (b, y) = V0(y).

9
>>=

>>;

As in Ex. 3.4, separation of variables yields

V (x, y) =
�
Ae

kx + Be
�kx
�
(C sin ky + D cos ky) .

Here (i)) D = 0, (iii)) B = �A, (ii)) ka is an integer multiple of ⇡:

V (x, y) = AC

⇣
e
n⇡x/a � e

�n⇡x/a
⌘

sin(n⇡y/a) = (2AC) sinh(n⇡x/a) sin(n⇡y/a).
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But (2AC) is a constant, and the most general linear combination of separable solutions consistent with (i),
(ii), (iii) is

V (x, y) =
1X

n=1

Cn sinh(n⇡x/a) sin(n⇡y/a).

It remains to determine the coe�cients Cn so as to fit boundary condition (iv):

X
Cn sinh(n⇡b/a) sin(n⇡y/a) = V0(y). Fourier’s trick) Cn sinh(n⇡b/a) =

2
a

aZ

0

V0(y) sin(n⇡y/a) dy.

Therefore

Cn =
2

a sinh(n⇡b/a)

aZ

0

V0(y) sin(n⇡y/a) dy.

(b) Cn =
2

a sinh(n⇡b/a)
V0

aZ

0

sin(n⇡y/a) dy =
2V0

a sinh(n⇡b/a)
⇥
⇢

0, if n is even,
2a
n⇡ , if n is odd.

�

V (x, y) =
4V0

⇡

X

n=1,3,5,...

sinh(n⇡x/a) sin(n⇡y/a)
n sinh(n⇡b/a)

.

Problem 3.16

Same format as Ex. 3.5, only the boundary conditions are:
8
>>>>>><

>>>>>>:

(i) V = 0 when x = 0,

(ii) V = 0 when x = a,

(iii) V = 0 when y = 0,

(iv) V = 0 when y = a,

(v) V = 0 when z = 0,
(vi) V = V0 when z = a.

9
>>>>>>=

>>>>>>;

This time we want sinusoidal fuctions in x and y, exponential in z:

X(x) = A sin(kx) + B cos(kx), Y (y) = C sin(ly) + D cos(ly), Z(z) = Ee

p
k2+l2z + Ge

�
p

k2+l2z
.

(i)) B = 0; (ii)) k = n⇡/a; (iii)) D = 0; (iv)) l = m⇡/a; (v)) E + G = 0. Therefore

Z(z) = 2E sinh(⇡
p

n2 + m2z/a).

Putting this all together, and combining the constants, we have:

V (x, y, z) =
1X

n=1

1X

m=1

Cn,m sin(n⇡x/a) sin(m⇡y/a) sinh(⇡
p

n2 + m2z/a).

It remains to evaluate the constants Cn,m, by imposing boundary condition (vi):

V0 =
XXh

Cn,m sinh(⇡
p

n2 + m2)
i
sin(n⇡x/a) sin(m⇡y/a).

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.
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According to Eqs. 3.50 and 3.51:

Cn,m sinh
⇣
⇡

p
n2 + m2

⌘
=
✓

2
a

◆2

V0

aZ

0

aZ

0

sin(n⇡x/a) sin(m⇡y/a) dx dy =

(
0, if n or m is even,

16V0

⇡2nm
, if both are odd.

)

Therefore

V (x, y, z) =
16V0

⇡2

X

n=1,3,5,...

X

m=1,3,5,...

1
nm

sin(n⇡x/a) sin(m⇡y/a)
sinh

�
⇡
p

n2 + m2z/a
�

sinh
�
⇡
p

n2 + m2
� .

Consider the superposition of six such cubes, one with V0 on each of the six faces. The result is a cube
with V0 on its entire surface, so the potential at the center is V0. Evidently the potential at the center of the
original cube (with V0 on just one face) is one sixth of this: V0/6. To check it, put in x = y = z = a/2:

V (a/2, a/2, a/2) =
16V0

⇡2

X

n=1,3,5,...

X

m=1,3,5,...

1
nm

sin(n⇡/2) sin(m⇡/2)
sinh

�
⇡
p

n2 + m2/2
�

sinh
�
⇡
p

n2 + m2
� .

Let n ⌘ 2i + 1, m ⌘ 2j + 1, and note that sinh(2u) = 2 sinh(u) cosh(u). The double sum is then

S =
1
2

1X

i=0

1X

j=0

(�1)i+j

(2i + 1)(2j + 1)
sech

h
⇡

p
(2i + 1)2 + (2j + 1)2/2

i
.

Setting the upper limits at i = 3, j = 3 (or above) Mathematica returns S = 0.102808, which (to 6 digits) is
equal to ⇡2

/96, confirming (at least, numerically) that V (a/2, a/2, a/2) = V0/6.
Problem 3.17

P3(x) =
1

8 · 6
d
3

dx3

�
x

2 � 1
�3 =

1
48

d
2

dx2
3
�
x

2 � 1
�2 2x =

1
8

d
2

dx2
x
�
x

2 � 1
�2

=
1
8

d

dx

h�
x

2 � 1
�2 + 2x

�
x

2 � 1
�
2x

i
=

1
8

d

dx

⇥�
x

2 � 1
� �

x
2 � 1 + 4x

2
�⇤

=
1
8

d

dx

⇥�
x

2 � 1
� �

5x
2 � 1

�⇤
=

1
8
⇥
2x
�
5x

2 � 1
�

+
�
x

2 � 1
�
10x
⇤

=
1
4
�
5x

3 � x + 5x
3 � 5x

�
=

1
4
�
10x

3 � 6x
�

=
5
2
x

3 � 3
2
x.

We need to show that P3(cos ✓) satisfies

1
sin ✓

d

d✓

✓
sin ✓

dP

d✓

◆
= �l(l + 1)P, with l = 3,

where P3(cos ✓) = 1
2 cos ✓

�
5 cos2 ✓ � 3

�
.

dP3

d✓
=

1
2
⇥
� sin ✓

�
5 cos2 ✓ � 3

�
+ cos ✓(10 cos ✓(� sin ✓)

⇤
= �1

2
sin ✓

�
5 cos2 ✓ � 3 + 10 cos2 ✓

�

= �3
2

sin ✓
�
5 cos2 ✓ � 1

�
.
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@

@✓

✓
sin ✓

dP3

d✓

◆
= �3

2
d

d✓

⇥
sin2

✓
�
5 cos2 ✓ � 1

�⇤
= �3

2
⇥
2 sin ✓ cos ✓

�
5 cos2 ✓ � 1

�
+ sin2

✓ (�10 cos ✓ sin ✓)
⇤

= �3 sin ✓ cos ✓
⇥
5 cos2 ✓ � 1� 5 sin2

✓
⇤
.

1
sin ✓

d

d✓

✓
sin ✓

dP

d✓

◆
= �3 cos ✓

⇥
5 cos2�1� 5

�
1� cos2 ✓

�⇤
= �3 cos ✓

�
10 cos2 ✓ � 6

�

= �3 · 4 · 1
2

cos ✓
�
5 cos2 ✓ � 3

�
= �l(l + 1)P3. qed

1Z

�1

P1(x)P3(x) dx =
1Z

�1

(x)
1
2
�
5x

3 � 3x
�

dx =
1
2
�
x

5 � x
3
���1
�1

=
1
2
(1� 1 + 1� 1) = 0. X

Problem 3.18

(a) Inside: V (r, ✓) =
1X

l=0

Alr
l
Pl(cos ✓) (Eq. 3.66) where

Al =
(2l + 1)

2Rl

⇡Z

0

V0(✓)Pl(cos ✓) sin ✓ d✓ (Eq. 3.69).

In this case V0(✓) = V0 comes outside the integral, so

Al =
(2l + 1)V0

2Rl

⇡Z

0

Pl(cos ✓) sin ✓ d✓.

But P0(cos ✓) = 1, so the integral can be written
⇡Z

0

P0(cos ✓)Pl(cos ✓) sin ✓ d✓ =
⇢

0, if l 6= 0
2, if l = 0

�
(Eq. 3.68).

Therefore
Al =

⇢
0, if l 6= 0
V0, if l = 0

�
.

Plugging this into the general form:

V (r, ✓) = A0 r
0
P0(cos ✓) = V0.

The potential is constant throughout the sphere.

Outside: V (r, ✓) =
1X

l=0

Bl

rl+1
Pl(cos ✓) (Eq. 3.72), where

Bl =
(2l + 1)

2
R

l+1

⇡Z

0

V0(✓)Pl(cos ✓) sin ✓ d✓ (Eq. 3.73).

=
(2l + 1)

2
R

l+1
V0

⇡Z

0

Pl(cos ✓) sin ✓ d✓ =
⇢

0, if l 6= 0
RV0, if l = 0

�
.
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CHAPTER 3. POTENTIAL 63

Therefore V (r, ✓) = V0
R

r
(i.e. equals V0 at r = R, then falls o↵ like

1
r
).

(b)

V (r, ✓) =

8
>>>><

>>>>:

1X

l=0

Alr
l
Pl(cos ✓), for r  R (Eq. 3.78)

1X

l=0

Bl

rl+1
Pl(cos ✓), for r � R (Eq. 3.79)

9
>>>>=

>>>>;

,

where
Bl = R

2l+1
Al (Eq. 3.81)

and

Al =
1

2✏0Rl�1

⇡Z

0

�0(✓)Pl(cos ✓) sin ✓ d✓ (Eq. 3.84)

=
1

2✏0Rl�1
�0

⇡Z

0

Pl(cos ✓) sin ✓ d✓ =
⇢

0, if l 6= 0
R�0/✏0, if l = 0

�
.

Therefore

V (r, ✓) =

8
>>><

>>>:

R�0

✏0
, for r  R

R
2
�0

✏0

1
r
, for r � R

9
>>>=

>>>;
.

Note: in terms of the total charge Q = 4⇡R
2
�0,

V (r, ✓) =

8
>>><

>>>:

1
4⇡✏0

Q

R
, for r  R

1
4⇡✏0

Q

r
, for r � R

9
>>>=

>>>;
.

Problem 3.19

V0(✓) = k cos(3✓) = k
⇥
4 cos3 ✓ � 3 cos ✓

⇤
= k [↵P3(cos ✓) + �P1(cos ✓)] .

(I know that any 3rd order polynomial can be expressed as a linear combination of the first four Legendre
polynomials; in this case, since the polynomial is odd, I only need P1 and P3.)

4 cos3 ✓ � 3 cos ✓ = ↵


1
2
�
5 cos3 ✓ � 3 cos ✓

��
+ � cos ✓ =

5↵
2

cos3 ✓ +
✓
� � 3

2
↵

◆
cos ✓,

so
4 =

5↵
2
) ↵ =

8
5
; �3 = � � 3

2
↵ = � � 3

2
· 8
5

= � � 12
5
) � =

12
5
� 3 = �3

5
.

Therefore
V0(✓) =

k

5
[8P3(cos ✓)� 3P1(cos ✓)] .
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Now

V (r, ✓) =

8
>>>><

>>>>:

1X

l=0

Alr
l
Pl(cos ✓), for r  R (Eq. 3.66)

1X

l=0

Bl

rl+1
Pl(cos ✓), for r � R (Eq. 3.72)

9
>>>>=

>>>>;

,

where

Al =
(2l + 1)

2Rl

⇡Z

0

V0(✓)Pl(cos ✓) sin ✓ d✓ (Eq. 3.69)

=
(2l + 1)

2Rl

k

5

8
<

:8
⇡Z

0

P3(cos ✓)Pl(cos ✓) sin ✓ d✓ � 3
⇡Z

0

P1(cos ✓)Pl(cos ✓) sin ✓ d✓

9
=

;

=
k

5
(2l + 1)

2Rl

⇢
8

2
(2l + 1)

�l3 � 3
2

(2l + 1)
�l1

�
=

k

5
1
Rl

[8 �l3 � 3 �l1]

=
⇢

8k/5R
3
, if l = 3

�3k/5R, if l = 1

�
(zero otherwise).

Therefore

V (r, ✓) = � 3k

5R
rP1(cos ✓) +

8k

5R3
r
3
P3(cos ✓) =

k

5


8
⇣

r

R

⌘3
P3(cos ✓)� 3

⇣
r

R

⌘
P1(cos ✓)

�
,

or

k

5

⇢
8
⇣

r

R

⌘3 1
2
⇥
5 cos3 ✓ � 3 cos ✓

⇤
� 3

⇣
r

R

⌘
cos ✓

�
) V (r, ✓) =

k

5
r

R
cos ✓

⇢
4
⇣

r

R

⌘2 ⇥
5 cos2 ✓ � 3

⇤
� 3
�

(for r  R). Meanwhile, Bl = AlR
2l+1 (Eq. 3.81—this follows from the continuity of V at R). Therefore

Bl =
⇢

8kR
4
/5, if l = 3

�3kR
2
/5, if l = 1

�
(zero otherwise).

So

V (r, ✓) =
�3kR

2

5
1
r2

P1(cos ✓) +
8kR

4

5
1
r4

P3(cos ✓) =
k

5

"
8
✓

R

r

◆4

P3(cos ✓)� 3
✓

R

r

◆2

P1(cos ✓)

#
,

or

V (r, ✓) =
k

5

✓
R

r

◆2

cos ✓

(
4
✓

R

r

◆2 ⇥
5 cos2 ✓ � 3

⇤
� 3

)
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CHAPTER 3. POTENTIAL 65

(for r � R). Finally, using Eq. 3.83:

�(✓) = ✏0

1X

l=0

(2l + 1)AlR
l�1

Pl(cos ✓) = ✏0

⇥
3A1P1 + 7A3R

2
P3

⇤

= ✏0


3
✓
� 3k

5R

◆
P1 + 7

✓
8k

5R3

◆
R

2
P3

�
=

✏0k

5R
[�9P1(cos ✓) + 56P3(cos ✓)]

=
✏0k

5R


�9 cos ✓ +

56
2
�
5 cos3 ✓ � 3 cos ✓

��
=
✏0k

5R
cos ✓[�9 + 28 · 5 cos2 ✓ � 28 · 3]

=
✏0k

5R
cos ✓

⇥
140 cos2 ✓ � 93

⇤
.

Problem 3.20

Use Eq. 3.83: �(✓) = ✏0

1X

l=0

(2l+1)AlR
l�1

Pl(cos ✓). But Eq. 3.69 says: Al =
2l + 1
2Rl

⇡Z

0

V0(✓)Pl(cos ✓) sin ✓ d✓.

Putting them together:

�(✓) =
✏0

2R

1X

l=0

(2l + 1)2ClPl(cos ✓), with Cl =
⇡Z

0

V0(✓)Pl(cos ✓) sin ✓ d✓. qed

Problem 3.21

Set V = 0 on the equatorial plane, far from the sphere. Then the potential is the same as Ex. 3.8 plus the
potential of a uniformly charged spherical shell:

V (r, ✓) = �E0

✓
r � R

3

r2

◆
cos ✓ +

1
4⇡✏0

Q

r
.

Problem 3.22

(a) V (r, ✓) =
1X

l=0

Bl

rl+1
Pl(cos ✓) (r > R), so V (r, 0) =

1X

l=0

Bl

rl+1
Pl(1) =

1X

l=0

Bl

rl+1
=

�

2✏0

hp
r2 + R2 � r

i
.

Since r > R in this region,
p

r2 + R2 = r

p
1 + (R/r)2 = r


1 +

1
2
(R/r)2 � 1

8
(R/r)4 + . . .

�
, so

1X

l=0

Bl

rl+1
=

�

2✏0
r


1 +

1
2

R
2

r2
� 1

8
R

4

r4
+ . . .� 1

�
=

�

2✏0

✓
R

2

2r
� R

4

8r3
+ . . .

◆
.

Comparing like powers of r, I see that B0 =
�R

2

4✏0
, B1 = 0, B2 = ��R

4

16✏0
, . . . . Therefore

V (r, ✓) =
�R

2

4✏0


1
r
� R

2

4r3
P2(cos ✓) + . . .

�
,

=
�R

2

4✏0r

"
1� 1

8

✓
R

r

◆2 �
3 cos2 ✓ � 1

�
+ . . .

#
,

(for r > R).
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(b) V (r, ✓) =
1X

l=0

Alr
l
Pl(cos ✓) (r < R). In the northern hemispere, 0  ✓  ⇡/2,

V (r, 0) =
1X

l=0

Alr
l =

�

2✏0

hp
r2 + R2 � r

i
.

Since r < R in this region,
p

r2 + R2 = R

p
1 + (r/R)2 = R


1 +

1
2
(r/R)2 � 1

8
(r/R)4 + . . .

�
. Therefore

1X

l=0

Alr
l =

�

2✏0


R +

1
2

r
2

R
� 1

8
r
4

R3
+ . . .� r

�
.

Comparing like powers: A0 =
�

2✏0
R, A1 = � �

2✏0
, A2 =

�

4✏0R
, . . . , so

V (r, ✓) =
�

2✏0


R� rP1(cos ✓) +

1
2R

r
2
P2(cos ✓) + . . .

�
,

=
�R

2✏0


1�

⇣
r

R

⌘
cos ✓ +

1
4

⇣
r

R

⌘2 �
3 cos2 ✓ � 1

�
+ . . .

�
,

(for r < R, northern hemisphere).

In the southern hemisphere we’ll have to go for ✓ = ⇡, using Pl(�1) = (�1)l
.

V (r,⇡) =
1X

l=0

(�1)l
Alr

l =
�

2✏0

hp
r2 + R2 � r

i
.

(I put an overbar on Al to distinguish it from the northern Al). The only di↵erence is the sign of A1:
A1 = +(�/2✏0), A0 = A0, A2 = A2. So:

V (r, ✓) =
�

2✏0


R + rP1(cos ✓) +

1
2R

r
2
P2(cos ✓) + . . .

�
,

=
�R

2✏0


1 +

⇣
r

R

⌘
cos ✓ +

1
4

⇣
r

R

⌘2 �
3 cos2 ✓ � 1

�
+ . . .

�
,

(for r < R, southern hemisphere).

Problem 3.23

V (r, ✓) =

8
>>>><

>>>>:

1X

l=0

Alr
l
Pl(cos ✓), (r  R) (Eq. 3.78),

1X

l=0

Bl

rl+1
Pl(cos ✓), (r � R) (Eq. 3.79),

9
>>>>=

>>>>;
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where Bl = AlR
2l+1 (Eq. 3.81) and

Al =
1

2✏0Rl�1

⇡Z

0

�0(✓)Pl(cos ✓) sin ✓ d✓ (Eq. 3.84)

=
1

2✏0Rl�1
�0

8
><

>:

⇡/2Z

0

Pl(cos ✓) sin ✓ d✓ �
⇡Z

⇡/2

Pl(cos ✓) sin ✓ d✓

9
>=

>;
(let x = cos ✓)

=
�0

2✏0Rl�1

8
<

:

1Z

0

Pl(x) dx�
0Z

�1

Pl(x) dx

9
=

; .

Now Pl(�x) = (�1)l
Pl(x), since Pl(x) is even, for even l, and odd, for odd l. Therefore

0Z

�1

Pl(x) dx =
0Z

1

Pl(�x) d(�x) = (�1)l

1Z

0

Pl(x) dx,

and hence

Al =
�0

2✏0Rl�1

⇥
1� (�1)l

⇤
1Z

0

Pl(x) dx =

8
>><

>>:

0, if l is even

�0

✏0R
l�1

1Z

0

Pl(x) dx, if l is odd

9
>>=

>>;
.

So A0 = A2 = A4 = A6 = 0, and all we need are A1, A3, and A5.

1Z

0

P1(x) dx =
1Z

0

x dx =
x

2

2

����
1

0

=
1
2
.

1Z

0

P3(x) dx =
1
2

1Z

0

�
5x

3 � 3x
�

dx =
1
2

✓
5
x

4

4
� 3

x
2

2

◆����
1

0

=
1
2

✓
5
4
� 3

2

◆
= �1

8
.

1Z

0

P5(x) dx =
1
8

1Z

0

�
63x

5 � 70x
3 + 15x

�
dx =

1
8

✓
63

x
6

6
� 70

x
4

4
+ 15

x
2

2

◆����
1

0

=
1
8

✓
21
2
� 35

2
+

15
2

◆
=

1
16

(36� 35) =
1
16

.

Therefore

A1 =
�0

✏0

✓
1
2

◆
; A3 =

�0

✏0R
2

✓
�1

8

◆
; A5 =

�0

✏0R
4

✓
1
16

◆
; etc.

and

B1 =
�0

✏0
R

3

✓
1
2

◆
; B3 =

�0

✏0
R

5

✓
�1

8

◆
; B5 =

�0

✏0
R

7

✓
1
16

◆
; etc.

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



68 CHAPTER 3. POTENTIAL

Thus

V (r, ✓) =

8
>>><

>>>:

�0r

2✏0


P1(cos ✓)� 1

4

⇣
r

R

⌘2
P3(cos ✓) +

1
8

⇣
r

R

⌘4
P5(cos ✓) + ...

�
, (r  R),

�0R
3

2✏0r2

"
P1(cos ✓)� 1

4

✓
R

r

◆2

P3(cos ✓) +
1
8

✓
R

r

◆4

P5(cos ✓) + ...

#
, (r � R).

9
>>>=

>>>;

Problem 3.24

1
s

@

@s

✓
s
@V

@s

◆
+

1
s2

@
2
V

@�2
= 0.

Look for solutions of the form V (s,�) = S(s)�(�):

1
s
�

d

ds

✓
s
dS

ds

◆
+

1
s2

S
d
2�

d�2
= 0.

Multiply by s
2 and divide by V = S�:

s

S

d

ds

✓
s
dS

ds

◆
+

1
�

d
2�

d�2
= 0.

Since the first term involves s only, and the second � only, each is a constant:

s

S

d

ds

✓
s
dS

ds

◆
= C1,

1
�

d
2�

d�2
= C2, with C1 + C2 = 0.

Now C2 must be negative (else we get exponentials for �, which do not return to their original value—as
geometrically they must— when � is increased by 2⇡).

C2 = �k
2
. Then

d
2�

d�2
= �k

2�) � = A cos k�+ B sin k�.

Moreover, since �(� + 2⇡) = �(�), k must be an integer: k = 0, 1, 2, 3, . . . (negative integers are just repeats,
but k = 0 must be included, since � = A (a constant) is OK).

s
d

ds

✓
s
dS

ds

◆
= k

2
S can be solved by S = s

n, provided n is chosen right:

s
d

ds

�
sns

n�1
�

= ns
d

ds
(sn) = n

2
ss

n�1 = n
2
s

n = k
2
S ) n = ±k.

Evidently the general solution is S(s) = Cs
k + Ds

�k, unless k = 0, in which case we have only one solution
to a second-order equation—namely, S = constant. So we must treat k = 0 separately. One solution is a
constant—but what’s the other? Go back to the diferential equation for S, and put in k = 0:

s
d

ds

✓
s
dS

ds

◆
= 0) s

dS

ds
= constant = C ) dS

ds
=

C

s
) dS = C

ds

s
) S = C ln s + D (another constant).

So the second solution in this case is ln s. [How about �? That too reduces to a single solution, � = A, in the
case k = 0. What’s the second solution here? Well, putting k = 0 into the � equation:

d
2�

d�2
= 0) d�

d�
= constant = B ) � = B�+ A.
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But a term of the form B� is unacceptable, since it does not return to its initial value when � is augmented
by 2⇡.] Conclusion: The general solution with cylindrical symmetry is

V (s,�) = a0 + b0 ln s +
1X

k=1

⇥
s

k(ak cos k�+ bk sin k�) + s
�k(ck cos k�+ dk sin k�)

⇤
.

Yes: the potential of a line charge goes like ln s, which is included.
Problem 3.25

Picking V = 0 on the yz plane, with E0 in the x direction, we have (Eq. 3.74):
⇢

(i) V = 0, when s = R,

(ii) V ! �E0x = �E0s cos�, for s� R.

�

1

Contents

1 Special Techniques 2

Problem 3.24
Picking V = 0 on the yz plane, with E0 in the x direction,

{

(i) V = 0, when s = R,
(ii) V → −E0x = −E0s cosφ, for s ≫ R.

}

✲ x

✻
y

✢
z

φ

s
−
−

−
−−

+
+

+
+

+

=⇒E0

Evidently a0 = b0 = bk = dk = 0, and ak = ck = 0 except for k = 1:

V (s, φ) =
(

a1s +
c1

s

)

cosφ.

(i)⇒ c1 = −a1R2; (ii)→ a1 = −E0. Therefore

V (s, φ) =

(

−E0s +
E0R2

s

)

cosφ, or V (s, φ) = −E0s

[
(

R

s

)2

− 1

]

cosφ.

σ = −ϵ0
∂V

∂s

∣
∣
∣
∣
s=R

= −ϵ0E0

(

−
R2

s2
− 1

)

cosφ

∣
∣
∣
∣
s=R

= 2ϵ0E0 cosφ.

Problem 3.25

Inside: V (s, φ) = a0 +
∞
∑

k=1

sk (ak cos kφ + bk sin kφ) . (In this region ln s and s−k are no good—they blow

up at s = 0.)

Outside: V (s, φ) = a0 +
∞
∑

k=1

1

sk
(ck cos kφ + dk sin kφ). (Here ln s and sk are no good at s → ∞).

σ = −ϵ0

(
∂Vout

∂s
−

∂Vin

∂s

)∣
∣
∣
∣
s=R

(Eq. 2.36).

Thus

a sin 5φ = −ϵ0

∞
∑

k=1

{

−
k

Rk+1
(ck cos kφ + dk sin kφ) − kRk−1 (ak cos kφ + bk sin kφ)

}

.
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Evidently a0 = b0 = bk = dk = 0, and ak = ck = 0 except for k = 1:

V (s,�) =
⇣
a1s +

c1

s

⌘
cos�.

(i)) c1 = �a1R
2; (ii)! a1 = �E0. Therefore

V (s,�) =
✓
�E0s +

E0R
2

s

◆
cos�, or V (s,�) = E0s

"✓
R

s

◆2

� 1

#
cos�.

� = �✏0
@V

@s

����
s=R

= �✏0E0

✓
�R

2

s2
� 1
◆

cos�
����
s=R

= 2✏0E0 cos�.

Problem 3.26

Inside: V (s,�) = a0 +
1X

k=1

s
k (ak cos k�+ bk sin k�) . (In this region ln s and s

�k are no good—they blow

up at s = 0.)

Outside: V (s,�) = a0 +
1X

k=1

1
sk

(ck cos k�+ dk sin k�). (Here ln s and s
k are no good at s!1).

� = �✏0
✓
@Vout

@s
� @Vin

@s

◆����
s=R

(Eq. 2.36).

Thus

a sin 5� = �✏0
1X

k=1

⇢
� k

Rk+1
(ck cos k�+ dk sin k�)� kR

k�1 (ak cos k�+ bk sin k�)
�

.

Evidently ak = ck = 0; bk = dk = 0 except k = 5; a = 5✏0
✓

1
R6

d5 + R
4
b5

◆
. Also, V is continuous at s = R:

a0+R
5
b5 sin 5� = a0+

1
R5

d5 sin 5�. So a0 = a0 (might as well choose both zero); R
5
b5 = R

�5
d5, or d5 = R

10
b5.
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Combining these results: a = 5✏0
�
R

4
b5 + R

4
b5

�
= 10✏0R4

b5; b5 =
a

10✏0R4
; d5 =

aR
6

10✏0
. Therefore

V (s,�) =
a sin 5�
10✏0

⇢
s
5
/R

4
, for s < R,

R
6
/s

5
, for s > R.

�

Problem 3.27 Since r is on the z axis, the angle ↵ is just the polar angle ✓ (I’ll drop the primes, for simplicity).
Monopole term: Z

⇢ d⌧ = kR

Z 
1
r2

(R� 2r) sin ✓
�

r
2 sin ✓ dr d✓ d�.

But the r integral is
RZ

0

(R� 2r) dr =
�
Rr � r

2
���R

0
= R

2 �R
2 = 0.

So the monopole term is zero.
Dipole term: Z

r cos ✓⇢ d⌧ = kR

Z
(r cos ✓)


1
r2

(R� 2r) sin ✓
�

r
2 sin ✓ dr d✓ d�.

But the ✓ integral is
⇡Z

0

sin2
✓ cos ✓ d✓ =

sin3
✓

3

����
⇡

0

=
1
3
(0� 0) = 0.

So the dipole contribution is likewise zero.
Quadrupole term:

Z
r
2

✓
3
2

cos2 ✓ � 1
2

◆
⇢ d⌧ =

1
2
kR

Z
r
2
�
3 cos2 ✓ � 1

�  1
r2

(R� 2r) sin ✓
�

r
2 sin ✓ dr d✓ d�.

r integral: Z R

0
r
2(R� 2r) dr =

✓
r
3

3
R� r

4

2

◆����
R

0

=
R

4

3
� R

4

2
= �R

4

6
.

✓ integral:
⇡Z

0

�
3 cos2 ✓ � 1

�
| {z }

3(1�sin2 ✓)�1=2�3 sin2 ✓

sin2
✓ d✓ = 2

⇡Z

0

sin2
✓ d✓ � 3

⇡Z

0

sin4
✓ d✓

= 2
⇣
⇡

2

⌘
� 3

✓
3⇡
8

◆
= ⇡

✓
1� 9

8

◆
= �⇡

8
.

� integral:
2⇡Z

0

d� = 2⇡.

The whole integral is:
1
2
kR

✓
�R

4

6

◆⇣
�⇡

8

⌘
(2⇡) =

k⇡
2
R

5

48
.
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For point P on the z axis (r ! z in Eq. 3.95) the approximate potential is

V (z) ⇠=
1

4⇡✏0
k⇡

2
R

5

48z3
. (Quadrupole.)

Problem 3.28

r

x

yf'

R

z

r'

For a line charge, ⇢(r0) d⌧
0 ! �(r0) dl

0, which in this case becomes �R d�
0.

r = r sin ✓ cos� x̂ + r sin ✓ sin� ŷ + r cos ✓ ẑ,

r
0 = R cos�0 + R sin�0, so

r · r0 = rR sin ✓ cos� cos�0 + rR sin ✓ sin� sin�0 = rR cos↵,

cos↵ = sin ✓(cos� cos�0 + sin� sin�0).

n = 0 : Z
⇢(r0) d⌧

0 ! �R

Z 2⇡

0
d�
0 = 2⇡R�; V0 =

1
4⇡✏0

2⇡R�

r
=

�

2✏0
R

r
.

n = 1 :
Z

r
0 cos↵⇢(r0) d⌧

0 !
Z

R cos↵�R d�
0 = �R

2 sin ✓
Z 2⇡

0
(cos� cos�0 + sin� sin�0)d�0 = 0; V1 = 0.

n = 2 :
Z

(r0)2P2(cos↵) ⇢(r0)d⌧ 0 !
Z

R
2

✓
3
2

cos2 ↵� 1
2

◆
�Rd�

0 =
�R

3

2

Z h
3 sin2

✓ (cos� cos�0 + sin� sin�0)2 � 1
i
d�
0

=
�R

3

2


3 sin2

✓

✓
cos2 �

Z 2⇡

0
cos2 �0 d�0 + sin2

�

Z 2⇡

0
sin2

�
0
d�
0 + 2 sin� cos�

Z 2⇡

0
sin�0 cos�0 d�0

◆
�
Z 2⇡

0
d�
0
�

=
�R

3

2
⇥
3 sin2

✓
�
⇡ cos2 �+ ⇡ sin2

�+ 0
�
� 2⇡

⇤
=
⇡�R

3

2
�
3 sin2

✓ � 2
�

= �⇡�R
3

✓
3
2

cos2 ✓ � 1
2

◆
.

So

V2 = � �

8✏0
R

3

r3

�
3 cos2 ✓ � 1

�
= � �

4✏0
R

3

r3
P2(cos ✓).
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Problem 3.29

p = (3qa� qa) ẑ + (�2qa� 2q(�a)) ŷ = 2qa ẑ. Therefore

V ⇠=
1

4⇡✏0
p · r̂
r2

,

and p · r̂ = 2qa ẑ · r̂ = 2qa cos ✓, so

V ⇠=
1

4⇡✏0
2qa cos ✓

r2
. (Dipole.)

Problem 3.30

(a) By symmetry, p is clearly in the z direction: p = p ẑ; p =
R

z⇢ d⌧ )
R

z� da.

p =
Z

(R cos ✓)(k cos ✓)R2 sin ✓ d✓ d� = 2⇡R
3
k

⇡Z

0

cos2 ✓ sin ✓ d✓ = 2⇡R
3
k

✓
�cos3 ✓

3

◆����
⇡

0

=
2
3
⇡R

3
k[1� (�1)] =

4⇡R
3
k

3
; p =

4⇡R
3
k

3
ẑ.

(b)

V ⇠=
1

4⇡✏0
4⇡R

3
k

3
cos ✓
r2

=
kR

3

3✏0
cos ✓
r2

. (Dipole.)

This is also the exact potential. Conclusion: all multiple moments of this distribution (except the dipole) are
exactly zero.
Problem 3.31

Using Eq. 3.94 with r
0 = d/2 and ↵ = ✓ (Fig. 3.26):

1
r +

=
1
r

1X

n=0

✓
d

2r

◆n

Pn(cos ✓);

for r �, we let ✓ ! 180� + ✓, so cos ✓ ! � cos ✓:

1
r �

=
1
r

1X

n=0

✓
d

2r

◆n

Pn(� cos ✓).

But Pn(�x) = (�1)n
Pn(x), so

V =
1

4⇡✏0
q

✓
1

r +
� 1

r �

◆
=

1
4⇡✏0

q
1
r

1X

n=0

✓
d

2r

◆n

[Pn(cos ✓)� Pn(� cos ✓)] =
2q

4⇡✏0r

X

n=1,3,5,...

✓
d

2r

◆n

Pn(cos ✓).

Therefore
Vdip =

2q

4⇡✏0
1
r

d

2r
P1(cos ✓) =

qd cos ✓
4⇡✏0r2

, while Vquad = 0.

Voct =
2q

4⇡✏0r

✓
d

2r

◆3

P3(cos ✓) =
2q

4⇡✏0
d
3

8r4

1
2
�
5 cos3 ✓ � 3 cos ✓

�
=

qd
3

4⇡✏0
1

8r4

�
5 cos3 ✓ � 3 cos ✓

�
.
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Problem 3.32

(a) (i) Q = 2q, (ii) p = 3qa ẑ, (iii) V ⇠= 1
4⇡✏0

h
Q
r + p·̂r

r2

i
=

1
4⇡✏0


2q

r
+

3qa cos ✓
r2

�
.

(b) (i) Q = 2q, (ii) p = qa ẑ, (iii) V ⇠=
1

4⇡✏0


2q

r
+

qa cos ✓
r2

�
.

(c) (i) Q = 2q, (ii) p = 3qa ŷ, (iii) V ⇠=
1

4⇡✏0


2q

r
+

3qa sin ✓ sin�
r2

�
(from Eq. 1.64, ŷ·r̂ = sin ✓ sin�).

Problem 3.33

(a) This point is at r = a, ✓ = ⇡
2 , � = 0, so E =

p

4⇡✏0a3
✓̂ =

p

4⇡✏0a3
(�ẑ); F = qE = � pq

4⇡✏0a3
ẑ.

(b) Here r = a, ✓ = 0, so E =
p

4⇡✏0a3
(2r̂) =

2p

4⇡✏0a3
ẑ. F =

2pq

4⇡✏0a3
ẑ.

(c) W = q [V (0, 0, a)� V (a, 0, 0)] =
qp

4⇡✏0a2

h
cos(0)� cos

⇣
⇡

2

⌘i
=

pq

4⇡✏0a2
.

Problem 3.34

Q = �q, so Vmono =
1

4⇡✏0
�q

r
; p = qa ẑ, so Vdip =

1
4⇡✏0

qa cos ✓
r2

. Therefore

V (r, ✓) ⇠=
q

4⇡✏0

✓
�1

r
+

a cos ✓
r2

◆
. E(r, ✓) ⇠=

q

4⇡✏0


� 1

r2
r̂ +

a

r3

⇣
2 cos ✓ r̂ + sin ✓ ✓̂

⌘�
.

Problem 3.35 The total charge is zero, so the dominant term is the dipole. We need the dipole moment
of this configuration. It obviously points in the z direction, and for the southern hemisphere (✓ : ⇡

2 ! ⇡) ⇢
switches sign but so does z, so

p =
Z

z⇢ d⌧ = 2⇢0

Z ⇡/2

✓=0
r cos ✓ r

2 sin ✓ dr d✓ d� = 2⇢0(2⇡)
Z R

0
r
3
dr

Z ⇡/2

0
cos ✓ sin ✓ d✓

= 4⇡⇢0
R

4

4
sin2

✓

2

����
⇡/2

0

=
⇡⇢0R

4

2
.

Therefore (Eq. 3.103)

E ⇡ ⇡⇢0R
4

8⇡✏0r3

⇣
2 cos ✓ r̂ + sin ✓ ✓̂

⌘
.

Problem 3.36

p = (p · r̂) r̂ + (p · ✓̂) ✓̂ = p cos ✓ r̂� p sin ✓ ✓̂ (Fig. 3.36). So 3(p · r̂) r̂�p = 3p cos ✓ r̂� p cos ✓ r̂ + p sin ✓ ✓̂ =
2p cos ✓ r̂ + p sin ✓ ✓̂. So Eq. 3.104 ⌘ Eq. 3.103. X
Problem 3.37

Vave(R) =
1

4⇡R2

Z
V (r) da, where the integral is over the surface of a sphere of radius R. Now da =
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R
2 sin ✓ d✓ d�, so Vave(R) =

1
4⇡

Z
V (R, ✓,�) sin ✓ d✓ d�.

dVave

dR
=

1
4⇡

Z
@V

@R
sin ✓ d✓ d� =

1
4⇡

Z
(rV · r̂) sin ✓ d✓ d� =

1
4⇡R2

Z
(rV ) · (R2 sin ✓ d✓ d� r̂)

=
1

4⇡R2

Z
(rV ) · da =

1
4⇡R2

Z
(r2

V ) d⌧ = 0.

(The final integral, from the divergence theorem, is over the volume of the sphere, where by assumption the
Laplacian of V is zero.) So Vave is independent of R—the same for all spheres, regardless of their radius—and
hence (taking the limit as R! 0), Vave(R) = V (0). qed
Problem 3.38 At a point (x, y) on the plane the field of q is

Eq =
1

4⇡✏0
q

r 3 r̂ , and r = x x̂ + y ŷ � d ẑ,

so its z component is � q

4⇡✏0
d

(x2 + y2 + d2)3/2
. Meanwhile, the field of � (just below the surface) is � �

2✏0
,

(Eq. 2.17). (Of course, this is for a uniform surface charge, but as long as we are infinitesimally far away � is
e↵ectively uniform.) The total field inside the conductor is zero, so

� q

4⇡✏0
d

(x2 + y2 + d2)3/2
� �

2✏0
= 0 ) �(x, y) = � qd

2⇡(x2 + y2 + d2)3/2
. X

Problem 3.39

5

This integral can also be integrated directly. Let x = u2; dx = 2u du.

0∫

d

√
x

√
d − x

dx = 2

0∫

√
d

u2

√
d − u2

du = 2

{

−
u

2

√

d − u2 +
d

2
sin−1

(
u
√

d

)}∣
∣
∣
∣

0

√
d

= −d sin−1(1) = −d
π

2
.

Therefore

t =

√

d

2A

πd

2
=

√

π2d2

4

d

2q2
16πϵ0m =

√

2π3d3ϵ0m

q2
.

Problem 3.35

✛x
+ + + + + +− − − − − −

q

F =
1

4πϵ0
q2

{

1

[2(a − x)]2
+

1

[2a + 2(a − x)]2
+

1

[4a + 2(a − x)]2
+ . . .

−
1

(2x)2
−

1

(2a + 2x)2
−

1

(4a + 2x)2
− . . .

}

=
1

4πϵ0

q2

4

{[
1

(a − x)2
+

1

(2a − x)2
+

1

(3a − x)2
+ . . .

]

−
[

1

x2
+

1

(a + x)2
+

1

(2a + x)2
+ . . .

]}

.

When a → ∞ (i.e. a ≫ x) only the
1

x2
term survives: F = −

1

4πϵ0

q2

(2x)2
! (same as for only one plane—

Eq. 3.12). When x = a/2,

F =
1

4πϵ0

q2

4

{[
1

(a/2)2
+

1

(3a/2)2
+

1

(5a/2)2
+ . . .

]

−
[

1

(a/2)2
+

1

(3a/2)2
+

1

(5a/2)2
+ . . .

]}

= 0. !

Problem 3.36

Following Prob. 2.47, we place image line charges −λ at y = b and +λ at y = −b (here y is the horizontal
axis, z vertical).

✲ y

✻
z

☛
R

−λ λ+λ

−b

−λ

b
︸ ︷︷ ︸

a−b

2

︸ ︷︷ ︸

a−b

2

︸ ︷︷ ︸

y0
︸ ︷︷ ︸

a

P
s1

s2 s3
s4

c⃝2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.

The image configuration is shown in the figure; the positive image charge forces cancel in pairs. The net
force of the negative image charges is:

F =
1

4⇡✏0
q
2

(
1

[2(a� x)]2
+

1
[2a + 2(a� x)]2

+
1

[4a + 2(a� x)]2
+ . . .

� 1
(2x)2

� 1
(2a + 2x)2

� 1
(4a + 2x)2

� . . .

�

=
1

4⇡✏0
q
2

4

⇢
1

(a� x)2
+

1
(2a� x)2

+
1

(3a� x)2
+ . . .

�
�


1
x2

+
1

(a + x)2
+

1
(2a + x)2

+ . . .

��
.

When a ! 1 (i.e. a � x) only the
1
x2

term survives: F = � 1
4⇡✏0

q
2

(2x)2
X (same as for only one plane—

Eq. 3.12). When x = a/2,

F =
1

4⇡✏0
q
2

4

⇢
1

(a/2)2
+

1
(3a/2)2

+
1

(5a/2)2
+ . . .

�
�


1
(a/2)2

+
1

(3a/2)2
+

1
(5a/2)2

+ . . .

��
= 0. X

Problem 3.40

Following Prob. 2.52, we place image line charges �� at y = b and +� at y = �b (here y is the horizontal
axis, z vertical).
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5

This integral can also be integrated directly. Let x = u2; dx = 2u du.

0∫

d

√
x

√
d − x

dx = 2

0∫

√
d

u2

√
d − u2

du = 2

{

−
u

2

√

d − u2 +
d

2
sin−1

(
u
√

d

)}∣
∣
∣
∣

0

√
d

= −d sin−1(1) = −d
π

2
.

Therefore

t =

√

d

2A

πd

2
=

√

π2d2

4

d

2q2
16πϵ0m =

√

2π3d3ϵ0m

q2
.

Problem 3.35

✛x
+ + + + + +− − − − − −

q

F =
1

4πϵ0
q2

{

1

[2(a − x)]2
+

1

[2a + 2(a − x)]2
+

1

[4a + 2(a − x)]2
+ . . .

−
1

(2x)2
−

1

(2a + 2x)2
−

1

(4a + 2x)2
− . . .

}

=
1

4πϵ0

q2

4

{[
1

(a − x)2
+

1

(2a − x)2
+

1

(3a − x)2
+ . . .

]

−
[

1

x2
+

1

(a + x)2
+

1

(2a + x)2
+ . . .

]}

.

When a → ∞ (i.e. a ≫ x) only the
1

x2
term survives: F = −

1

4πϵ0

q2

(2x)2
! (same as for only one plane—

Eq. 3.12). When x = a/2,

F =
1

4πϵ0

q2

4

{[
1

(a/2)2
+

1

(3a/2)2
+

1

(5a/2)2
+ . . .

]

−
[

1

(a/2)2
+

1

(3a/2)2
+

1

(5a/2)2
+ . . .

]}

= 0. !

Problem 3.36

Following Prob. 2.47, we place image line charges −λ at y = b and +λ at y = −b (here y is the horizontal
axis, z vertical).

✲ y

✻
z

☛
R

−λ λ+λ

−b

−λ

b
︸ ︷︷ ︸

a−b

2

︸ ︷︷ ︸

a−b

2

︸ ︷︷ ︸

y0
︸ ︷︷ ︸

a

P
s1

s2 s3
s4
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In the solution to Prob. 2.52 substitute:

a! a� b

2
, y0 !

a + b

2
so
✓

a� b

2

◆2

=
✓

a + b

2

◆2

�R
2 ) b =

R
2

a
.

V =
�

4⇡✏0


ln
✓

s
2
3

s
2
4

◆
+ ln

✓
s
2
1

s
2
2

◆�
=

�

4⇡✏0
ln
✓

s
2
1s

2
3

s
2
4s

2
2

◆

=
�

4⇡✏0
ln
⇢

[(y + a)2 + z
2][(y � b)2 + z

2]
[(y � a)2 + z2][(y + b)2 + z2]

�
, or, using y = s cos�, z = s sin�,

=
�

4⇡✏0
ln
⇢

(s2 + a
2 + 2as cos�)[(as/R)2 + R

2 � 2as cos�]
(a2 + a2 � 2as cos�)[(as/R)2 + R2 + 2as cos�]

�
.

Problem 3.41 Same as Problem 3.9, only this time we want q
0 + q

00 = q, so q
00 = q � q

0:

F =
q

4⇡✏0

✓
q
00

a2
+

q
0

(a� b)2

◆
=

q
2

4⇡✏0a2
+

qq
0

4⇡✏0

✓
� 1

a2
+

1
(a� b)2

◆
.

The second term is identical to Problem 3.9, and I’ll just quote the answer from there:

F =
q
2

4⇡✏0a3


a�R

3 (2a
2 �R

2)
(a2 �R2)2

�
.

(a) F = 0) a(a2 �R
2)2 = R

3(2a
2 �R

2), or (letting x ⌘ a/R), x(x2 � 1)2 � 2x
2 + 1 = 0. We want a real

root greater than 1; Mathematica delivers x = (1 +
p

5)/2 = 1.61803, so a = 1.61803R = 5.66311 Å.
(b) Let a0 = x0R be the minimum value of a. The work necessary is

W = �
Z a0

1
F da =

q
2

4⇡✏0

Z 1

a0

1
a3


a�R

3 (2a
2 �R

2)
(a2 �R2)2

�
da =

q
2

4⇡✏0R

Z 1

x0


1
x2
� (2x

2 � 1)
x3(x2 � 1)2

�
dx

=
q
2

4⇡✏0R


1 + 2x0 � 2x

3
0

2x
2
0(1� x

2
0)

�
.

Putting in x0 = (1 +
p

5)/2, Mathematica says the term in square brackets is 1/2 (this is not an accident; see

footnote 6 on page 127), so W =
q
2

8⇡✏0R
. Numerically,

W =
(1.60⇥ 10�19)2

8⇡(8.85⇥ 10�12)(5.66⇥ 10�10)
J = 2.03⇥ 10�19 J = 1.27 eV.
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Problem 3.42

x

y

a

-b b0

V1

V0 V0

x

y

a

-b b0

V0 V0

0

x

y

a

-b b0

V1

00= +

The first configuration on the right is precisely Example 3.4, but unfortunately the second configuration is not
the same as Problem 3.15:

x

y

a

b0

V0

0

0

We could reconstruct Problem 3.15 with the modified boundaries, but let’s see if we can’t twist it around by
an astute change of variables. Suppose we let x! y, y ! u, a! c, b! a, and V0 ! V1:

u

y

a

c0

V1

00

This is closer; making the changes in the solution to Problem 3.15 we have (for this configuration)

V (u, y) =
4V1

⇡

X

n=1,3,5...

sinh(n⇡y/c) sin(n⇡u/c)
n sinh(n⇡a/c)

.

Now let c! 2b and u! x + b, and the configuration is just what we want:

x

y

a

-b b0

V1

00

The potential for this configuration is

V (x, y) =
4V1

⇡

X

n=1,3,5...

sinh(n⇡y/2b) sin(n⇡(x + b)/2b)
n sinh(n⇡a/2b)

.
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(If you like, write sin(n⇡(x + b)/2b) as (�1)(n�1)/2 cos(n⇡x/2b).) Combining this with Eq. 3.42,

V (x, y) =
4
⇡

X

n=1,3,5...

1
n


V0

cosh(n⇡x/a) sin(n⇡y/a)
cosh(n⇡b/a)

+ V1
sinh(n⇡y/2b) sin(n⇡(x + b)/2b)

sinh(n⇡a/2b)

�
.

Here’s a plot of this function, for the case a = b = 1, V0 = 1/2, V1 = 1:

-1.0

-0.5

0.0

0.5

1.0
0.0

0.5

1.0

0.0

0.5

1.0

Problem 3.43

Since the configuration is azimuthally symmetric, V (r, ✓) =
X✓

Alr
l +

Bl

rl+1

◆
Pl(cos ✓).

(a) r > b: Al = 0 for all l, since V ! 0 at 1. Therefore V (r, ✓) =
X Bl

rl+1
Pl(cos ✓).

a < r < b : V (r, ✓) =
X✓

Clr
l +

Dl

rl+1

◆
Pl(cos ✓). r < a : V (r, ✓) = V0.

We need to determine Bl, Cl, Dl, and V0. To do this, invoke boundary conditions as follows: (i) V is

continuous at a, (ii) V is continuous at b, (iii) 4
✓
@V

@r

◆
= � 1

✏0
�(✓) at b.

(ii) )
X Bl

bl+1
Pl(cos ✓) =

X✓
Clb

l +
Dl

bl+1

◆
Pl(cos ✓);

Bl

bl+1
= Clb

l +
Dl

bl+1
) Bl = b

2l+1
Cl + Dl. (1)

(i) )
X✓

Cla
l +

Dl

al+1

◆
Pl(cos ✓) = V0;

8
><

>:

Cla
l +

Dl

al+1
= 0, if l 6= 0,

C0a
0 +

D0

a1
= V0, if l = 0;

9
>=

>;
Dl = �a

2l+1
Cl, l 6= 0,

D0 = aV0 � aC0.
(2)

Putting (2) into (1) gives Bl = b
2l+1

Cl � a
2l+1

Cl, l 6= 0, B0 = bC0 + aV0 � aC0. Therefore

Bl =
�
b
2l+1 � a

2l+1
�
Cl, l 6= 0,

B0 = (b� a)C0 + aV0.
(10)

(iii) )
X

Bl[�(l + 1)]
1

bl+2
Pl(cos ✓)�

X✓
Cllb

l�1 + Dl
�(l + 1)

bl+2

◆
Pl(cos ✓) =

�k

✏0
P1(cos ✓). So

� (l + 1)
bl+2

Bl �
✓

Cllb
l�1 + Dl

�(l + 1)
bl+2

◆
= 0, if l 6= 1;

or
�(l + 1)Bl � lClb

2l+1 + (l + 1)Dl = 0; (l + 1)(Bl �Dl) = �lb
2l+1

Cl.
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B1(+2)
1
b2

+
✓

C1 + D1
�2
b2

◆
=

k

✏0
, for l = 1; C1 +

2
b3

(B1 �D1) = k.

Therefore
(l + 1)(Bl �Dl) + lb

2l+1
Cl = 0, for l 6= 1,

C1 +
2
b3

(B1 �D1) =
k

✏0
.

(3)

Plug (2) and (10) into (3):
For l 6= 0 or 1:
(l+1)

⇥�
b
2l+1 � a

2l+1
�
Cl + a

2l+1
Cl

⇤
+lb

2l+1
Cl = 0; (l+1)b2l+1

Cl+lb
2l+1

Cl = 0; (2l+1)Cl = 0) Cl = 0.
Therefore (10) and (2) ) Bl = Cl = Dl = 0 for l > 1.

For l = 1: C1 +
2
b3

⇥�
b
3 � a

3
�
C1 + a

3
C1

⇤
= k; C1 + 2C1 = k ) C1 = k/3✏0; D1 = �a

3
C1 )

D1 = �a
3
k/3✏0; B1 =

�
b
3 � a

3
�
C1 ) B1 =

�
b
3 � a

3
�
k/3✏0.

For l = 0: B0�D0 = 0) B0 = D0 ) (b�a)C0+aV0 = aV0�aC0, so bC0 = 0) C0 = 0; D0 = aV0 = B0.

Conclusion: V (r, ✓) =
aV0

r
+
�
b
3 � a

3
�
k

3r2✏0
cos ✓, r � b. V (r, ✓) =

aV0

r
+

k

3✏0

✓
r � a

3

r2

◆
cos ✓, a  r  b.

(b)�i(✓) = �✏0
@V

@r

����
a

= �✏0

�aV0

a2
+

k

3✏0

✓
1 + 2

a
3

a3

◆
cos ✓

�
= �✏0

✓
�V0

a
+

k

✏0
cos ✓

◆
= �k cos ✓ + V0

✏0

a
.

(c)qi =
Z
�i da =

V0✏0

a
4⇡a

2 = 4⇡a✏0V0 = Qtot. At large r: V ⇡ aV0

r

?=
1

4⇡✏0
Q

r
=

1
4⇡✏0

4⇡a✏0V0

r
=

aV0

r
. X

Problem 3.44

r
r'
dr'

q'=q

q'=p-q

Use multipole expansion (Eq. 3.95): ⇢ d⌧
0 ! � dr

0;

� =
Q

2a
; the r

0 integral breaks into two pieces:

V (r) =
1

4⇡✏0

1X

n=0

1
rn+1

2

4
aZ

0

(r0)n
Pn(cos ✓0)� dr

0 +
aZ

0

(r0)n
Pn(cos ✓0)� dr

0

3

5 .

In the first integral ✓0 = ✓ (see diagram); in the second integral ✓0 = ⇡ � ✓, so cos ✓0 = � cos ✓. But Pn(�z) =
(�1)n

Pn(z), so the integrals cancel when n is odd, and add when n is even.

V (r) = 2
1

4⇡✏0
Q

2a

1X

n=0,2,4,...

1
rn+1

Pn(cos ✓)
aZ

0

x
n

dx.

The integral is
a

n+1

n + 1
, so

V =
Q

4⇡✏0
1
r

X

n=0,2,4,...


1

n + 1

⇣
a

r

⌘n
Pn(cos ✓)

�
.
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Problem 3.45

Use separation of variables in cylindrical coordinates (Prob. 3.24):

V (s,�) = a0 + b0 ln s +
1X

k=1

⇥
s

k(ak cos k�+ bk sin k�) + s
�k(ck cos k�+ dk sin k�)

⇤
.

s < R : V (s,�) =
P1

k=1 s
k(ak cos k�+ bk sin k�) (ln s and s

�k blow up at s = 0);
s > R : V (s,�) =

P1
k=1 s

�k(ck cos k�+ dk sin k�) (ln s and s
k blow up as s!1).

(We may as well pick constants so V ! 0 as s ! 1, and hence a0 = 0.) Continuity at s = R )X
R

k(ak cos k� + bk sin k�) =
X

R
�k(ck cos k� + dk sin k�), so ck = R

2k
ak, dk = R

2k
bk. Eq. 2.36 says:

@V

@s

����
R+

� @V

@s

����
R�

= � 1
✏0
�. Therefore

X �k

Rk+1
(ck cos k�+ dk sin k�)�

X
kR

k�1(ak cos k�+ bk sin k�) = � 1
✏0
�,

or: X
2kR

k�1(ak cos k�+ bk sin k�) =
⇢
�0/✏0 (0 < � < ⇡)
��0/✏0 (⇡ < � < 2⇡)

�
.

Fourier’s trick: multiply by (cos l�) d� and integrate from 0 to 2⇡, using

2⇡Z

0

sin k� cos l� d� = 0;
2⇡Z

0

cos k� cos l� d� =
⇢

0, k 6= l

⇡, k = l

�
.

Then

2lR
l�1

⇡al =
�0

✏0

2

4
⇡Z

0

cos l� d��
2⇡Z

⇡

cos l� d�

3

5 =
�0

✏0

(
sin l�

l

����
⇡

0

� sin l�

l

����
2⇡

⇡

)
= 0; al = 0.

Multiply by (sin l�) d� and integrate, using
2⇡R

0
sin k� sin l� d� =

⇢
0, k 6= l

⇡, k = l

�
:

2lR
l�1

⇡bl =
�0

✏0

2

4
⇡Z

0

sin l� d��
2⇡Z

⇡

sin l� d�

3

5 =
�0

✏0

(
�cos l�

l

����
⇡

0

+
cos l�

l

����
2⇡

⇡

)
=
�0

l✏0
(2� 2 cos l⇡)

=
⇢

0, if l is even
4�0/l✏0, if l is odd

�
) bl =

⇢
0, if l is even
2�0/⇡✏0l

2
R

l�1
, if l is odd

�
.

Conclusion:

V (s,�) =
2�0R

⇡✏0

X

k=1,3,5,...

1
k2

sin k�

⇢
(s/R)k (s < R)
(R/s)k (s > R)

�
.

Problem 3.46

Use Eq. 3.95, in the form V (r) =
1

4⇡✏0

1X

n=0

Pn(cos ✓)
rn+1

In; In =
aZ

�a

z
n
�(z) dz.
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(a) I0 = k

aZ

�a

cos
⇣
⇡z

2a

⌘
dz = k


2a

⇡
sin
⇣
⇡z

2a

⌘�����
a

�a

=
2ak

⇡

h
sin
⇣
⇡

2

⌘
� sin

⇣
�⇡

2

⌘i
=

4ak

⇡
. Therefore:

1

Contents

Problem 3.40

✲ z

✻
λ(z)

−a a

✲ z

✻
λ(z)

−a a

✲ z

✻
λ(z)

−a a
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V (r, ✓) ⇠=
1

4⇡✏0

✓
4ak

⇡

◆
1
r
. (Monopole.)

(b) I0 = 0.

I1 = k

aZ

�a

z sin(⇡z/a) dz = k

⇢⇣
a

⇡

⌘2
sin
⇣
⇡z

a

⌘
� az

⇡
cos
⇣
⇡z

a

⌘�����
a

�a

= k

⇢⇣
a

⇡

⌘2
[sin(⇡)� sin(�⇡)]� a

2

⇡
cos(⇡)� a

2

⇡
cos(�⇡)

�
= k

2a
2

⇡
;

1

Contents

Problem 3.40

✲ z

✻
λ(z)

−a a

✲ z

✻
λ(z)

−a a

✲ z

✻
λ(z)

−a a
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V (r, ✓) ⇠=
1

4⇡✏0

✓
2a

2
k

⇡

◆
1
r2

cos ✓. (Dipole.)

(c) I0 = I1 = 0.

I2 = k

aZ

�a

z
2 cos

⇣
⇡z

a

⌘
dz = k

⇢
2z cos(⇡z/a)

(⇡/a)2
+

(⇡z/a)2 � 2
(⇡/a)3

sin
⇣
⇡z

a

⌘�����
a

�a

= 2k

⇣
a

⇡

⌘2
[a cos(⇡) + a cos(�⇡)] = �4a

3
k

⇡2
.

1

Contents

Problem 3.40

✲ z

✻
λ(z)

−a a

✲ z

✻
λ(z)

−a a

✲ z

✻
λ(z)

−a a
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V (r, ✓) ⇠=
1

4⇡✏0

✓
�4a

3
k

⇡2

◆
1

2r3

�
3 cos2 ✓ � 1

�
. (Quadrupole.)

Problem 3.47

(a) The average field due to a point charge q at r is

Eave =
1�

4
3⇡R3

�
Z

E d⌧, where E =
1

4⇡✏0
q

r 2 r̂ ,

so Eave =
1�

4
3⇡R3

� 1
4⇡✏0

Z
q

r̂
r 2 d⌧.

r

2

Problem 3.41

q
r

✮
dτ
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(Here r is the source point, d⌧ is the field point, so r goes from r to d⌧ .) The field at r due to uniform

charge ⇢ over the sphere is E⇢ =
1

4⇡✏0

Z
⇢

r̂
r 2 d⌧. This time d⌧ is the source point and r is the field

point, so r goes from d⌧ to r, and hence carries the opposite sign. So with ⇢ = �q/
�

4
3⇡R

3
�
, the two

expressions agree: Eave = E⇢.

(b) From Prob. 2.12:

E⇢ =
1

3✏0
⇢r = � q

4⇡✏0
r

R3
= � p

4⇡✏0R3
.
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(c) If there are many charges inside the sphere, Eave is the sum of the individual averages, and ptot is the
sum of the individual dipole moments. So Eave = � p

4⇡✏0R3
. qed

(d) The same argument, only with q placed at r outside the sphere, gives

Eave = E⇢ =
1

4⇡✏0

�
4
3⇡R

3
⇢
�

r2
r̂ (field at r due to uniformly charged sphere) =

1
4⇡✏0

�q

r2
r̂.

But this is precisely the field produced by q (at r) at the center of the sphere. So the average field (over
the sphere) due to a point charge outside the sphere is the same as the field that same charge produces
at the center. And by superposition, this holds for any collection of exterior charges.

Problem 3.48

(a)

Edip =
p

4⇡✏0r3
(2 cos ✓ r̂ + sin ✓ ✓̂)

=
p

4⇡✏0r3
[2 cos ✓(sin ✓ cos� x̂ + sin ✓ sin� ŷ + cos ✓ ẑ)

+ sin ✓(cos ✓ cos� x̂ + cos ✓ sin� ŷ � sin ✓ ẑ)]

=
p

4⇡✏0r3

2

643 sin ✓ cos ✓ cos� x̂ + 3 sin ✓ cos ✓ sin� ŷ +
�
2 cos2 ✓ � sin2

✓
�

| {z }
=3 cos2 ✓�1

ẑ

3

75 .

Eave =
1�

4
3⇡R3

�
Z

Edip d⌧

=
1�

4
3⇡R3

�
✓

p

4⇡✏0

◆Z
1
r3

⇥
3 sin ✓ cos ✓(cos� x̂ + sin� ŷ) +

�
3 cos2 ✓ � 1

�
ẑ
⇤
r
2 sin ✓ dr d✓ d�.

But
2⇡Z

0

cos� d� =
2⇡Z

0

sin� d� = 0, so the x̂ and ŷ terms drop out, and
2⇡R

0
d� = 2⇡, so

Eave =
1�

4
3⇡R3

�
✓

p

4⇡✏0

◆
2⇡

RZ

0

1
r

dr

⇡Z

0

�
3 cos2 ✓ � 1

�
sin ✓ d✓

| {z }
(� cos3 ✓+cos ✓)|⇡0 =1�1+1�1=0

.

Evidently Eave = 0, which contradicts the result of Prob. 3.47. [Note, however, that the r integral,
Z R

0

1
r

dr,

blows up, since ln r ! �1 as r ! 0. If, as suggested, we truncate the r integral at r = ✏, then it is finite, and
the ✓ integral gives Eave = 0.]

(b) We want E within the ✏-sphere to be a delta function: E = A�
3(r), with A selected so that the average

field is consistent with the general theorem in Prob. 3.47:

Eave =
1�

4
3⇡R3

�
Z

A�
3(r) d⌧ =

A�
4
3⇡R3

� = � p

4⇡✏0R3
) A = � p

3✏0
, and hence E = � p

3✏0
�
3(r).
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Problem 3.49 We need to show that the field inside the sphere approaches a delta-function with the right
coe�cient (Eq. 3.106) in the limit as R! 0. From Eq. 3.86, the potential inside is

V =
k

3✏0
r cos ✓ =

k

3✏0
z, so E = �rV = � k

3✏0
ẑ.

From Prob. 3.30, the dipole moment of this configuration is p = (4⇡R
3
k/3) ẑ, so k ẑ = 3p/(4⇡R

3), and hence
the field inside is

E = � 1
4⇡✏0R3

p.

Clearly E !1 as R! 0 (if p is held constant); its volume integral is
Z

E d⌧ = � 1
4⇡✏0R3

p
4
3
⇡R

3 = � 1
3✏0

p,

which matches the delta-function term in Eq. 3.106. X
Problem 3.50

(a) I =
Z

(rV1) · (rV2) d⌧ . But r·(V1rV2) = (rV1) · (rV2) + V1(r2
V2), so

I =
Z

r·(V1rV2) d⌧ �
Z

V1(r2
V2) =

I

S
V1(rV2) · da +

1
✏0

Z
V1⇢2 d⌧.

But the surface integral is over a huge sphere “at infinity”, where V1 and V2 ! 0. So I =
1
✏0

Z
V1⇢2 d⌧ . By

the same argument, with 1 and 2 reversed, I =
1
✏0

Z
V2⇢1 d⌧ . So

Z
V1⇢2 d⌧ =

Z
V2⇢1 d⌧ . qed

(b)

8
<

:

Situation (1 ) : Qa =
R

a ⇢1 d⌧ = Q; Qb =
R

b ⇢1 d⌧ = 0; V1b ⌘ Vab.

Situation (2 ) : Qa =
R

a ⇢2 d⌧ = 0; Qb =
R

b ⇢2 d⌧ = Q; V2a ⌘ Vba.

9
=

;
8
<

:

R
V1⇢2 d⌧ = V1a

R
a ⇢2 d⌧ + V1b

R
b ⇢2 d⌧ = VabQ.

R
V2⇢1 d⌧ = V2a

R
a ⇢1 d⌧ + V2b

R
b ⇢1 d⌧ = VbaQ.

9
=

;

Green’s reciprocity theorem says QVab = QVba, so Vab = Vba. qed
Problem 3.51

2

Problem 3.41

q
r

✮
dτ

✲
0

x

V =0 V =0

dq
x
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(a) Situation (1): actual. Situation (2): right plate at V0, left plate at V = 0, no charge at x.
Z

V1⇢2 d⌧ = Vl1Ql2 + Vx1Qx2 + Vr1Qr2 .

But Vl1 = Vr1 = 0 and Qx2 = 0, so
R

V1⇢2 d⌧ = 0.
Z

V2⇢1 d⌧ = Vl2Ql1 + Vx2Qx1 + Vr2Qr1 .

But Vl2 = 0 Qx1 = q, Vr2 = V0, Qr1 = Q2, and Vx2 = V0(x/d). So 0 = V0(x/d)q + V0Q2, and hence

Q2 = �qx/d.
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Situation (1): actual. Situation (2): left plate at V0, right plate at V = 0, no charge at x.
Z

V1⇢2 d⌧ = 0 =
Z

V2⇢1 d⌧ = Vl2Ql1 + Vx2Qx1 + Vr2Qr1 = V0Q1 + qVx2 + 0.

But Vx2 = V0

⇣
1� x

d

⌘
, so

Q1 = �q(1� x/d).

(b) Situation (1): actual. Situation (2): inner sphere at V0, outer sphere at zero, no charge at r.
Z

V1⇢2 d⌧ = Va1Qa2 + Vr1Qr2 + Vb1Qb2 .

But Va1 = Vb1 = 0, Qr2 = 0. So
R

V1⇢2 d⌧ = 0.
Z

V2⇢1 d⌧ = Va2Qa1 + Vr2Qr1 + Vb2Qb1 = QaV0 + qVr2 + 0.

But Vr2 is the potential at r in configuration 2: V (r) = A + B/r, with V (a) = V0 ) A + B/a = V0, or
aA + B = aV0, and V (b) = 0 ) A + B/b = 0, or bA + B = 0. Subtract: (b � a)A = �aV0 ) A =
�aV0/(b� a); B

�
1
a �

1
b

�
= V0 = B

(b�a)
ab ) B = abV0/(b� a). So V (r) = aV0

(b�a)

�
b
r � 1

�
. Therefore

QaV0 + q
aV0

(b� a)

✓
b

r
� 1
◆

= 0; Qa = � qa

(b� a)

✓
b

r
� 1
◆

.

Now let Situation (2) be: inner sphere at zero, outer at V0, no charge at r.
Z

V1⇢2 d⌧ = 0 =
Z

V2⇢1 d⌧ = Va2Qa1 + Vr2Qr1 + Vb2Qb1 = 0 + qVr2 + QbV0.

This time V (r) = A +
B

r
with V (a) = 0) A + B/a = 0; V (b) = V0 ) A + B/b = V0, so

V (r) =
bV0

(b� a)

⇣
1� a

r

⌘
. Therefore q

bV0

(b� a)

⇣
1� a

r

⌘
+ QbV0 = 0; Qb = � qb

(b� a)

⇣
1� a

r

⌘
.

Problem 3.52

(a)
3X

i,j=1

r̂ir̂jQij =
1
2

Z
8
<

:3
3X

i=1

r̂ir
0
i

3X

j=1

r̂jr
0
j � (r0)2

X

i,j

r̂ir̂j�ij

9
=

; ⇢ d⌧
0

But
3X

i=1

r̂ir
0
i = r̂ · r0 = r

0 cos↵ =
3X

j=1

r̂jr
0
j ;

X

i,j

r̂ir̂j�ij =
X

r̂j r̂j = r̂ · r̂ = 1. So

Vquad =
1

4⇡✏0
1
r3

Z
1
2

⇣
3r
02 cos2 ↵� r

02
⌘
⇢ d⌧

0 = the third term in Eq. 3.96. X
(b) Because x

2 = y
2 = (a/2)2 for all four charges, Qxx = Qyy = 1

2

⇥
3(a/2)2 � (

p
2a/2)2

⇤
(q� q� q + q) = 0.

Because z = 0 for all four charges, Qzz = 1
2 [�(
p

2a/2)2](q � q � q + q) = 0 and Qxz = Qyz = Qzx = Qzy = 0.

This leaves only

Qxy = Qyx =
3
2

h⇣
a

2

⌘⇣
a

2

⌘
q +

⇣
a

2

⌘⇣
�a

2

⌘
(�q) +

⇣
�a

2

⌘⇣
a

2

⌘
(�q) +

⇣
�a

2

⌘⇣
�a

2

⌘
q

i
=

3
2
a
2
q.
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(c)

2Qij =
Z ⇥

3(ri � di)(rj � dj)� (r� d)2�ij
⇤
⇢ d⌧ (I0ll drop the primes, for simplicity.)

=
Z ⇥

3rirj � r
2
�ij

⇤
⇢ d⌧ � 3di

Z
rj⇢ d⌧ � 3dj

Z
ri⇢ d⌧ + 3didj

Z
⇢ d⌧ + 2d ·

Z
r⇢ d⌧ �ij

� d
2
�ij

Z
⇢ d⌧ = Qij � 3(dipj + djpi) + 3didjQ + 2�ijd · p� d

2
�ijQ.

So if p = 0 and Q = 0 then Qij = Qij . qed
(d) Eq. 3.95 with n = 3:

Voct =
1

4⇡✏0
1
r4

Z
(r0)3P3(cos↵)⇢ d⌧

0; P3(cos ✓) =
1
2
�
5 cos3 ✓ � 3 cos ✓

�
.

Voct =
1

4⇡✏0
1
r4

X

i,j,k

r̂ir̂j r̂kQijk.

Define the “octopole moment” as

Qijk ⌘
1
2

Z ⇥
5r
0
ir
0
jr
0
k � (r0)2(r0i�jk + r

0
j�ik + r

0
k�ij)

⇤
⇢(r0) d⌧

0
.

Problem 3.53

V =
1

4⇡✏0

⇢
q

✓
1

r 1
� 1

r 2

◆
+ q

0
✓

1
r 3
� 1

r 4

◆�

r 1 =
p

r2 + a2 � 2ra cos ✓,

r 2 =
p

r2 + a2 + 2ra cos ✓,

r 3 =
p

r2 + b2 � 2rb cos ✓,

r 1 =
p

r2 + b2 + 2rb cos ✓.

3

Problem 3.46

−q +q

r

−q′

+q′

✯❃✒✼▼

2
4

r
3

1

θ

︸ ︷︷ ︸

a
︸ ︷︷ ︸

a

︸︷︷︸

b

︸︷︷︸

b
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r r
r

r

Expanding as in Ex. 3.10:
✓

1
r 1
� 1

r 2

◆
⇠=

2r

a2
cos ✓ (we want a� r, not r � a, this time).

✓
1

r 3
� 1

r 4

◆
⇠=

2b

r2
cos ✓ (here we want b⌧ r, because b = R

2
/a, Eq. 3.16)

=
2
a

R
2

r2
cos ✓.

But q
0 = �R

a
q (Eq. 3.15), so

V (r, ✓) ⇠=
1

4⇡✏0


q
2r

a2
cos ✓ � R

a
q
2
a

R
2

r2
cos ✓

�
=

1
4⇡✏0

✓
2q

a2

◆✓
r � R

3

r2

◆
cos ✓.
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Set E0 = � 1
4⇡✏0

2q

a2
(field in the vicinity of the sphere produced by ±q):

V (r, ✓) = �E0

✓
r � R

3

r2

◆
cos ✓ (agrees with Eq. 3.76).

Problem 3.54

The boundary conditions are

(i) V = 0 when y = 0,

(ii) V = V0 when y = a,

(iii) V = 0 when x = b,

(iv) V = 0 when x = �b.

9
>>=

>>;

Go back to Eq. 3.26 and examine the case k = 0: d
2
X/dx

2 = d
2
Y/dy

2 = 0, so X(x) = Ax+B, Y (y) = Cy+D.
But this configuration is symmetric in x, so A = 0, and hence the k = 0 solution is V (x, y) = Cy + D. Pick
D = 0, C = V0/a, and subtract o↵ this part:

V (x, y) = V0
y

a
+ V̄ (x, y).

The remainder (V̄ (x, y)) satisfies boundary conditions similar to Ex. 3.4:

(i) V̄ = 0 when y = 0,

(ii) V̄ = 0 when y = a,

(iii) V̄ = �V0(y/a) when x = b,

(iv) V̄ = �V0(y/a) when x = �b.

9
>>=

>>;

(The point of peeling o↵ V0(y/a) was to recover (ii), on which the constraint k = n⇡/a depends.)
The solution (following Ex. 3.4) is

V̄ (x, y) =
1X

n=1

Cn cosh(n⇡x/a) sin(n⇡y/a),

and it remains to fit condition (iii):

V̄ (b, y) =
X

Cn cosh(n⇡b/a) sin(n⇡y/a) = �V0(y/a).

Invoke Fourier’s trick:
X

Cn cosh(n⇡b/a)
Z a

0
sin(n⇡y/a) sin(n0⇡y/a) dy = �V0

a

Z a

0
y sin(n0⇡y/a) dy,

a

2
Cn cosh(n⇡b/a) = �V0

a

Z a

0
y sin(n⇡y/a) dy.

Cn = � 2V0

a2 cosh(n⇡b/a)

⇣
a

n⇡

⌘2
sin(n⇡y/a)�

⇣
ay

n⇡

⌘
cos(n⇡y/a)

�����
a

0

=
2V0

a2 cosh(n⇡b/a)

✓
a
2

n⇡

◆
cos(n⇡) =

2V0

n⇡

(�1)n

cosh(n⇡b/a)
.
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V (x, y) = V0

"
y

a
+

2
⇡

1X

n=1

(�1)n

n

cosh(n⇡x/a)
cosh(n⇡b/a)

sin(n⇡y/a)

#
.

Alternatively, start with the separable solution

V (x, y) = (C sin kx + D cos kx)
�
Ae

ky + Be
�ky
�
.

Note that the configuration is symmetric in x, so C = 0, and V (x, 0) = 0 ) B = �A, so (combining the
constants)

V (x, y) = A cos kx sinh ky.

But V (b, y) = 0, so cos kb = 0, which means that kb = ±⇡/2,±3⇡/2, . . . , or k = (2n � 1)⇡/2b ⌘ ↵n, with
n = 1, 2, 3, . . . (negative k does not yield a di↵erent solution—the sign can be absorbed into A). The general
linear combination is

V (x, y) =
1X

n=1

An cos↵nx sinh↵ny,

and it remains to fit the final boundary condition:

V (x, a) = V0 =
1X

n=1

An cos↵nx sinh↵na.

Use Fourier’s trick, multiplying by cos↵n0x and integrating:

V0

Z b

�b
cos↵n0x dx =

1X

n=1

An sinh↵na

Z b

�b
cos↵n0x cos↵nx dx,

V0
2 sin↵n0b

↵n0
=

1X

n=1

An sinh↵na(b�n0 n) = bAn0 sinh↵n0a.

So An =
2V0

b

sin↵nb

↵n sinh↵na
. But sin↵nb = sin

✓
2n� 1

2
⇡

◆
= �(�1)n, so

V (x, y) = �2V0

b

1X

n=1

(�1)n sinh↵ny

↵n sinh↵na
cos↵nx.

Problem 3.55

(a) Using Prob. 3.15b (with b = a):

V (x, y) =
4V0

⇡

X

n odd

sinh(n⇡x/a) sin(n⇡y/a)
n sinh(n⇡)

.
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�(y) = �✏0
@V

@x

���
x=0

= �✏0
4V0

⇡

X

n odd

⇣
n⇡

a

⌘ cosh(n⇡x/a) sin(n⇡y/a)
n sinh(n⇡)

����
x=0

= �4✏0V0

a

X

n odd

sin(n⇡y/a)
sinh(n⇡)

.

� =
Z a

0
�(y) dy = �4✏0V0

a

X

n odd

1
sinh(n⇡)

Z a

0
sin(n⇡y/a) dy.

But
Z a

0
sin(n⇡y/a) dy = � a

n⇡
cos(n⇡y/a)

��a
0

=
a

n⇡
[1� cos(n⇡)] =

2a

n⇡
(since n is odd).

= �8✏0V0

⇡

X

n odd

1
n sinh(n⇡)

= �✏0V0

⇡
ln 2.

[Summing the series numerically (using Mathematica) gives 0.0866434, which agrees precisely with ln 2/8.
The series can be summed analytically, by manipulation of elliptic integrals—see “Integrals and Series, Vol. I:
Elementary Functions,” by A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (Gordon and Breach, New
York, 1986), p. 721. I thank Ram Valluri for calling this to my attention.]

Using Prob. 3.54 (with b = a/2):

V (x, y) = V0

"
y

a
+

2
⇡

X

n

(�1)n cosh(n⇡x/a) sin(n⇡y/a)
n cosh(n⇡/2)

#
.

�(x) = �✏0
@V

@y

���
y=0

= �✏0V0

"
1
a

+
2
⇡

X

n

⇣
n⇡

a

⌘ (�1)n cosh(n⇡x/a) cos(n⇡y/a)
n cosh(n⇡/2)

#���
y=0

= �✏0V0

"
1
a

+
2
a

X

n

(�1)n cosh(n⇡x/a)
cosh(n⇡/2)

#
= �✏0V0

a

"
1 + 2

X

n

(�1)n cosh(n⇡x/a)
cosh(n⇡/2)

#
.

� =
Z a/2

�a/2
�(x) dx = �✏0V0

a

"
a + 2

X

n

(�1)n

cosh(n⇡/2)

Z a/2

�a/2
cosh(n⇡x/a) dx

#
.

But
Z a/2

�a/2
cosh(n⇡x/a) dx =

a

n⇡
sinh(n⇡x/a)

����
a/2

�a/2

=
2a

n⇡
sinh(n⇡/2).

= �✏0V0

a

"
a +

4a

⇡

X

n

(�1)n tanh(n⇡/2)
n

#
= �✏0V0

"
1 +

4
⇡

X

n

(�1)n tanh(n⇡/2)
n

#

= �✏0V0

⇡
ln 2.

[The numerical value is -0.612111, which agrees with the expected value (ln 2� ⇡)/4.]
(b) From Prob. 3.24:

V (s,�) = a0 + b0 ln s +
1X

k=1

✓
aks

k + bk
1
sk

◆
[ck cos(k�) + dk sin(k�)].

In the interior (s < R) b0 and bk must be zero (ln s and 1/s blow up at the origin). Symmetry ) dk = 0. So

V (s,�) = a0 +
1X

k=1

aks
k cos(k�).
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4

Problem 3.48

✲ x

✻
y

V0

Problem 3.49

✻
z

❄
mg

❦
l

T

φ

θ
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At the surface:

V (R,�) =
X

k=0

akR
k cos(k�) =

⇢
V0, if � ⇡/4 < � < ⇡/4,

0, otherwise.

Fourier’s trick: multiply by cos(k0�) and integrate from �⇡ to ⇡:

1X

k=0

akR
k

Z ⇡

�⇡
cos(k�) cos(k0�) d� = V0

Z ⇡/4

�⇡/4
cos(k0�) d� =

8
<

:
V0 sin(k0�)/k

0
���
⇡/4

�⇡/4
= (V0/k

0) sin(k0⇡/4), if k
0 6= 0,

V0⇡/2, if k
0 = 0.

But
Z ⇡

�⇡
cos(k�) cos(k0�) d� =

8
<

:

0, if k 6= k
0

2⇡, if k = k
0 = 0,

⇡, if k = k
0 6= 0.

So 2⇡a0 = V0⇡/2) a0 = V0/4; ⇡akR
k = (2V0/k) sin(k⇡/4)) ak = (2V0/⇡kR

k) sin(k⇡/4) (k 6= 0); hence

V (s,�) = V0

"
1
4

+
2
⇡

1X

k=1

sin(k⇡/4)
k

⇣
s

R

⌘k
cos(k�)

#
.

Using Eq. 2.49, and noting that in this case n̂ = �ŝ:

�(�) = ✏0
@V

@s

���
s=R

= ✏0V0
2
⇡

1X

k=1

sin(k⇡/4)
kRk

ks
k�1 cos(k�)

���
s=R

=
2✏0V0

⇡R

1X

k=1

sin(k⇡/4) cos(k�).

We want the net (line) charge on the segment opposite to V0 (�⇡ < � < �3⇡/4 and 3⇡/4 < � < ⇡):

� =
Z
�(�)R d� = 2R

Z ⇡

3⇡/4
�(�) d� =

4✏0V0

⇡

1X

k=1

sin(k⇡/4)
Z ⇡

3⇡/4
cos(k�) d�

=
4✏0V0

⇡

1X

k=1

sin(k⇡/4)

sin(k�)

k

���
⇡

3⇡/4

�
= �4✏0V0

⇡

1X

k=1

sin(k⇡/4) sin(3k⇡/4)
k

.

k sin(k⇡/4) sin(3k⇡/4) product
1 1/

p
2 1/

p
2 1/2

2 1 -1 -1
3 1/

p
2 1/

p
2 1/2

4 0 0 0
5 -1/

p
2 -1/

p
2 1/2

6 -1 1 -1
7 -1/

p
2 -1/

p
2 1/2

8 0 0 0
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� = �4✏0V0

⇡

"
1
2

X

1,3,5...

1
k
�

X

2,6,10,...

1
k

#
= �4✏0V0

⇡

"
1
2

X

1,3,5...

1
k
� 1

2

X

1,3,5,...

1
k

#
= 0.

Ouch! What went wrong? The problem is that the series
P

(1/k) is divergent, so the “subtraction” 1�1
is suspect. One way to avoid this is to go back to V (s,�), calculate ✏0(@V/@s) at s 6= R, and save the limit
s! R until the end:

�(�, s) ⌘ ✏0
@V

@s
=

2✏0V0

⇡

1X

k=1

sin(k⇡/4)
k

ks
k�1

Rk
cos(k�)

=
2✏0V0

⇡R

1X

k=1

x
k�1 sin(k⇡/4) cos(k�) (where x ⌘ s/R! 1 at the end).

�(x) ⌘ �(�, s)R d� = �4✏0V0

⇡

1X

k=1

1
k

x
k�1 sin(k⇡/4) sin(3k⇡/4)

= �4✏0V0

⇡


1
2x

✓
x +

x
3

3
+

x
5

5
+ · · ·

◆
� 1

x

✓
x

2

2
+

x
6

6
+

x
10

10
+ · · ·

◆�

= �2✏0V0

⇡x

✓
x +

x
3

3
+

x
5

5
+ · · ·

◆
�
✓

x
2 +

x
6

3
+

x
10

5
+ · · ·

◆�
.

But (see math tables) : ln
✓

1 + x

1� x

◆
= 2

✓
x +

x
3

3
+

x
5

5
+ · · ·

◆
.

= �2✏0V0

⇡x


1
2

ln
✓

1 + x

1� x

◆
� 1

2
ln
✓

1 + x
2

1� x2

◆�
= �✏0V0

⇡x
ln
✓

1 + x

1� x

◆✓
1 + x

2

1� x2

◆�

= �✏0V0

⇡x
ln

(1 + x)2

1 + x2

�
; � = lim

x!1
�(x) =

�✏0V0

⇡
ln 2.

Problem 3.56

F = qE =
qp

4⇡✏0r3
(2 cos ✓ r̂ + sin ✓ ✓̂).

4

Problem 3.48

✲ x

✻
y

V0

Problem 3.49

✻
z

❄
mg

❦
l

T

φ

θ
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Now consider the pendulum: F = �mg ẑ � T r̂, where T � mg cos� = mv
2
/l and (by conservation of

energy) mgl cos� = (1/2)mv
2 ) v

2 = 2gl cos� (assuming it started from rest at � = 90�, as stipulated). But
cos� = � cos ✓, so T = mg(� cos ✓) + (m/l)(�2gl cos ✓) = �3mg cos ✓, and hence

F = �mg(cos ✓ r̂� sin ✓ ✓̂) + 3mg cos ✓ r̂ = mg(2 cos ✓ r̂ + sin ✓ ✓̂).

This total force is such as to keep the pendulum on a circular arc, and it is identical to the force on q in the
field of a dipole, with mg $ qp/4⇡✏0l3. Evidently q also executes semicircular motion, as though it were on a
tether of fixed length l.
Problem 3.57 Symmetry suggests that the plane of the orbit is perpendicular to the z axis, and since we need
a centripetal force, pointing in toward the axis, the orbit must lie at the bottom of the field loops (Fig. 3.37a),
where the z component of the field is zero. Referring to Eq. 3.104,
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E · ẑ = 0) 3(p · r̂)(r̂ · ẑ)�p · ẑ = 0, or 3 cos2 ✓�1 = 0. So cos2 ✓ = 1/3, cos ✓ = �1/
p

3, sin ✓ =
p

2/3, z/s =

tan ✓ ) z = �
p

2 s. The field at the orbit is (Eq. 3.103)

E =
p

4⇡✏0r3

 
�2

1p
3

r̂ +
r

2
3

✓̂

!

=
p

4⇡✏0r3

r
2
3

h
�
p

2(sin ✓ cos� x̂ + sin ✓ sin� ŷ + cos ✓ ẑ) + (cos ✓ cos� x̂ + cos ✓ sin� ŷ � sin ✓ ẑ)
i

=
p

4⇡✏0r3

r
2
3

h⇣
�
p

2 sin ✓ + cos ✓
⌘

cos� x̂ +
⇣
�
p

2 sin ✓ + cos ✓
⌘

sin� ŷ +
⇣
�
p

2 cos ✓ � sin ✓
⌘

ẑ

i

=
p

4⇡✏0r3

r
2
3

" 
�
p

2
r

2
3
� 1p

3

!
(cos� x̂ + sin� ŷ) +

 
p

2
1p
3
�
r

2
3

!
ẑ

#

=
p

4⇡✏0r3

r
2
3

h
�
p

3 (cos� x̂ + sin� ŷ)
i

= � p

4⇡✏0r3

p
2 ŝ = � p

3
p

3⇡✏0s3
ŝ.

(I used s = r sin ✓ = r

p
2/3, in the last step.)

The centripetal force is

F = qE = � qp

3
p

3⇡✏0s3
= �mv

2

s
) v

2 =
qp

3
p

3⇡✏0ms2
) v =

1
s

r
qp

3
p

3⇡✏0m
.

The angular momentum is

L = smv =
r

qpm

3
p

3⇡✏0
,

the same for all orbits, regardless of their radius (!), and the energy is

W =
1
2
mv

2 + qV =
1
2

qp

3
p

3⇡✏0s2
+

q

4⇡✏0
p cos ✓

r2
=

qp

6
p

3⇡✏0s2
� qp

4⇡✏0
p

3(3/2)s2
= 0.

Problem 3.58

Potential of q: Vq(r) =
1

4⇡✏0
q

r , where r 2 = a
2 + r

2 � 2ar cos ✓.

Equation 3.94, with r
0 ! a and ↵! ✓:

1
r =

1
r

1X

n=0

⇣
a

r

⌘n
Pn(cos ✓). So

Vq(r, ✓) =
q

4⇡✏0
1
r

1X

n=0

⇣
a

r

⌘n
Pn(cos ✓).

Meanwhile, the potential of � is (Eq. 3.79) V�(r, ✓) =
1X

l=0

Bl

rl+1
Pl(cos ✓).

Comparing the two (Vq = V�) we see that Bl = (q/4⇡✏0)al, and hence (Eq. 3.81) Al = (q/4⇡✏0)al
/R

2l+1
. Then

(Eq. 3.83)

�(✓) =
q

4⇡R2

1X

l=0

(2l + 1)
⇣

a

R

⌘l
Pl(cos ✓) =

q

4⇡R2

"
2
1X

l=0

l

⇣
a

R

⌘l
Pl(cos ✓) +

1X

l=0

⇣
a

R

⌘l
Pl(cos ✓)

#
.
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Now (second line above, with r ! R)

1p
a2 + R2 � 2aR cos ✓

=
1
R

1X

l=0

⇣
a

R

⌘l
Pl(cos ✓).

Di↵erentiating with respect to a:

d

da

✓
1p

a2 + R2 � 2aR cos ✓

◆
= � (a�R cos ✓)

(a2 + R2 � 2aR cos ✓)3/2
=

1
aR

1X

l=0

l

⇣
a

R

⌘l
Pl(cos ✓).

Thus

�(✓) =
q

4⇡R2


�2aR

(a�R cos ✓)
(a2 + R2 � 2aR cos ✓)3/2

+
R

(a2 + R2 � 2aR cos ✓)1/2

�

=
q

4⇡R

⇥
�2a(a�R cos ✓) + (a2 + R

2 � 2aR cos ✓)
⇤

(a2 + R2 � 2aR cos ✓)3/2
=

q

4⇡R

(R2 � a
2)

(a2 + R2 � 2aR cos ✓)3/2
.
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Chapter 4

Electric Fields in Matter

Problem 4.1

E = V/x = 500/10�3 = 5⇥105. Table 4.1: ↵/4⇡✏0 = 0.66⇥10�30, so ↵ = 4⇡(8.85⇥10�12)(0.66⇥10�30) =
7.34⇥ 10�41

. p = ↵E = ed ) d = ↵E/e = (7.34⇥ 10�41)(5⇥ 105)/(1.6⇥ 10�19) = 2.29⇥ 10�16 m.
d/R = (2.29⇥ 10�16)/(0.5⇥ 10�10) = 4.6⇥ 10�6

. To ionize, say d = R. Then R = ↵E/e = ↵V/ex ) V =

Rex/↵ = (0.5⇥ 10�10)(1.6⇥ 10�19)(10�3)/(7.34⇥ 10�41) = 108 V.

Problem 4.2

First find the field, at radius r, using Gauss’ law:
R

E·da = 1
✏0

Qenc, or E = 1
4⇡✏0

1
r2 Qenc.

Qenc =
Z r

0
⇢ d⌧ =

4⇡q

⇡a3

Z r

0
e
�2r/a

r
2
dr =

4q

a3


�a

2
e
�2r/a

✓
r
2 + ar +

a
2

2

◆�����
r

0

= �2q

a2


e
�2r/a

✓
r
2 + ar +

a
2

2

◆
� a

2

2

�
= q


1� e

�2r/a

✓
1 + 2

r

a
+ 2

r
2

a2

◆�
.

[Note: Qenc(r !1) = q.] So the field of the electron cloud is Ee = 1
4⇡✏0

q
r2

h
1� e

�2r/a
⇣
1 + 2 r

a + 2 r2

a2

⌘i
. The

proton will be shifted from r = 0 to the point d where Ee = E (the external field):

E =
1

4⇡✏0
q

d2


1� e

�2d/a

✓
1 + 2

d

a
+ 2

d
2

a2

◆�
.

Expanding in powers of (d/a):

e
�2d/a = 1�

✓
2d

a

◆
+

1
2

✓
2d

a

◆2

� 1
3!

✓
2d

a

◆3

+ · · · = 1� 2
d

a
+ 2

✓
d

a

◆2

� 4
3

✓
d

a

◆3

+ · · ·

1� e
�2d/a

✓
1 + 2

d

a
+ 2

d
2

a2

◆
= 1�

 
1� 2

d

a
+ 2

✓
d

a

◆2

� 4
3

✓
d

a

◆3

+ · · ·
!✓

1 + 2
d

a
+ 2

d
2

a2

◆

= 1/ � 1/ � 2
d

a
/ � 2

d
2

a2
/ + 2

d

a
/ + 4

d
2

a2
/ + 4

d
3

a3
/ � 2

d
2

a2
/ � 4

d
3

a3
/ +

4
3

d
3

a3
+ · · ·

=
4
3

✓
d

a

◆3

+ higher order terms.
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E =
1

4⇡✏0
q

d2

✓
4
3

d
3

a3

◆
=

1
4⇡✏0

4
3a3

(qd) =
1

3⇡✏0a3
p. ↵ = 3⇡✏0a3

.

[Not so di↵erent from the uniform sphere model of Ex. 4.1 (see Eq. 4.2). Note that this result predicts
1

4⇡✏0
↵ = 3

4a
3 = 3

4

�
0.5⇥ 10�10

�3 = 0.09 ⇥ 10�30 m3, compared with an experimental value (Table 4.1) of
0.66⇥ 10�30 m3. Ironically the “classical” formula (Eq. 4.2) is slightly closer to the empirical value.]
Problem 4.3

⇢(r) = Ar. Electric field (by Gauss’s Law):
H

E·da = E
�
4⇡r

2
�

= 1
✏0

Qenc = 1
✏0

R r
0 Ar 4⇡r

2
dr, or E =

1
4⇡r2

4⇡A

✏0

r
4

4
=

Ar
2

4✏0
. This “internal” field balances the external field E when nucleus is “o↵-center” an amount

d: ad
2
/4✏0 = E ) d =

p
4✏0E/A. So the induced dipole moment is p = ed = 2e

p
✏0/A

p
E. Evidently

p is proportional to E
1/2.

For Eq. 4.1 to hold in the weak-field limit, E must be proportional to r, for small r, which means that ⇢
must go to a constant (not zero) at the origin: ⇢(0) 6= 0 (nor infinite).

Problem 4.4

1

Contents

Problem 4.4

q
r

Problem 4.6

✸
−

+θ
p

❦
−

+

θ
pi

z

z
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Field of q: 1
4⇡✏0

q
r2 r̂. Induced dipole moment of atom: p = ↵E =

↵ q
4⇡✏0r2 r̂.

Field of this dipole, at location of q (✓ = ⇡, in Eq. 3.103): E =
1

4⇡✏0
1
r3

✓
2↵ q

4⇡✏0r2

◆
(to the right).

Force on q due to this field: F = 2↵
✓

q

4⇡✏0

◆2 1
r5

(attractive).

Problem 4.5

Field of p1 at p2 (✓ = ⇡/2 in Eq. 3.103): E1 =
p1

4⇡✏0r3
✓̂ (points down).

Torque on p2: N2 = p2 ⇥E1 = p2E1 sin 90� = p2E1 =
p1p2

4⇡✏0r3
(points into the page).

Field of p2 at p1 (✓ = ⇡ in Eq. 3.103): E2 =
p2

4⇡✏0r3
(�2 r̂) (points to the right).

Torque on p1: N1 = p1 ⇥E2 =
2p1p2

4⇡✏0r3
(points into the page).

Problem 4.6

(a) (b)

1

Contents

Problem 4.4

q
r

Problem 4.6

✸
−

+θ
p

❦
−

+

θ
pi

z

z
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1

Hello

θ 2z

pi

p

θ

✻

✲
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Use image dipole as shown in Fig. (a).
Redraw, placing pi at the origin, Fig. (b).

Ei =
p

4⇡✏0(2z)3
(2 cos ✓ r̂ + sin ✓ ✓̂); p = p cos ✓ r̂ + p sin ✓ ✓̂.

N = p⇥Ei =
p
2

4⇡✏0(2z)3
h
(cos ✓ r̂ + sin ✓ ✓̂)⇥ (2 cos ✓ r̂ + sin ✓ ✓̂)

i

=
p
2

4⇡✏0(2z)3
h
cos ✓ sin ✓ �̂ + 2 sin ✓ cos ✓(� �̂)

i

=
p
2 sin ✓ cos ✓
4⇡✏0(2z)3

(��̂) (out of the page).
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But sin ✓ cos ✓ = (1/2) sin 2✓, so N =
p
2 sin 2✓

4⇡✏0(16z3)
(out of the page).

For 0 < ✓ < ⇡/2, N tends to rotate p counterclockwise; for ⇡/2 < ✓ < ⇡, N rotates p clockwise. Thus the
stable orientation is perpendicular to the surface—either " or #.

Problem 4.7

If the potential is zero at infinity, the energy of a point charge Q is (Eq. 2.39) W = QV (r). For a physical
dipole, with �q at r and +q at r + d,

U = qV (r + d)� qV (r) = q[V (r + d)� V (r)] = q

"
�
Z r+d

r
E · dl

#
.

For an ideal dipole the integral reduces to E · d, and

U = �qE · d = �p ·E,

since p = qd. If you do not (or cannot) use infinity as the reference point, the result still holds, as long as
you bring the two charges in from the same point, r0 (or two points at the same potential). In that case
W = Q[V (r)� V (r0)], and

U = q[V (r + d)� V (r0)]� q[V (r)� V (r0)] = q[V (r + d)� V (r)],

as before.
Problem 4.8

U = �p1·E2, but E2 = 1
4⇡✏0

1
r3 [3 (p2 ·̂r) r̂� p2]. So U = 1

4⇡✏0
1
r3 [p1·p2 � 3 (p1 ·̂r) (p2 ·̂r)]. qed

Problem 4.9

(a) F = (p ·r)E (Eq. 4.5); E =
1

4⇡✏0
q

r2
r̂ =

q

4⇡✏0
x x̂ + y ŷ + z ẑ

(x2 + y2 + z2)3/2
.

Fx =
✓

px
@

@x
+ py

@

@y
+ pz

@

@z

◆
q

4⇡✏0
x

(x2 + y2 + z2)3/2

=
q

4⇡✏0

⇢
px


1

(x2 + y2 + z2)3/2
� 3

2
x

2x

(x2 + y2 + z2)5/2

�
+ py


�3

2
x

2y

(x2 + y2 + z2)5/2

�

+ pz


�3

2
x

2z

(x2 + y2 + z2)5/2

��
=

q

4⇡✏0


px

r3
� 3x

r5
(pxx + pyy + pzz)

�
=

q

4⇡✏0


p

r3
� 3r(p · r)

r5

�

x

.

F =
1

4⇡✏0
q

r3
[p� 3(p · r̂) r̂] .

(b) E =
1

4⇡✏0
1
r3
{3 [p · (�r̂)] (�r̂)� p} =

1
4⇡✏0

1
r3

[3(p · r̂) r̂� p] . (This is from Eq. 3.104; the minus signs

are because r points toward p, in this problem.)

F = qE =
1

4⇡✏0
q

r3
[3(p · r̂) r̂� p] .

[Note that the forces are equal and opposite, as you would expect from Newton’s third law.]
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Problem 4.10

(a) �b = P·n̂ = kR; ⇢b = �r·P = � 1
r2

@

@r
(r2

kr) = � 1
r2

3kr
2 = �3k.

(b) For r < R, E = 1
3✏0
⇢r r̂ (Prob. 2.12), so E = �(k/✏0) r.

For r > R, same as if all charge at center; but Qtot = (kR)(4⇡R
2) + (�3k)( 4

3⇡R
3) = 0, so E = 0.

Problem 4.11

⇢b = 0; �b = P·n̂ = ±P (plus sign at one end—the one P points toward ; minus sign at the other—the one
P points away from).

(i) L� a. Then the ends look like point charges, and the whole thing is like a physical dipole, of length L and
charge P⇡a

2. See Fig. (a).

(ii) L⌧ a. Then it’s like a circular parallel-plate capacitor. Field is nearly uniform inside; nonuniform “fringing
field” at the edges. See Fig. (b).

(iii) L ⇡ a. See Fig. (c).

2

θ z

pi

p
θ

✻

✲

Problem 4.7

✲
x

✻y

p

p
θ

✲ ✒

✻E

Problem 4.11

✛

✛

✛

✛

✛

✛
✲

P

(a) Like a dipole

− +

✛✛✛✛✛✛✛✛✛✛✛✛

✛ ✻

❄

✻

❄

✲
P

(b) Like a parallel-plate capacitor

− +

✛

✛

✛

✛

✛
✛

✛

✛

✛

✲
P

(c)
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Problem 4.12

V = 1
4⇡✏0

R
P· r̂r 2 d⌧ = P·

n
1

4⇡✏0

R r̂r 2 d⌧

o
. But the term in curly brackets is precisely the field of a uniformly

charged sphere, divided by ⇢. The integral was done explicitly in Probs. 2.7 and 2.8:

1
4⇡✏0

Z r̂
r 2 d⌧ =

1
⇢

8
>>><

>>>:

1
4⇡✏0

(4/3)⇡R
3
⇢

r2
r̂, (r > R),

1
4⇡✏0

(4/3)⇡R
3
⇢

R3
r, (r < R).

9
>>>=

>>>;
So V (r, ✓) =

8
>>>>><

>>>>>:

R
3

3✏0r2
P·̂r =

R
3
P cos ✓
3✏0r2

, (r > R),

1
3✏0

P·r =
Pr cos ✓

3✏0
, (r < R).

9
>>>>>=

>>>>>;

Problem 4.13

Think of it as two cylinders of opposite uniform charge density ±⇢. Inside, the field at a distance s from
the axis of a uniformly charge cylinder is given by Gauss’s law: E2⇡s` = 1

✏0
⇢⇡s

2
` ) E = (⇢/2✏0)s. For

two such cylinders, one plus and one minus, the net field (inside) is E = E+ + E� = (⇢/2✏0) (s+ � s�). But
s+ � s� = �d, so E = �⇢d/(2✏0), where d is the vector from the negative axis to positive axis. In this case

the total dipole moment of a chunk of length ` is P
�
⇡a

2
`
�

=
�
⇢⇡a

2
`
�
d. So ⇢d = P, and E = �P/(2✏0), for

s < a.
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Outside, Gauss’s law gives E2⇡s` = 1
✏0
⇢⇡a

2
` ) E = ⇢a2

2✏0
ŝ
s , for one cylinder. For the combination, E =

E+ + E� = ⇢a2

2✏0

⇣
ŝ+
s+
� ŝ�

s�

⌘
, where

s± = s⌥ d

2
;

s±
s
2
±

=
✓
s⌥ d

2

◆✓
s
2 +

d
2

4
⌥ s · d

◆�1

⇠=
1
s2

✓
s⌥ d

2

◆✓
1⌥ s · d

s2

◆�1

⇠=
1
s2

✓
s⌥ d

2

◆✓
1± s · d

s2

◆

=
1
s2

✓
s± s

(s · d)
s2

⌥ d

2

◆
(keeping only 1st order terms in d).

✓
ŝ+

s+
� ŝ�

s�

◆
=

1
s2

✓
s + s

(s · d)
s2

� d

2

◆
�
✓
s� s

(s · d)
s2

+
s

2

◆�
=

1
s2

✓
2
s(s · d)

s2
� d

◆
.

E(s) =
a
2

2✏0
1
s2

[2(P · ŝ) ŝ�P] , for s > a.

Problem 4.14

Total charge on the dielectric is Qtot =
H
S �b da +

R
V ⇢b d⌧ =

H
S P · da �

R
V r·P d⌧ . But the divergence

theorem says
H
S P · da =

R
V r·P d⌧ , so Qenc = 0. qed

Problem 4.15

(a) ⇢b = �r·P = � 1
r2

@

@r

✓
r
2 k

r

◆
= � k

r2
; �b = P·n̂ =

⇢
+P · r̂ = k/b (at r = b),
�P · r̂ = �k/a (at r = a).

�

Gauss’s law ) E = 1
4⇡✏0

Qenc
r2 r̂. For r < a, Qenc = 0, so E = 0. For r > b, Qenc = 0 (Prob. 4.14), so E = 0.

For a < r < b, Qenc =
��k

a

� �
4⇡a

2
�

+
R r

a

��k
r2

�
4⇡r

2
dr = �4⇡ka� 4⇡k(r � a) = �4⇡kr; so E = �(k/✏0r) r̂.

(b)
H

D·da = Qfenc = 0) D = 0 everywhere. D = ✏0E + P = 0) E = (�1/✏0)P, so
E = 0 (for r < a and r > b); E = �(k/✏0r) r̂ (for a < r < b).

Problem 4.16

(a) Same as E0 minus the field at the center of a sphere with uniform polarization P. The latter (Eq. 4.14)

is �P/3✏0. So E = E0 +
1

3✏0
P. D = ✏0E = ✏0E0 + 1

3P = D0 �P + 1
3P, so D = D0 � 2

3P.

(b) Same as E0 minus the field of ± charges at the two ends of the “needle”—but these are small, and far
away, so E = E0. D = ✏0E = ✏0E0 = D0 �P, so D = D0 �P.

(c) Same as E0 minus the field of a parallel-plate capacitor with upper plate at � = P . The latter is
�(1/✏0)P , so E = E0 + 1

✏0
P. D = ✏0E = ✏0E0 + P, so D = D0.
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Problem 4.17

1

Hello

✻✻✻✻✻✻✻

P

(uniform)

❄ ❄❄❄❄ ❄❄ ❄❄

E

(field of two circular plates)

✻❄ ✻❄❄✻❄ ✻ ❄✻❄ ✻

D

(same as E outside, but lines
continuous, since ∇·D = 0)
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For more detailed figures see the solution to Problem 6.14, reading P for M, E for H, and D for B.
Problem 4.18

(a) Apply
R

D · da = Qfenc to the gaussian surface shown. DA = �A) D = �. (Note: D = 0 inside the
metal plate.) This is true in both slabs; D points down.

6

Problem 4.18

❖
+σ

−σ

+σ/3

−σ/3
+σ/2

−σ/2

+σ

2⃝

1⃝

Problem 4.22

✛
y

✻
x

✙
z

φ
✻E0
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(b) D = ✏E) E = �/✏1 in slab 1, E = �/✏2 in slab 2. But ✏ = ✏0✏r, so ✏1 = 2✏0; ✏2 = 3
2✏0. E1 = �/2✏0,

E2 = 2�/3✏0.

(c) P = ✏0�eE, so P = ✏0�ed/(✏0✏r) = (�e/✏r)�; �e = ✏r � 1) P = (1� ✏�1
r )�. P1 = �/2, P2 = �/3.

(d) V = E1a + E2a = (�a/6✏0)(3 + 4) = 7�a/6✏0.

(e) ⇢b = 0; �b = +P1 at bottom of slab (1) = �/2,

�b = �P1 at top of slab (1) = ��/2;
�b = +P2 at bottom of slab (2) = �/3,

�b = �P2 at top of slab (2) = ��/3.

(f) In slab 1:
⇢

total surface charge above: � � (�/2) = �/2,

total surface charge below : (�/2)� (�/3) + (�/3)� � = ��/2,

�
=) E1 =

�

2✏0
. X

In slab 2:
⇢

total surface charge above: � � (�/2) + (�/2)� (�/3) = 2�/3,

total surface charge below : (�/3)� � = �2�/3,

�
=) E2 =

2�
3✏0

. X

6

Problem 4.18

❖
+σ

−σ

+σ/3

−σ/3
+σ/2

−σ/2

+σ

2⃝

1⃝

Problem 4.22

✛
y

✻
x

✙
z

φ
✻E0
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Problem 4.19

With no dielectric, C0 = A✏0/d (Eq. 2.54).
In configuration (a), with +� on upper plate, �� on lower, D = � between the plates.

E = �/✏0 (in air) and E = �/✏ (in dielectric). So V = �
✏0

d
2 + �

✏
d
2 = Qd

2✏0A

�
1 + ✏0

✏

�
.
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Ca = Q
V = ✏0A

d

⇣
2

1+1/✏r

⌘
=) Ca

C0
=

2✏r
1 + ✏r

.

In configuration (b), with potential di↵erence V : E = V/d, so � = ✏0E = ✏0V/d (in air).
P = ✏0�eE = ✏0�eV/d (in dielectric), so �b = �✏0�eV/d (at top surface of dielectric).
�tot = ✏0V/d = �f + �b = �f � ✏0�eV/d, so �f = ✏0V (1 + �e)/d = ✏0✏rV/d (on top plate above dielectric).

=) Cb =
Q

V
=

1
V

✓
�

A

2
+ �f

A

2

◆
=

A

2V

✓
✏0

V

d
+ ✏0

V

d
✏r

◆
=

A✏0

d

✓
1 + ✏r

2

◆
.

Cb

C0
=

1 + ✏r

2
.

[Which is greater? Cb
C0
� Ca

C0
= 1+✏r

2 � 2✏r
1+✏r

= (1+✏r)2�4✏r

2(1+✏r) = 1+2✏r+4✏2r�4✏r

2(1+✏r) = (1�✏r)2

2(1+✏r) > 0. So Cb > Ca.]
If the x axis points down:

E D P

(a) air 2✏r
(✏r+1)

V
d x̂

2✏r
(✏r+1)

✏0V
d x̂ 0

(a) dielectric 2
(✏r+1)

V
d x̂

2✏r
(✏r+1)

✏0V
d x̂

2(✏r�1)
(✏r+1)

✏0V
d x̂

(b) air V
d x̂

✏0V
d x̂ 0

(b) dielectric V
d x̂ ✏r

✏0V
d x̂ (✏r � 1) ✏0V

d x̂

�b (top surface) �f (top plate)

(a) � 2(✏r�1)
(✏r+1)

✏0V
d

2✏r
(✏r+1)

✏0V
d

(b) �(✏r � 1) ✏0V
d ✏r

✏0V
d (left); ✏0V

d (right)

Problem 4.20

R
D·da = Qfenc ) D4⇡r

2 = ⇢
4
3⇡r

3 ) D = 1
3⇢r ) E = (⇢r/3✏) r̂, for r < R; D4⇡r

2 = ⇢
4
3⇡R

3 ) D =
⇢R

3
/3r

2 ) E = (⇢R3
/3✏0r2) r̂, for r > R.

V = �
Z 0

1
E · dl =

⇢R
3

3✏0
1
r

����
R

1
� ⇢

3✏

Z 0

R
rdr =

⇢R
2

3✏0
+

⇢

3✏
R

2

2
=

⇢R
2

3✏0

✓
1 +

1
2✏r

◆
.

Problem 4.21

Let Q be the charge on a length ` of the inner conductor.
I

D · da = D2⇡s` = Q) D =
Q

2⇡s`
; E =

Q

2⇡✏0s`
(a < s < b), E =

Q

2⇡✏s`
(b < r < c).

V = �
Z a

c
E · dl =

Z b

a

✓
Q

2⇡✏0`

◆
ds

s
+
Z c

b

✓
Q

2⇡✏`

◆
ds

s
=

Q

2⇡✏0`


ln
✓

b

a

◆
+
✏0

✏
ln
⇣

c

b

⌘�
.

C

`
=

Q

V `
=

2⇡✏0
ln(b/a) + (1/✏r) ln(c/b)

.
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Problem 4.22

Same method as Ex. 4.7: solve Laplace’s equation for Vin(s,�) (s < a) and Vout(s,�) (s > a), subject to
the boundary conditions

8
<

:

(i) Vin = Vout at s = a,

(ii) ✏
@Vin
@s = ✏0

@Vout
@s at s = a,

(iii) Vout ! �E0s cos� for s� a.

6

Problem 4.18

❖
+σ

−σ

+σ/3

−σ/3
+σ/2

−σ/2

+σ

2⃝

1⃝

Problem 4.22

✛
y

✻
x

✙
z

φ
✻E0
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From Prob. 3.24 (invoking boundary condition (iii)):

Vin(s,�) =
1X

k=1

s
k(ak cos k�+ bk sin k�), Vout(s,�) = �E0s cos�+

1X

k=1

s
�k(ck cos k�+ dk sin k�).

(I eliminated the constant terms by setting V = 0 on the y z plane.) Condition (i) says
X

a
k(ak cos k�+ bk sin k�) = �E0a cos�+

X
a
�k(ck cos k�+ dk sin k�),

while (ii) says

✏r

X
ka

k�1(ak cos k�+ bk sin k�) = �E0 cos��
X

ka
�k�1(ck cos k�+ dk sin k�).

Evidently bk = dk = 0 for all k, ak = ck = 0 unless k = 1, whereas for k = 1,

aa1 = �E0a + a
�1

c1, ✏ra1 = �E0 � a
�2

c1.

Solving for a1,

a1 = � E0

(1 + �e/2)
, so Vin(s,�) = � E0

(1 + �e/2)
s cos� = � E0

(1 + �e/2)
x,

and hence Ein(s,�) = �@Vin

@x
x̂ =

E0

(1 + �e/2)
. As in the spherical case (Ex. 4.7), the field inside is uniform.

Problem 4.23

P0 = ✏0�eE0; E1 = � 1
3✏0

P0 = ��e

3
E0; P1 = ✏0�eE1 = �✏0�

2
e

3
E0; E2 = � 1

3✏0
P1 =

�
2
e

9
E0; . . .. Evidently

En =
⇣
��e

3

⌘n
E0, so

E = E0 + E1 + E2 + · · · =
" 1X

n=0

⇣
��e

3

⌘n
#

E0.

The geometric series can be summed explicitly:

1X

n=0

x
n =

1
1� x

, so E =
1

(1 + �e/3)
E0,

which agrees with Eq. 4.49. [Curiously, this method formally requires that �e < 3 (else the infinite series
diverges), yet the result is subject to no such restriction, since we can also get it by the method of Ex. 4.7.]
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Problem 4.24

Potentials:8
><

>:

Vout(r, ✓) = �E0r cos ✓ +
P Bl

rl+1 Pl(cos ✓), (r > b);
Vmed(r, ✓) =

P⇣
Alr

l + B̄l

rl+1

⌘
Pl(cos ✓), (a < r < b);

Vin(r, ✓) = 0, (r < a).
Boundary Conditions:8
<

:

(i) Vout = Vmed, (r = b);
(ii) ✏

@Vmed
@r = ✏0

@Vout
@r , (r = b);

(iii) Vmed = 0, (r = a).

(i) ) �E0b cos ✓ +
X Bl

bl+1
Pl(cos ✓) =

X✓
Alb

l +
B̄l

bl+1

◆
Pl(cos ✓);

(ii) ) ✏r

X
lAlb

l�1 � (l + 1)
B̄l

bl+2

�
Pl(cos ✓) = �E0 cos ✓ �

X
(l + 1)

Bl

bl+2
Pl(cos ✓);

(iii) ) Ala
l +

B̄l

al+1
= 0 ) B̄l = �a

2l+1
Al.

For l 6= 1 :

(i)
Bl

bl+1
=
✓

Alb
l � a

2l+1
Al

bl+1

◆
) Bl = Al

�
b
2l+1 � a

2l+1
�
;

(ii) ✏r


lAlb

l�1 + (l + 1)
a
2l+1

Al

bl+2

�
= �(l + 1)

Bl

bl+2
) Bl = �✏rAl

✓
l

l + 1

◆
b
2l+1 + a

2l+1

�
) Al = Bl = 0.

For l = 1 :

(i) �E0b +
B1

b2
= A1b�

a
3
A1

b2
) B1 � E0b

3 = A1

�
b
3 � a

3
�
;

(ii) ✏r

✓
A1 + 2

a
3
A1

b3

◆
= �E0 � 2

B1

b3
) �2B1 � E0b

3 = ✏rA1

�
b
3 + 2a

3
�
.

So �3E0b
3 = A1

⇥
2
�
b
3 � a

3
�

+ ✏r

�
b
3 + 2a

3
�⇤

; A1 =
�3E0

2[1� (a/b)3] + ✏r[1 + 2(a/b)3]
.

Vmed(r, ✓) =
�3E0

2[1� (a/b)3] + ✏r[1 + 2(a/b)3]

✓
r � a

3

r2

◆
cos ✓,

E(r, ✓) = �rVmed =
3E0

2[1� (a/b)3] + ✏r[1 + 2(a/b)3]

⇢✓
1 +

2a
3

r3

◆
cos ✓ r̂�

✓
1� a

3

r3

◆
sin ✓ ✓̂

�
.

Problem 4.25

There are four charges involved: (i) q, (ii) polarization charge surrounding q, (iii) surface charge (�b) on
the top surface of the lower dielectric, (iv) surface charge (�0b) on the lower surface of the upper dielectric.
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In view of Eq. 4.39, the bound charge (ii) is qp = �q(�0e/(1 + �
0
e), so the total (point) charge at (0, 0, d) is

qt = q + qp = q/(1 + �
0
e) = q/✏

0
r. As in Ex. 4.8,

(a) �b = ✏0�e

"
�1

4⇡✏0
qd/✏

0
r

(r2 + d2)
3
2
� �b

2✏0
� �

0
b

2✏0

#
(here �b = P·n̂ = +Pz = ✏0�eEz);

(b) �0b = ✏0�
0
e

"
1

4⇡✏0
qd/✏

0
r

(r2 + d2)
3
2
� �b

2✏0
� �

0
b

2✏0

#
(here �b = �Pz = �✏0�0eEz).

Solve for �b, �0b: first divide by �e and �0e (respectively) and subtract:

�
0
b

�0e
� �b

�e
=

1
2⇡

qd/✏
0
r

(r2 + d2)
3
2
) �

0
b = �

0
e

"
�b

�e
+

1
2⇡

qd/✏
0
r

(r2 + d2)
3
2

#
.

Plug this into (a) and solve for �b, using ✏0r = 1 + �
0
e:

�b =
�1
4⇡

qd/✏
0
r

(r2 + d2)
3
2
�e(1 + �

0
e)�

�b

2
(�e + �

0
e), so �b =

�1
4⇡

qd

(r2 + d2)
3
2

�e

[1 + (�e + �0e)/2]
;

�
0
b = �

0
e

(
�1
4⇡

qd

(r2 + d2)
3
2

1
[1 + (�e + �0e)/2]

+
1
2⇡

qd/✏
0
r

(r2 + d2)
3
2

)
, so �

0
b =

1
4⇡

qd

(r2 + d2)
3
2

✏r�
0
e/✏

0
r

[1 + (�e + �0e)/2]
.

The total bound surface charge is �t = �b +�
0
b = 1

4⇡
qd

(r2+d2)
3
2

(�0e��e)
✏0r[1+(�e+�0e)/2] (which vanishes, as it should, when

�
0
e = �e). The total bound charge is (compare Eq. 4.51):

qt =
(�0e � �e)q

2✏0r [1 + (�e + �0e)/2]
=
✓
✏
0
r � ✏r
✏0r + ✏r

◆
q

✏0r
, and hence

V (r) =
1

4⇡✏0

(
q/✏

0
rp

x2 + y2 + (z � d)2
+

qtp
x2 + y2 + (z + d)2

)
(for z > 0).

Meanwhile, since
q

✏0r
+ qt =

q

✏0r


1 +

✏
0
r � ✏r
✏0r + ✏r

�
=

2q

✏0r + ✏r
, V (r) =

1
4⇡✏0

[2q/(✏0r + ✏r)]p
x2 + y2 + (z � d)2

(for z < 0).

Problem 4.26

From Ex. 4.5:

D =

(
0, (r < a)

Q

4⇡r2
r̂, (r > a)

)
, E =

8
>>><

>>>:

0, (r < a)
Q

4⇡✏r2
r̂, (a < r < b)

Q

4⇡✏0r2
r̂, (r > b)

9
>>>=

>>>;
.

W =
1
2

Z
D·E d⌧ =

1
2

Q
2

(4⇡)2
4⇡

(
1
✏

Z b

a

1
r2

1
r2

r
2
dr +

1
✏0

Z 1

b

1
r2

dr

)
=

Q
2

8⇡

(
1
✏

✓
�1
r

◆����
b

a

+
1
✏0

✓
�1
r

◆����
1

b

)

=
Q

2

8⇡✏0

⇢
1

(1 + �e)

✓
1
a
� 1

b

◆
+

1
b

�
=

Q
2

8⇡✏0(1 + �e)

✓
1
a

+
�e

b

◆
.
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Problem 4.27

Using Eq. 4.55: W = ✏0
2

R
E

2
d⌧ . From Ex. 4.2 and Eq. 3.103,

E =

8
><

>:

�1
3✏0

P ẑ, (r < R)

R
3
P

3✏0r3
(2 cos ✓ r̂ + sin ✓ ✓̂), (r > R)

9
>=

>;
, so

Wr<R =
✏0

2

✓
P

3✏0

◆2 4
3
⇡R

3 =
2⇡
27

P
2
R

3

✏0
.

Wr>R =
✏0

2

✓
R

3
P

3✏0

◆2 Z 1
r6

�
4 cos2 ✓ + sin2

✓
�
r
2 sin ✓ dr d✓ d�

=
(R3

P )2

18✏0
2⇡
Z ⇡

0
(1 + 3 cos2 ✓) sin ✓ d✓

Z 1

R

1
r4

dr =
⇡(R3

P )2

9✏0
(� cos ✓ � cos3 ✓)

��⇡
0

✓
� 1

3r3

◆����
1

R

=
⇡(R3

P )2

9✏0

✓
4

3R3

◆
=

4⇡R
3
P

2

27✏0
.

Wtot =
2⇡R

3
P

2

9✏0
.

This is the correct electrostatic energy of the configuration, but it is not the “total work necessary to assemble
the system,” because it leaves out the mechanical energy involved in polarizing the molecules.

Using Eq. 4.58: W = 1
2

R
D·E d⌧ . For r > R, D = ✏0E, so this contribution is the same as before.

For r < R, D = ✏0E + P = � 1
3P + P = 2

3P = �2✏0E, so 1
2D·E = �2 ✏0

2 E
2, and this contribution is

now (�2)
⇣

2⇡
27

P 2R3

✏0

⌘
= � 4⇡

27
R3P 2

✏0
, exactly cancelling the exterior term. Conclusion: Wtot = 0. This is not

surprising, since the derivation in Sect. 4.4.3 calculates the work done on the free charge, and in this problem
there is no free charge in sight. Since this is a nonlinear dielectric, however, the result cannot be interpreted as
the “work necessary to assemble the configuration”—the latter would depend entirely on how you assemble it.
Problem 4.28

First find the capacitance, as a function of h:

Air part: E = 2�
4⇡✏0s =) V = 2�

4⇡✏0
ln(b/a),

Oil part: D = 2�0

4⇡s =) E = 2�0

4⇡✏s =) V = 2�0

4⇡✏ ln(b/a),

9
=

; =) �

✏0
=
�
0

✏
; �0 =

✏

✏0
� = ✏r�.

Q = �
0
h + �(`� h) = ✏r�h� �h + �` = �[(✏r � 1)h + `] = �(�eh + `), where ` is the total height.

C =
Q

V
=
�(�eh + `)
2� ln(b/a)

4⇡✏0 = 2⇡✏0
(�eh + `)
ln(b/a)

.

The net upward force is given by Eq. 4.64: F = 1
2V

2 dC
dh = 1

2V
2 2⇡✏0�e

ln(b/a) .

The gravitational force down is F = mg = ⇢⇡(b2 � a
2)gh.

�
h =

✏0�eV
2

⇢(b2 � a2)g ln(b/a)
.
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Problem 4.29

(a) Eq. 4.5 ) F2 = (p2 ·r)E1 = p2
@

@y
(E1);

Eq. 3.103 ) E1 =
p1

4⇡✏0r3
✓̂ = � p1

4⇡✏0y3
ẑ. Therefore

F2 = �p1p2

4⇡✏0


d

dy

✓
1
y3

◆�
ẑ =

3p1p2

4⇡✏0y4
ẑ, or F2 =

3p1p2

4⇡✏0r4
ẑ (upward).

7

Problem 4.29
✻

✲

✰
y

z

x

p1 p2

E1

✻
❄
✲

✻

✲

✰

y

z

x p1

p2

✛

✻
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✌
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✌
✌

✌

E

−

+

◆
F✍

F
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Problem 4.29
✻

✲

✰
y

z

x

p1 p2

E1

✻
❄
✲

✻

✲

✰

y

z

x p1

p2

✛

✻

Problem 4.30

✌
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✌
✌

✌

E

−

+

◆
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To calculate F1, put p2 at the origin, pointing in the z direction; then p1

is at �r ẑ, and it points in the �ŷ direction. So F1 = (p1 ·r)E2 =

�p1
@E2

@y

����
x=y=0, z=�r

; we need E2 as a function of x, y, and z.

From Eq. 3.104: E2 =
1

4⇡✏0
1
r3


3(p2 · r)r

r2
� p2

�
, where r = x x̂+y ŷ+z ẑ, p2 = p2 ẑ, and hence p2 ·r = p2z.

E2 =
p2

4⇡✏0


3z(x x̂ + y ŷ + z ẑ)� (x2 + y

2 + z
2) ẑ

(x2 + y2 + z2)5/2

�
=

p2

4⇡✏0


3xz x̂ + 3yz ŷ � (x2 + y

2 � 2z
2) ẑ

(x2 + y2 + z2)5/2

�

@E2

@y
=

p2

4⇡✏0

⇢
�5

2
2y

r7
[3xz x̂ + 3yz ŷ � (x2 + y

2 � 2z
2) ẑ] +

1
r5

(3z ŷ � 2y ẑ)
�

;

@E2

@y

����
(0,0)

=
p2

4⇡✏0
3z

r5
ŷ; F1 = �p1

✓
p2

4⇡✏0
�3r

r5
ŷ

◆
=

3p1p2

4⇡✏0r4
ŷ.

But ŷ in these coordinates corresponds to �ẑ in the original system, so these results are consistent with
Newton’s third law: F1 = �F2.

(b) From the remark following Eq. 4.5, N2 = (p2 ⇥ E1) + (r ⇥ F2). The first term was calculated in
Prob. 4.5; the second we get from (a), using r = r ŷ:

p2 ⇥E1 =
p1p2

4⇡✏0r3
(�x̂); r⇥ F2 = (r ŷ)⇥

✓
3p1p2

4⇡✏0r4
ẑ

◆
=

3p1p2

4⇡✏0r3
x̂; so N2 =

2p1p2

4⇡✏0r3
x̂.

This is equal and opposite to the torque on p1 due to p2, with respect to the center of p1 (see Prob. 4.5).
Problem 4.30

Net force is to the right (see diagram). Note that the field lines must bulge to the right, as shown, because
E is perpendicular to the surface of each conductor.

7

Problem 4.29
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✲
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✰
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Problem 4.31 In cylindrical coordinates (in the z = 0 plane), p = p �̂, p ·r = p
1
s

@

@�
, and E =

1
4⇡✏0

Q

s2
ŝ, so

F = (p ·r)E =
✓

p

s

@

@�

◆
1

4⇡✏0
Q

s2
ŝ =

pQ

4⇡✏0s3

@ŝ

@�
=

pQ

4⇡✏0s3
�̂ =

Q

4⇡✏0R3
p. X

Qualitatively, the forces on the negative and positive ends, though equal in magnitude, point in slightly di↵erent
directions, and they combine to make a net force in the “forward” direction:

p

x

y

Rf

_F

F+

To keep the dipole going in a circle, there must be a centripetal force exerted by the track (we may as well
take it to act at the center of the dipole, and it is irrelevant to the problem), and to keep it aiming in the
tangential direction there must be a torque (which we could model by radial forces of equal magnitude acting at
the two ends). Indeed, if the dipole has the orientation indicated in the figure, and is moving in the �̂ direction,
the torque exerted by Q is clockwise, whereas the rotation is counterclockwise, so these constraint forces must
actually be larger than the forces exerted by Q, and the net force will be in the “backward” direction—tending
to slow the dipole down. [If the motion is in the ��̂ direction, then the electrical forces will dominate, and the
net force will be in the direction of p, but this again will tend to slow it down.]
Problem 4.32

(a) According to Eqs. 4.1 and 4.5, F = ↵(E ·r)E. From the product rule,

rE
2 = r(E ·E) = 2E⇥ (r⇥E) + 2(E ·r)E.

But in electrostatics r⇥E = 0, so (E ·r)E = 1
2r(E2), and hence

F =
1
2
↵r(E2). X

[It is tempting to start with Eq. 4.6, and write F = �rU = r(p · E) = ↵r(E · E) = ↵r(E2). The
error occurs in the third step: p should not have been di↵erentiated, but after it is replaced by ↵E we are
di↵erentiating both E’s.]

(b) Suppose E
2 has a local maximum at point P . Then there is a sphere (of radius R) about P such that

E
2(P 0) < E

2(P ), and hence |E(P 0)| < |E(P )|, for all points on the surface. But if there is no charge inside the
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sphere, then Problem 3.4a says the average field over the spherical surface is equal to the value at the center:

1
4⇡R2

Z
E da = E(P ),

or, choosing the z axis to lie along E(P ),

1
4⇡R2

Z
Ez da = E(P ).

But if E
2 has a maximum at P , then

Z
Ez da 

Z
|E| da <

Z
|E(P )| da = 4⇡R

2
E(P ),

and it follows that E(P ) < E(P ), a contradiction. Therefore, E
2 cannot have a maximum in a charge-free

region. [It can have a minimum, however; at the midpoint between two equal charges the field is zero, and this
is obviously a minimum.]
Problem 4.33

P = kr = k(x x̂ + y ŷ + z ẑ) =) ⇢b = �r·P = �k(1 + 1 + 1) = �3k.

Total volume bound charge: Qvol = �3ka
3
.

�b = P·n̂. At top surface, n̂ = ẑ, z = a/2; so �b = ka/2. Clearly, �b = ka/2 on all six surfaces.

Total surface bound charge: Qsurf = 6(ka/2)a2 = 3ka
3
. Total bound charge is zero. X

Problem 4.34

Say the high voltage is connected to the bottom plate, so the electric field points in the x direction, while
the free charge density (�f ) is positive on the lower plate and negative on the upper plate. (If you connect
the battery the other way, all the signs will switch.) The susceptibility is �e =

x

d
, and the permittivity is

✏ = ✏0

⇣
1 +

x

d

⌘
. Between the plates

D = �f x̂, E =
1
✏
D =

�f

✏0(1 + x/d)
x̂; V = �

Z 0

d
E · dl =

�f

✏0

Z d

0

1
(1 + x/d)

dx =
�f

✏0
d ln

⇣
1 +

x

d

⌘ ���
d

0
=
�fd

✏0
ln 2.

So
�f =

✏0V

d ln 2
, E =

V

d ln 2
1

(1 + x/d)
x̂, P = ✏0�eE =

✏0V

d2 ln 2
x

(1 + x/d)
x̂.

The bound charges are therefore

⇢b = �r ·P = � ✏0V

d2 ln 2


1

(1 + x/d)
� x/d

(1 + x/d)2

�
= � ✏0V

d2 ln 2
1

(1 + x/d)2
; �b = P · n̂ =

8
><

>:

0 (x = 0),
✏0V

2d ln 2
(x = d).

The total bound charge is

Qb =
Z
⇢b d⌧ +

Z
�b da = � ✏0V

d2 ln 2

Z d

0

1
(1 + x/d)2

A dx +
✏0V

2d ln 2
A =

✏0V A

d ln 2

"
�1

d

�d

(1 + x/d)

����
d

0

+
1
2

#

=
✏0V A

d ln 2

✓
1
2
� 1 +

1
2

◆
= 0, X
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where A is the area of the plates.
Problem 4.35

I
D·da = Qfenc ) D =

q

4⇡r2
r̂; E =

1
✏
D =

q

4⇡✏0(1 + �e)
r̂

r2
; P = ✏0�eE =

q�e

4⇡(1 + �e)
r̂

r2
.

⇢b = �r·P = � q�e

4⇡(1 + �e)

✓
r· r̂

r2

◆
= �q

�e

1 + �e
�
3(r) (Eq. 1.99); �b = P·̂r =

q�e

4⇡(1 + �e)R2
;

Qsurf = �b(4⇡R
2) = q

�e

1 + �e
. The compensating negative charge is at the center:

Z
⇢b d⌧ = � q�e

1 + �e

Z
�
3(r) d⌧ = �q

�e

1 + �e
.

Problem 4.36

E
k is continuous (Eq. 4.29); D? is continuous (Eq. 4.26, with �f = 0). So Ex1 = Ex2 , Dy1 = Dy2 )

✏1Ey1 = ✏2Ey2 , and hence

tan ✓2
tan ✓1

=
Ex2/Ey2

Ex1/Ey1

=
Ey1

Ey2

=
✏2

✏1
. qed

If 1 is air and 2 is dielectric, tan ✓2/ tan ✓1 = ✏2/✏0 > 1, and the field lines bend away from the normal. This is
the opposite of light rays, so a convex “lens” would defocus the field lines.
Problem 4.37

In view of Eq. 4.39, the net dipole moment at the center is p
0 = p� �e

1+�e
p = 1

1+�e
p = 1

✏r
p. We want the

potential produced by p
0 (at the center) and �b (at R). Use separation of variables:

8
>>>><

>>>>:

Outside: V (r, ✓) =
1X

l=0

Bl

rl+1
Pl(cos ✓) (Eq. 3.72)

Inside: V (r, ✓) =
1

4⇡✏0
p cos ✓
✏rr

2
+

1X

l=0

Alr
l
Pl(cos ✓) (Eqs. 3.66, 3.102)

9
>>>>=

>>>>;

.

V continuous at R )

8
>>><

>>>:

Bl

Rl+1
= AlR

l
, or Bl = R

2l+1
Al (l 6= 1)

B1

R2
=

1
4⇡✏0

p

✏rR
2

+ A1R, or B1 = p
4⇡✏0✏r

+ A1R
3

9
>>>=

>>>;
.

@V

@r

����
R+

� @V

@r

����
R�

= �
X

(l + 1)
Bl

Rl+2
Pl(cos ✓) +

1
4⇡✏0

2p cos ✓
✏rR

3
�
X

lAlR
l�1

Pl(cos ✓) = � 1
✏0
�b

= � 1
✏0

P · r̂ = � 1
✏0

(✏0�eE·̂r) = �e
@V

@r

����
R�

= �e

⇢
� 1

4⇡✏0
2p cos ✓
✏rR

3
+
X

lAlR
l�1

Pl(cos ✓)
�

.

�(l + 1)
Bl

Rl+2
� lAlR

l�1 = �elAlR
l�1 (l 6= 1); or � (2l + 1)AlR

l�1 = �elAlR
l�1 ) Al = 0 (` 6= 1).

For l = 1: �2
B1

R3
+

1
4⇡✏0

2p

✏rR
3
�A1 = �e

✓
� 1

4⇡✏0
2p

✏rR
3

+ A1

◆
�B1 +

p

4⇡✏0✏r
� A1R

3

2
= � 1

4⇡✏0
�ep

✏r
+�e

A1R
3

2
;
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� p

4⇡✏0✏r
�A1R

3 +
p

4⇡✏0✏r
� A1R

3

2
= � 1

4⇡✏0
�ep

✏r
+ �e

A1R
3

2
) A1R

3

2
(3 + �e) =

1
4⇡✏0

�ep

✏r
.

) A1 =
1

4⇡✏0
2�ep

R3✏r(3 + �e)
=

1
4⇡✏0

2(✏r � 1)p
R3✏r(✏r + 2)

; B1 =
p

4⇡✏0✏r


1 +

2(✏r � 1)
(✏r + 2)

�
=

p

4⇡✏0✏r
3✏r
✏r + 2

.

V (r, ✓) =
✓

p cos ✓
4⇡✏0r2

◆✓
3

✏r + 2

◆
(r � R).

Meanwhile, for r  R, V (r, ✓) =
1

4⇡✏0
p cos ✓
✏rr

2
+

1
4⇡✏0

pr cos ✓
R3

2(✏r � 1)
✏r(✏r + 2)

=
p cos ✓

4⇡✏0r2✏r


1 + 2

✓
✏r � 1
✏r + 2

◆
r
3

R3

�
(r  R).

Problem 4.38

Given two solutions, V1 (and E1 = �rV1, D1 = ✏E1) and V2 (E2 = �rV2, D2 = ✏E2), define V3 ⌘ V2�V1

(E3 = E2 �E1, D3 = D2 �D1).R
V r·(V3D3) d⌧ =

R
S V3D3 · da = 0, (V3 = 0 on S), so

R
(rV3) ·D3 d⌧ +

R
V3(r·D3) d⌧ = 0.

But r·D3 = r·D2 �r·D1 = ⇢f � ⇢f = 0, and rV3 = rV2 �rV1 = �E2 + E1 = �E3, so
R

E3 ·D3 d⌧ = 0.
But D3 = D2 �D1 = ✏E2 � ✏E1 = ✏E3, so

R
✏(E3)2 d⌧ = 0. But ✏ > 0, so E3 = 0, so V2 � V1 = constant. But

at surface, V2 = V1, so V2 = V1 everywhere. qed
Problem 4.39

(a) Proposed potential: V (r) = V0
R

r
. If so, then E = �rV = V0

R

r2
r̂, in which case P = ✏0�eV0

R

r2
r̂,

in the region z < 0. (P = 0 for z > 0, of course.) Then �b = ✏0�eV0
R

R2
(r̂·n̂) = �✏0�eV0

R
. (Note: n̂ points out

of dielectric ) n̂ = �r̂.) This �b is on the surface at r = R. The flat surface z = 0 carries no bound charge,
since n̂ = ẑ ? r̂. Nor is there any volume bound charge (Eq. 4.39). If V is to have the required spherical
symmetry, the net charge must be uniform:

�tot4⇡R
2 = Qtot = 4⇡✏0RV0 (since V0 = Qtot/4⇡✏0R), so �tot = ✏0V0/R. Therefore

�f =
⇢

(✏0V0/R), on northern hemisphere
(✏0V0/R)(1 + �e), on southern hemisphere

�
.

(b) By construction, �tot = �b +�f = ✏0V0/R is uniform (on the northern hemisphere �b = 0, �f = ✏0V0/R;
on the southern hemisphere �b = �✏0�eV0/R, so �f = ✏V0/R). The potential of a uniformly charged sphere is

V0 =
Qtot

4⇡✏0r
=
�tot(4⇡R

2)
4⇡✏0r

=
✏0V0

R

R
2

✏0r
= V0

R

r
. X

(c) Since everything is consistent, and the boundary conditions (V = V0 at r = R, V ! 0 at 1) are met,
Prob. 4.38 guarantees that this is the solution.

(d) Figure (b) works the same way, but Fig. (a) does not: on the flat surface, P is not perpendicular to n̂,
so we’d get bound charge on this surface, spoiling the symmetry.
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Problem 4.40

Eext =
�

2⇡✏0s
ŝ. Since the sphere is tiny, this is essentially constant, and hence P =

✏0�e

1 + �e/3
Eext (Ex. 4.7).

F =
Z ✓

✏0�e

1 + �e/3

◆✓
�

2⇡✏0s

◆
d

ds

✓
�

2⇡✏0s

◆
ŝ d⌧ =

✓
✏0�e

1 + �e/3

◆✓
�

2⇡✏0

◆2✓1
s

◆✓
�1
s2

◆
ŝ

Z
d⌧

=
��e

1 + �e/3

✓
�

2

4⇡2✏0

◆
1
s3

4
3
⇡R

3
ŝ = �

✓
�e

3 + �e

◆
�

2
R

3

⇡✏0s
3
ŝ.

Problem 4.41

The density of atoms is N = 1
(4/3)⇡R3 . The macroscopic field E is Eself + Eelse, where Eself is the average

field over the sphere due to the atom itself.

p = ↵Eelse ) P = N↵Eelse.

[Actually, it is the field at the center, not the average over the sphere, that belongs here, but the two are in
fact equal, as we found in Prob. 3.47d.] Now

Eself = � 1
4⇡✏0

p

R3

(Eq. 3.105), so

E = � 1
4⇡✏0

↵

R3
Eelse + Eelse =

✓
1� ↵

4⇡✏0R3

◆
Eelse =

✓
1� N↵

3✏0

◆
Eelse.

So
P =

N↵

(1�N↵/3✏0)
E = ✏0�eE,

and hence
�e =

N↵/✏0

(1�N↵/3✏0)
.

Solving for ↵:

�e �
N↵

3✏0
�e =

N↵

✏0
) N↵

✏0

⇣
1 +

�e

3

⌘
= �e,

or
↵ =

✏0

N

�e

(1 + �e/3)
=

3✏0
N

�e

(3 + �e
. But �e = ✏r � 1, so ↵ =

3✏0
N

✓
✏r � 1
✏r + 2

◆
. qed

Problem 4.42

For an ideal gas, N = Avagadro’s number/22.4 liters = (6.02⇥ 1023)/(22.4⇥ 10�3) = 2.7⇥ 1025. N↵/✏0 =
(2.7⇥ 1025)(4⇡✏0 ⇥ 10�30)�/✏0 = 3.4⇥ 10�4

�, where � is the number listed in Table 4.1.

H: � = 0.667, N↵/✏0 = (3.4⇥ 10�4)(0.67) = 2.3⇥ 10�4
, �e = 2.5⇥ 10�4

He: � = 0.205, N↵/✏0 = (3.4⇥ 10�4)(0.21) = 7.1⇥ 10�5
, �e = 6.5⇥ 10�5

Ne: � = 0.396, N↵/✏0 = (3.4⇥ 10�4)(0.40) = 1.4⇥ 10�4
, �e = 1.3⇥ 10�4

Ar: � = 1.64, N↵/✏0 = (3.4⇥ 10�4)(1.64) = 5.6⇥ 10�4
, �e = 5.2⇥ 10�4

9
>>=

>>;
agreement is quite good.
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Problem 4.43

(a) Doing the (trivial) � integral, and changing the remaining integration variable from ✓ to u (du = pE sin ✓ d✓),

hui =

R pE
�pE ue

�u/kT
du

R pE
�pE e�u/kT du

=
(kT )2e�u/kT [�(u/kT )� 1]|pE

�pE

�kTe�u/kT
��pE

�pE

= kT

(⇥
e
�pE/kT � e

pE/kT
⇤
+
⇥
(pE/kT )e�pE/kT + (pE/kT )epE/kT

⇤

e�pE/kT � epE/kT

)

= kT � pE


e
pE/kT + e

�pE/kT

epE/kT � e�pE/kT

�
= kT � pE coth

✓
pE

kT

◆
.

P = Nhpi; p = hp cos ✓iÊ = hp ·Ei(Ê/E) = �hui(Ê/E); P = Np
�hui
pE

= Np

⇢
coth

✓
pE

kT

◆
� kT

pE

�
.

Let y ⌘ P/Np, x ⌘ pE/kT . Then y = cothx�1/x. As x! 0, y =
⇣

1
x + x

3 �
x3

45 + · · ·
⌘
� 1

x = x
3�

x3

45 +· · ·!
0, so the graph starts at the origin, with an initial slope of 1/3. As x ! 1, y ! coth(1) = 1, so the graph
goes asymptotically to y = 1 (see Figure).

8

Problem 4.40

✻

✲

P
Np

1

pE/kT
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(b) For small x, y ⇡ 1
3x, so P

Np ⇡
pE
3kT , or P ⇡ Np2

3kT E = ✏0�eE ) P is proportional to E, and �e =
Np

2

3✏0kT
.

For water at 20� = 293 K, p = 6.1⇥ 10�30 C m; N = molecules
volume = molecules

mole ⇥ moles
gram ⇥

grams
volume .

N =
�
6.0⇥ 1023

�
⇥
�

1
18

�
⇥
�
106
�

= 0.33⇥ 1029; �e = (0.33⇥1029)(6.1⇥10�30)2

(3)(8.85⇥10�12)(1.38⇥10�23)(293) = 12. Table 4.2 gives an
experimental value of 79, so it’s pretty far o↵.

For water vapor at 100� = 373 K, treated as an ideal gas, volume
mole = (22.4⇥ 10�3)⇥

�
373
293

�
= 2.85⇥ 10�2 m3.

N =
6.0⇥ 1023

2.85⇥ 10�2
= 2.11⇥ 1025; �e =

(2.11⇥ 1025)(6.1⇥ 10�30)2

(3)(8.85⇥ 10�12)(1.38⇥ 10�23)(373)
= 5.7⇥ 10�3

.

Table 4.2 gives 5.9⇥ 10�3, so this time the agreement is quite good.
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Chapter 5

Magnetostatics

Problem 5.1

Since v ⇥B points upward, and that is also the direction of the force, q must be positive. To find R, in
terms of a and d, use the pythagorean theorem:

(R� d)2 + a
2 = R

2 ) R
2 � 2Rd + d

2 + a
2 = R

2 ) R =
a
2 + d

2

2d
.

2 CHAPTER 5. MAGNETOSTATICS

Chapter 1

Magnetostatics

Problem 5.1

︸
︷
︷

︸ }

R

d

R

a

Problem 5.2

✲ y

✻
z

β
◆

(b)

✲ y

✻
z

β

−β

✸

(c)
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The cyclotron formula then gives

p = qBR = qB
(a2 + d

2)
2d

.

Problem 5.2

The general solution is (Eq. 5.6):

y(t) = C1 cos(!t) + C2 sin(!t) +
E

B
t + C3; z(t) = C2 cos(!t)� C1 sin(!t) + C4.

(a) y(0) = z(0) = 0; ẏ(0) = E/B; ż(0) = 0. Use these to determine C1, C2, C3, and C4.
y(0) = 0) C1 + C3 = 0; ẏ(0) = !C2 + E/B = E/B ) C2 = 0; z(0) = 0) C2 + C4 = 0) C4 = 0;
ż(0) = 0) C1 = 0, and hence also C3 = 0. So y(t) = Et/B; z(t) = 0. Does this make sense? The magnetic
force is q(v ⇥B) = �q(E/B)B ẑ = �qE, which exactly cancels the electric force; since there is no net force,
the particle moves in a straight line at constant speed. X

(b) Assuming it starts from the origin, so C3 = �C1, C4 = �C2, we have ż(0) = 0 ) C1 = 0 ) C3 = 0;

ẏ(0) =
E

2B
) C2! +

E

B
=

E

2B
) C2 = � E

2!B
= �C4; y(t) = � E

2!B
sin(!t) +

E

B
t;

z(t) = � E

2!B
cos(!t) +

E

2!B
, or y(t) =

E

2!B
[2!t� sin(!t)] ; z(t) =

E

2!B
[1� cos(!t)] . Let � ⌘ E/2!B.

Then y(t) = � [2!t� sin(!t)] ; z(t) = � [1� cos(!t)] ; (y � 2�!t) = �� sin(!t), (z � �) = �� cos(!t))
(y � 2�!t)2 + (z � �)2 = �

2. This is a circle of radius � whose center moves to the right at constant speed:
y0 = 2�!t; z0 = �.

(c) ż(0) = ẏ(0) =
E

B
) �C1! =

E

B
) C1 = �C3 = � E

!B
; C2! +

E

B
=

E

B
) C2 = C4 = 0.
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y(t) = � E

!B
cos(!t) +

E

B
t +

E

!B
; z(t) =

E

!B
sin(!t). y(t) =

E

!B
[1 + !t� cos(!t)] ; z(t) =

E

!B
sin(!t).

Let � ⌘ E/!B; then [y � �(1 + !t)] = �� cos(!t), z = � sin(!t); [y � �(1 + !t)]2 + z
2 = �

2. This is a circle
of radius � whose center is at y0 = �(1 + !t), z0 = 0.

2 CHAPTER 5. MAGNETOSTATICS

Chapter 1

Magnetostatics

Problem 5.1

︸
︷
︷

︸ }

R

d

R

a

Problem 5.2

✲ y

✻
z

β
◆

(b)

✲ y

✻
z

β

−β

✸

(c)
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Problem 5.3

(a) From Eq. 5.2, F = q[E + (v ⇥B)] = 0) E = vB ) v =
E

B
.

(b) From Eq. 5.3, mv = qBR) q

m
=

v

BR
=

E

B2R
.

Problem 5.4

Suppose I flows counterclockwise (if not, change the sign of the answer). The force on the left side (toward
the left) cancels the force on the right side (toward the right); the force on the top is IaB = Iak(a/2) =
Ika

2
/2, (pointing upward), and the force on the bottom is IaB = �Ika

2
/2 (also upward). So the net force is

F = Ika
2
ẑ.

Problem 5.5

(a) K =
I

2⇡a
, because the length-perpendicular-to-flow is the circumference.

(b) J =
↵

s
) I =

Z
J da = ↵

Z
1
s
s ds d� = 2⇡↵

Z
ds = 2⇡↵a) ↵ =

I

2⇡a
;J =

I

2⇡as
.

Problem 5.6

(a) v = !r, so K = �!r. (b) v = !r sin ✓ �̂) J = ⇢!r sin ✓ �̂, where ⇢ ⌘ Q/(4/3)⇡R
3
.

Problem 5.7

dp

dt
=

d

dt

Z

V
⇢r d⌧ =

Z ✓
@⇢

@t

◆
r d⌧ = �

Z
(r · J)r d⌧ (by the continuity equation). Now product rule #5

says r · (xJ) = x(r · J) + J · (rx). But rx = x̂, so r · (xJ) = x(r · J) + Jx. Thus
R
V(r · J)x d⌧ =

Z

V
r · (xJ) d⌧ �

Z

V
Jx d⌧ . The first term is

R
S xJ · da (by the divergence theorem), and since J is entirely

inside V, it is zero on the surface S. Therefore
R
V(r · J)x d⌧ = �

R
V Jx d⌧ , or, combining this with the y and

z components,
R
V(r · J)r d⌧ = �

R
V J d⌧. Or, referring back to the first line,

dp

dt
=
Z

J d⌧ . qed

Here’s a quicker method, if the distribution consists of a collection of point charges. Use Eqs. 5.30 and
3.100: Z

J d⌧ =
X

qivi =
d

dt

X
qiri =

dp

dt
.
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Problem 5.8

(a) Use Eq. 5.37, with z = R, ✓2 = �✓1 = 45�, and four sides: B =
p

2µ0I

⇡R
.

(b) z = R, ✓2 = �✓1 =
⇡

n
, and n sides: B =

nµ0I

2⇡R
sin(⇡/n).

(c) For small ✓, sin ✓ ⇡ ✓. So as n!1, B ! nµ0I

2⇡R

⇣
⇡

n

⌘
=

µ0I

2R
(same as Eq. 5.41, with z = 0).

Problem 5.9

(a) The straight segments produce no field at P . The two quarter-circles give B =
µ0I

8

✓
1
a
� 1

b

◆
(out).

(b) The two half-lines are the same as one infinite line:
µ0I

2⇡R
; the half-circle contributes

µ0I

4R
.

So B =
µ0I

4R

✓
1 +

2
⇡

◆
(into the page).

Problem 5.10

(a) The forces on the two sides cancel. At the bottom, B =
µ0I

2⇡s
) F =

✓
µ0I

2⇡s

◆
Ia =

µ0I
2
a

2⇡s
(up). At the

top, B =
µ0I

2⇡(s + a)
) F =

µ0I
2
a

2⇡(s + a)
(down). The net force is

µ0I
2
a
2

2⇡s(s + a)
(up).

(b) The force on the bottom is the same as before, µ0I
2
a/2⇡s (up). On the left side, B =

µ0I

2⇡y
ẑ;

dF = I(dl⇥B) = I(dx x̂ + dy ŷ + dz ẑ)⇥
✓

µ0I

2⇡y
ẑ

◆
=

µ0I
2

2⇡y
(�dx ŷ + dy x̂). But the x component cancels the

corresponding term from the right side, and Fy = �µ0I
2

2⇡

Z (s/
p

3+a/2)

s/
p

3

1
y

dx. Here y =
p

3x, so

Fy = � µ0I
2

2
p

3⇡
ln

 
s/
p

3 + a/2
s/
p

3

!
= � µ0I

2

2
p

3⇡
ln

 
1 +
p

3a

2s

!
. The force on the right side is the same, so the net

force on the triangle is
µ0I

2

2⇡

"
a

s
� 2p

3
ln

 
1 +
p

3a

2s

!#
.
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Problem 5.10

✲ x

✻
y

✰
z

s√
3

︸
︷
︷

︸

s

60◦

a
a

Problem 5.11

✲ z

η
θ

❄
a

︸ ︷︷ ︸

z

}

dz
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Problem 5.11
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✻
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✰
z

s√
3

︸
︷
︷

︸

s

60◦

a
a

Problem 5.11

✲ z
θ

❄
a

︸ ︷︷ ︸

z
}

dz
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rUse Eq. 5.41 for a ring of width dz, with I ! nI dz:

B =
µ0nI

2

Z
a
2

(a2 + z2)3/2
dz. But z = a cot ✓,

so dz = � a

sin2
✓

d✓, and
1

(a2 + z2)3/2
=

sin3
✓

a3
.

So

B =
µ0nI

2

Z
a
2 sin3

✓

a3 sin2
✓
(�a d✓) = �µ0nI

2

Z
sin ✓ d✓ =

µ0nI

2
cos ✓

��✓2

✓1
=

µ0nI

2
(cos ✓2 � cos ✓1).

For an infinite solenoid, ✓2 = 0, ✓1 = ⇡, so (cos ✓2 � cos ✓1) = 1� (�1) = 2, and B = µ0nI. X
Problem 5.12

z

Rq

Rsinq

Rcosq

Field (at center of sphere) due to the ring at ✓ (see figure) is (Eq. 5.41):

dB =
µ0 dI

2
(R sin ✓)2

[(R sin ✓)2 + (R cos ✓)2]3/2
=

µ0

2R
sin2

✓ dI.

dI = K R d✓, K = �v, � =
Q

4⇡R2
, v = !R sin ✓,

so
dI =

Q

4⇡R2
!R sin ✓R d✓ =

Q!

4⇡
sin ✓ d✓.

B =
µ0

2R

Q!

4⇡

Z ⇡

0
sin3

✓ d✓ =
µ0Q!

8⇡R

✓
4
3

◆
. B =

µ0Q!

6⇡R
ẑ.

Problem 5.13

Magnetic attraction per unit length (Eqs. 5.40 and 5.13): fm =
µ0

2⇡
�

2
v
2

d
.

Electric field of one wire (Eq. 2.9): E =
1

2⇡✏0
�

s
. Electric repulsion per unit length on the other wire:

fe =
1

2⇡✏0
�

2

d
. They balance when µ0v

2 =
1
✏0

, or v =
1

p
✏0µ0

. Putting in the numbers,
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v =
1p

(8.85⇥ 10�12)(4⇡ ⇥ 10�7)
= 3.00⇥ 108 m/s. This is precisely the speed of light(!), so in fact you could

never get the wires going fast enough; the electric force always dominates.

Problem 5.14

(a)
I

B · dl = B 2⇡s = µ0Ienc ) B =

(
0, for s < a;
µ0I

2⇡s
�̂, for s > a.

)

(b) J = ks; I =
Z a

0
J da =

Z a

0
ks(2⇡s) ds =

2⇡ka
3

3
) k =

3I

2⇡a3
. Ienc =

Z s

0
J da =

Z s

0
ks̄(2⇡s̄) ds̄ =

2⇡ks
3

3
= I

s
3

a3
, for s < a; Ienc = I, for s > a. So B =

8
>>><

>>>:

µ0Is
2

2⇡a3
�̂, for s < a;

µ0I

2⇡s
�̂, for s > a.

9
>>>=

>>>;

Problem 5.15

By the right-hand-rule, the field points in the �ŷ direction for z > 0, and in the +ŷ direction for z < 0.
At z = 0, B = 0. Use the amperian loop shown:I

B · dl = Bl = µ0Ienc = µ0lzJ ) B = �µ0Jz ŷ (�a < z < a). If z > a, Ienc = µ0laJ ,

so B =
⇢
�µ0Ja ŷ, for z > +a;
+µ0Ja ŷ, for z > �a.

�
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✲ y

✻
z

✲
✛

︸ ︷︷ ︸

l

{z
✠

amperian loop

Problem 5.17

✲ y

✰
x

✻
z

loop 1

loop 2

✿I

✿I

ηηη1

ηηη2

❥
✣

r
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Problem 5.16

The field inside a solenoid is µ0nI, and outside it is zero. The outer solenoid’s field points to the right (ẑ),
whereas the inner one points to the left (�ẑ). So: (i) B = µ0I(n2 � n1) ẑ, (ii) B = µ0In2 ẑ, (iii) B = 0.

Problem 5.17

From Ex. 5.8, the top plate produces a field µ0K/2 (aiming out of the page, for points above it, and into

the page, for points below). The bottom plate produces a field µ0K/2 (aiming into the page, for points above
it, and out of the page, for points below). Above and below both plates the two fields cancel; between the plates
they add up to µ0K, pointing in.

(a) B = µ0�v (in) betweem the plates, B = 0 elsewhere.

(b) The Lorentz force law says F =
R

(K ⇥B) da, so the force per unit area is f = K ⇥B. Here K = �v,
to the right, and B (the field of the lower plate) is µ0�v/2, into the page. So fm = µ0�

2
v
2
/2 (up).

(c) The electric field of the lower plate is �/2✏0; the electric force per unit area on the upper plate is
fe = �

2
/2✏0 (down). They balance if µ0v

2 = 1/✏0, or v = 1/
p
✏0µ0 = c (the speed of light), as in Prob. 5.13.

Problem 5.18

We might as well orient the axes so the field point r lies on the y axis: r = (0, y, 0). Consider a source point
at (x0, y0, z0) on loop #1:

r = �x
0
x̂ + (y � y

0) ŷ � z
0
ẑ; dl

0 = dx
0
x̂ + dy

0
ŷ;
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dl
0 ⇥ r =

������

x̂ ŷ ẑ

dx
0

dy
0 0

�x
0 (y � y

0) �z
0

������
= (�z

0
dy
0) x̂ + (z0 dx

0) ŷ + [(y � y
0) dx

0 + x
0
dy
0] ẑ.

dB1 =
µ0I

4⇡
dl
0 ⇥ r
r 3 =

µ0I

4⇡
(�z

0
dy
0) x̂ + (z0 dx

0) ŷ + [(y � y
0) dx

0 + x
0
dy
0] ẑ

[(x0)2 + (y � y0)2 + (z0)2]3/2
.

Now consider the symmetrically placed source element on
loop #2, at (x0, y0,�z

0). Since z
0 changes sign, while every-

thing else is the same, the x̂ and ŷ components from dB1 and
dB2 cancel, leaving only a ẑ component. qed

With this, Ampére’s law yields immediately:

B =

(
µ0nI ẑ, inside the solenoid;
0, outside

(the same as for a circular solenoid—Ex. 5.9).
For the toroid, N/2⇡s = n (the number of turns per unit

length), so Eq. 5.60 yields B = µ0nI inside, and zero outside,
consistent with the solenoid. [Note: N/2⇡s = n applies only
if the toroid is large in circumference, so that s is essentially
constant over the cross-section.]
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r 1

r 2

Problem 5.19

It doesn’t matter. According to Theorem 2, in Sect. 1.6.2,
R

J · da is independent of surface, for any given
boundary line, provided that J is divergenceless, which it is, for steady currents (Eq. 5.33).
Problem 5.20

(a) ⇢ =
charge
volume

=
charge
atom

· atoms
mole

· moles
gram

· grams
volume

= (e)(N)
✓

1
M

◆
(d), where

e = charge of electron = 1.6⇥ 10�19 C,

N = Avogadro0s number = 6.0⇥ 1023 mole,
M = atomic mass of copper = 64 gm/mole,
d = density of copper = 9.0 gm/cm3

.

⇢ = (1.6⇥ 10�19)(6.0⇥ 1023)
✓

9.0
64

◆
= 1.4⇥ 104 C/cm3.

(b) J =
I

⇡s2
= ⇢v ) v =

I

⇡s2⇢
=

1
⇡(2.5⇥ 10�3)(1.4⇥ 104)

= 9.1⇥ 10�3 cm/s, or about 33 cm/hr. This

is astonishingly small—literally slower than a snail’s pace.

(c) From Eq. 5.40, fm =
µ0

2⇡

✓
I1I2

d

◆
=

(4⇡ ⇥ 10�7)
2⇡

= 2⇥ 10�7 N/cm.

(d) E =
1

2⇡✏0
�

d
; fe =

1
2⇡✏0

✓
�1�2

d

◆
=

1
v2

1
2⇡✏0

✓
I1I2

d

◆
=
✓

c
2

v2

◆
µ0

2⇡

✓
I1I2

d

◆
=

c
2

v2
fm, where

c ⌘ 1/
p
✏0µ0 = 3.00⇥ 108 m/s. Here

fe

fm
=

c
2

v2
=
✓

3.0⇥ 1010

9.1⇥ 10�3

◆2

= 1.1⇥ 1025
.

fe = (1.1⇥ 1025)(2⇥ 10�7) = 2⇥ 1018 N/cm.
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Problem 5.21

Ampére’s law says r ⇥B = µ0J. Together with the continuity equation (5.29) this gives r · (r ⇥B) =
µ0r · J = �µ0@⇢/@t, which is inconsistent with div(curl)=0 unless ⇢ is constant (magnetostatics). The other
Maxwell equations are OK: r⇥E = 0)r · (r⇥E) = 0 (X), and as for the two divergence equations, there
is no relevant vanishing second derivative (the other one is curl(grad), which doesn’t involve the divergence).
Problem 5.22

At this stage I’d expect no changes in Gauss’s law or Ampére’s law. The divergence of B would take the
form r ·B = ↵0⇢m, where ⇢m is the density of magnetic charge, and ↵0 is some constant (analogous to ✏0
and µ0). The curl of E becomes r⇥E = �0Jm, where Jm is the magnetic current density (representing the
flow of magnetic charge), and �0 is another constant. Presumably magnetic charge is conserved, so ⇢m and Jm

satisfy a continuity equation: r · Jm = �@⇢m/@t.
As for the Lorentz force law, one might guess something of the form qm[B + (v ⇥ E)] (where qm is the

magnetic charge). But this is dimensionally impossible, since E has the same units as vB. Evidently we
need to divide (v ⇥ E) by something with the dimensions of velocity-squared. The natural candidate is

c
2 = 1/✏0µ0: F = qe [E + (v ⇥B)] + qm


B� 1

c2
(v ⇥E)

�
. In this form the magnetic analog to Coulomb’s

law reads F =
↵0

4⇡
qm1qm2

r2
r̂, so to determine ↵0 we would first introduce (arbitrarily) a unit of magnetic charge,

then measure the force between unit charges at a given separation. [For further details, and an explanation of
the minus sign in the force law, see Prob. 7.38.]
Problem 5.23

A =
µ0

4⇡

Z
I ẑ

r dz =
µ0I

4⇡
ẑ

Z z2

z1

dzp
z2 + s2

=
µ0I

4⇡
ẑ

h
ln
⇣
z +

p
z2 + s2

⌘i���
z2

z1

=
µ0I

4⇡
ln

"
z2 +

p
(z2)2 + s2

z1 +
p

(z1)2 + s2

#
ẑ
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r

B = r⇥A = �@A

@s
�̂ = �µ0I

4⇡

"
1

z2 +
p

(z2)2 + s2

sp
(z2)2 + s2

� 1
z1 +

p
(z1)2 + s2

sp
(z1)2 + s2

#
�̂

= �µ0Is

4⇡

"
z2 �

p
(z2)2 + s2

(z2)2 � [(z2)2 + s2]
1p

(z2)2 + s2
�

z1 �
p

(z1)2 + s2

z
2
1 � [(z1)2 + s2]

1p
(z1)2 + s2

#
�̂

= �µ0Is

4⇡

✓
� 1

s2

◆"
z2p

(z2)2 + s2
� 1� z1p

(z1)2 + s2
+ 1

#
�̂ =

µ0I

4⇡s

"
z2p

(z2)2 + s2
� z1p

(z1)2 + s2

#
�̂,

or, since sin ✓1 =
z1p

(z1)2 + s2
and sin ✓2 =

z2p
(z2)2 + s2

,

=
µ0I

4⇡s
(sin ✓2 � sin ✓1) �̂ (as in Eq. 5.37).

Problem 5.24

A� = k ) B = r⇥A =
1
s

@

@s
(sk) ẑ =

k

s
ẑ; J =

1
µ0

(r⇥B) =
1
µ0


� @

@s

✓
k

s

◆�
�̂ =

k

µ0s
2

�̂.
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Problem 5.25

r · A = �1
2
r · (r ⇥ B) = �1

2
[B · (r⇥ r)� r · (r⇥B)] = 0, since r ⇥ B = 0 (B is uniform) and

r ⇥ r = 0 (Prob. 1.63). r ⇥A = �1
2
r ⇥ (r ⇥ B) = �1

2
[(B ·r)r� (r ·r)B + r(r ·B)�B(r · r)]. But

(r · r)B = 0 and r · B = 0 (since B is uniform), and r · r =
@x

@x
+
@y

@y
+
@z

@z
= 1 + 1 + 1 = 3. Finally,

(B·r)r =
✓

Bx
@

@x
+ By

@

@y
+ Bz

@

@z

◆
(x x̂+y ŷ+z ẑ) = Bx x̂+By ŷ+Bz ẑ = B. So r⇥A = �1

2
(B�3B) = B.

qed
Problem 5.26

(a) A is parallel (or antiparallel) to I, and is a function only of s (the distance from the wire). In cylindrical

coordinates, then, A = A(s) ẑ, so B = r ⇥ A = �@A

@s
�̂ =

µ0I

2⇡s
�̂ (the field of an infinite wire). Therefore

@A

@s
= �µ0I

2⇡s
, and A(r) = �µ0I

2⇡
ln(s/a) ẑ (the constant a is arbitrary; you could use 1, but then the units

look fishy). r ·A =
@Az

@z
= 0. X r⇥A = �@Az

@s
�̂ =

µ0I

2⇡s
�̂ = B. X

(b) Here Ampére’s law gives
I

B · dl = B 2⇡s = µ0Ienc = µ0J ⇡s
2 = µ0

I

⇡R2
⇡s

2 =
µ0Is

2

R2
.

B =
µ0

2⇡
Is

R2
�̂.

@A

@s
= �µ0I

2⇡
s

R2
) A = � µ0I

4⇡R2
(s2 � b

2) ẑ. Here b is again arbitrary, except that since A

must be continuous at R, �µ0I

2⇡
ln(R/a) = � µ0I

4⇡R2
(R2� b

2), which means that we must pick a and b such that

2 ln(R/b) = 1� (b/R)2. I’ll use a = b = R. Then A =

8
>><

>>:

� µ0I

4⇡R2
(s2 �R

2) ẑ, for s  R;

�µ0I

2⇡
ln(s/R) ẑ, for s � R.

9
>>=

>>;

Problem 5.27

K = K x̂) B = ±µ0K

2
ŷ (plus for z < 0, minus for z > 0).

A is parallel (or antiparallel) to K, and depends only on z, so A = A(z) x̂.

B = r⇥A =

������

x̂ ŷ ẑ

@/@x @/@y @/@z

A(z) 0 0

������
=
@A

@z
ŷ = ±µ0K

2
ŷ.

A = �µ0K

2
|z| x̂ will do the job—or this plus any constant.
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Problem 5.28

(a) r·A =
µ0

4⇡

Z
r·
✓

J

r
◆

d⌧
0; r·

✓
J

r
◆

=
1
r (r·J)+J·r

✓
1
r
◆

. But the first term is zero, because J(r0)

is a function of the source coordinates, not the field coordinates. And since r = r�r
0
, r

✓
1
r
◆

= �r0
✓

1
r
◆

.

So r ·
✓

J

r
◆

= �J ·r0
✓

1
r
◆

. But r0 ·
✓

J

r
◆

=
1
r (r0 ·J)+J ·r0

✓
1
r
◆

, and r0 ·J = 0 in magnetostatics

(Eq. 5.33). So r·
✓

J

r
◆

= �r0·
✓

J

r
◆

, and hence, by the divergence theorem, r·A = �µ0

4⇡

Z
r0·
✓

J

r
◆

d⌧
0 =
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�µ0

4⇡

I
J

r · da0, where the integral is now over the surface surrounding all the currents. But J = 0 on this

surface, so r ·A = 0. X

(b) r⇥A =
µ0

4⇡

Z
r⇥

✓
J

r
◆

d⌧
0 =

µ0

4⇡

Z 
1
r (r⇥ J)� J⇥r

✓
1
r
◆�

d⌧
0. But r⇥ J = 0 (since J is

not a function of r), and r
✓

1
r
◆

= � r̂
r 2 (Eq. 1.101), so r⇥A =

µ0

4⇡

Z
J⇥ r̂

r 2 d⌧
0 = B. X

(c) r2
A =

µ0

4⇡

Z
r2

✓
J

r
◆

d⌧
0. But r2

✓
J

r
◆

= Jr2

✓
1
r
◆

(once again, J is a constant, as far as

di↵erentiation with respect to r is concerned), and r2

✓
1
r
◆

= �4⇡�3(r ) (Eq. 1.102). So

r2
A =

µ0

4⇡

Z
J(r0)

⇥
�4⇡�3(r )

⇤
d⌧
0 = �µ0J(r). X

Problem 5.29

µ0I =
I

B · dl = �
Z b

a
rU · dl = �[U(b)� U(a)] (by the gradient theorem), so U(b) 6= U(a). qed

For an infinite straight wire, B =
µ0I

2⇡s
�̂. U = �µ0I�

2⇡
would do the job, in the sense that

�rU =
µ0I

2⇡
r(�) =

µ0I

2⇡
1
s

@�

@�
�̂ = B. But when � advances by 2⇡, this function does not return to its initial

value; it works (say) for 0  � < 2⇡, but at 2⇡ it “jumps” back to zero.
Problem 5.30

Use Eq. 5.69, with R! r̄ and � ! ⇢ dr̄:

A =
µ0!⇢

3
sin ✓
r2

�̂

Z r

0
r̄
4
dr̄ +

µ0!⇢

3
r sin ✓ �̂

Z R

r
r̄ dr̄

=
⇣

µ0!⇢

3

⌘
sin ✓


1
r2

✓
r
5

5

◆
+

r

2
�
R

2 � r
2
��

�̂ =
µ0!⇢

2
r sin ✓

✓
R

2

3
� r

2

5

◆
�̂.

B = r⇥A =
µ0!⇢

2

⇢
1

r sin ✓
@

@✓


sin ✓ r sin ✓

✓
R

2

3
� r

2

5

◆�
r̂� 1

r

@

@r


r
2 sin ✓

✓
R

2

3
� r

2

5

◆�
✓̂

�

= µ0!⇢

✓
R

2

3
� r

2

5

◆
cos ✓ r̂�

✓
R

2

3
� 2r

2

5

◆
sin ✓ ✓̂

�
.

Problem 5.31

(a)

8
>>><

>>>:

�@Wz

@x
= Fy )Wz(x, y, z) = �

R x
0 Fy(x0, y, z) dx

0 + C1(y, z).

@Wy

@x
= Fz )Wy(x, y, z) = +

R x
0 Fz(x0, y, z) dx

0 + C2(y, z).

9
>>>=

>>>;

These satisfy (ii) and (iii), for any C1 and C2; it remains to choose these functions so as to satisfy (i):

�
Z x

0

@Fy(x0, y, z)
@y

dx
0 +

@C1

@y
�
Z x

0

@Fz(x0, y, z)
@z

dx
0 � @C2

@z
= Fx(x, y, z). But

@Fx

@x
+
@Fy

@y
+
@Fz

@z
= 0, so

Z x

0

@Fx(x0, y, z)
@x0

dx
0 +

@C1

@y
� @C2

@z
= Fx(x, y, z). Now

Z x

0

@Fx(x0, y, z)
@x0

dx
0 = Fx(x, y, z) � Fx(0, y, z), so
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@C1

@y
� @C2

@z
= Fx(0, y, z). We may as well pick C2 = 0, C1(y, z) =

Z y

0
Fx(0, y

0
, z) dy

0, and we’re done, with

Wx = 0; Wy =
Z x

0
Fz(x0, y, z) dx

0; Wz =
Z y

0
Fx(0, y

0
, z) dy

0 �
Z x

0
Fy(x0, y, z) dx

0
.

(b) r⇥W =
✓
@Wz

@y
� @Wy

@z

◆
x̂ +

✓
@Wx

@z
� @Wz

@x

◆
ŷ +

✓
@Wy

@x
� @Wx

@y

◆
ẑ

=

Fx(0, y, z)�

Z x

0

@Fy(x0, y, z)
@y

dx
0 �
Z x

0

@Fz(x0, y, z)
@z

dx
0
�
x̂ + [0 + Fy(x, y, z)] ŷ + [Fz(x, y, z)� 0] ẑ.

But r · F = 0, so the x̂ term is

Fx(0, y, z) +

Z x

0

@Fx(x0, y, z)
@x0

dx
0
�

= Fx(0, y, z) + Fx(x, y, z)� Fx(0, y, z),

so r⇥W = F. X
r ·W =

@Wx

@x
+
@Wy

@y
+
@Wz

@z
= 0 +

Z x

0

@Fz(x0, y, z)
@y

dx
0 +
Z y

0

@Fx(0, y
0
, z)

@z
dy
0�
Z x

0

@Fy(x0, y, z)
@z

dx
0 6= 0,

in general.

(c) Wy =
Z x

0
x
0
dx
0 =

x
2

2
; Wz =

Z y

0
y
0
dy
0 �
Z x

0
z dx

0 =
y
2

2
� zx.

W =
x

2

2
ŷ +

✓
y
2

2
� zx

◆
ẑ. r⇥W =

������

x̂ ŷ ẑ

@/@x @/@y @/@z

0 x
2
/2 (y2

/2� zx)

������
= y x̂ + z ŷ + x ẑ = F. X

Problem 5.32

(a) At the surface of the solenoid, Babove = 0, Bbelow = µ0nI ẑ = µ0K ẑ; n̂ = ŝ; so K ⇥ n̂ = �K ẑ.

Evidently Eq. 5.76 holds. X
(b) In Eq. 5.69, both expressiions reduce to (µ0R

2
!�/3) sin ✓ �̂ at the surface, so Eq. 5.77 is satisfied.

@A

@r

����
R+

=
µ0R

4
!�

3

✓
�2 sin ✓

r3

◆
�̂

����
R

= �2µ0R!�

3
sin ✓ �̂;

@A

@r

����
R�

=
µ0R!�

3
sin ✓ �̂. So the left side of

Eq. 5.78 is �µ0R!� sin ✓ �̂. Meanwhile K = �v = �(!!! ⇥ r) = �!R sin ✓ �̂, so the right side of Eq. 5.78 is
�µ0�!R sin ✓ �̂, and the equation is satisfied.
Problem 5.33

Because Aabove = Abelow at every point on the surface, it follows that
@A

@x
and

@A

@y
are the same above

and below; any discontinuity is confined to the normal derivative.

Babove � Bbelow =
✓
�@Ayabove

@z
+
@Aybelow

@z

◆
x̂ +

✓
@Axabove

@z
� @Axbelow

@z

◆
ŷ. But Eq. 5.76 says this equals

µ0K(�ŷ). So
@Ayabove

@z
=
@Aybelow

@z
, and

@Axabove

@z
� @Axbelow

@z
= �µ0K. Thus the normal derivative of the com-

ponent of A parallel to K su↵ers a discontinuity �µ0K, or, more compactly:
@Aabove

@n
� @Abelow

@n
= �µ0K.

Problem 5.34

(Same idea as Prob. 3.36.) Write m = (m · r̂) r̂ + (m · ✓̂) ✓̂ = m cos ✓ r̂ � m sin ✓ ✓̂ (Fig. 5.54). Then
3(m · r̂) r̂�m = 3m cos ✓ r̂�m cos ✓ r̂ + m sin ✓ ✓̂ = 2m cos ✓ r̂ + m sin ✓ ✓̂, and Eq. 5.89 , Eq. 5.88. qed
Problem 5.35

(a) m = Ia = I⇡R
2
ẑ.

(b) B ⇡ µ0

4⇡
I⇡R

2

r3

⇣
2 cos ✓ r̂ + sin ✓ ✓̂

⌘
.
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(c) On the z axis, ✓ = 0, r = z, r̂ = ẑ (for z > 0), so B ⇡ µ0IR
2

2z3
ẑ (for z < 0, ✓ = ⇡, r̂ = �ẑ, so the field

is the same, with |z|3 in place of z
3). The exact answer (Eq. 5.41) reduces (for z � R) to B ⇡ µ0IR

2
/2|z|3,

so they agree.

Problem 5.36

The field of one side is given by Eq. 5.37, with s !
p

z2 + (w/2)2 and sin ✓2 = � sin ✓1 =
(w/2)p

z2 + w2/2
;

B =
µ0I

4⇡
wp

z2 + (w2/4)
p

z2 + (w2/2)
. To pick o↵ the vertical

component, multiply by sin� =
(w/2)p

z2 + (w/2)2
; for all four

sides, multiply by 4: B =
µ0I

2⇡
w

2

(z2 + w2/4)
p

z2 + w2/2
ẑ.

For z � w, B ⇡ µ0Iw
2

2⇡z3
ẑ. The field of a dipole m = Iw

2
,

for points on the z axis (Eq. 5.88, with r ! z, r̂! ẑ, ✓ = 0) is B =
µ0

2⇡
m

z3
ẑ. X

Problem 5.37

(a) For a ring, m = I⇡r
2. Here I ! �v dr = �!r dr, so m =

R R
0 ⇡r

2
�!r dr = ⇡�!R

4
/4.

(b) The total charge on the shaded ring is dq =
�(2⇡R sin ✓)R d✓. The time for one revolution is dt = 2⇡/!.

So the current in the ring is I =
dq

dt
= �!R

2 sin ✓ d✓. The
area of the ring is ⇡(R sin ✓)2, so the magnetic moment of the
ring is dm = (�!R

2 sin ✓ d✓)⇡R
2 sin2

✓, and the total dipole
moment of the shell is

m = �!⇡R
4
R ⇡
0 sin3

✓ d✓ = (4/3)�!⇡R
4, or m =

4⇡
3
�!R

4
ẑ.

The dipole term in the multipole expansion for A is therefore Adip =
µ0

4⇡
4⇡
3
�!R

4 sin ✓
r2

�̂ =
µ0�!R

4

3
sin ✓
r2

�̂,
which is also the exact potential (Eq. 5.69); evidently a spinning sphere produces a perfect dipole field, with
no higher multipole contributions.

Problem 5.38

(a) I dl! J d⌧, so A =
µ0

4⇡

1X

n=0

1
rn+1

Z
(r0)n

Pn(cos ✓)J d⌧.

(b) Amon =
µ0

4⇡r

Z
J d⌧ =

µ0

4⇡r

dp

dt
(Prob. 5.7), where p is the total electric dipole moment. In mag-

netostatics, p is constant, so dp/dt = 0, and hence Amon = 0. qed
(c) m = Ia = 1

2I
H

(r⇥ dl)!m = 1
2

R
(r⇥ J) d⌧. qed

Problem 5.39

(a) Yes. (Magnetic forces do no work.)
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(b) B =
µ0

2⇡s
�̂; v = ṡ ŝ + s�̇ �̂ + ż ẑ; (v ⇥B) =

������

ŝ �̂ ẑ

ṡ s�̇ ż

0 µ0
2⇡s 0

������
=
⇣

µ0

2⇡s

⌘
(�ż ŝ + ṡ ẑ).

F = q(v ⇥B) =
⇣

qµ0

2⇡s

⌘
(�ż r̂ + ṡ ẑ).

(c) a = (s̈� s�̇
2) ŝ + (s�̈+ 2ṡ�̇) �̂ + z̈ ẑ (see, for example J. R. Taylor, Classical Mechanics, Eq. 1.47).

F = ma ) (s̈� s�̇
2) ŝ + (s�̈+ 2ṡ�̇) �̂ + z̈ ẑ =

↵

s
(�ż ŝ + ṡ ẑ),

where ↵ ⌘
⇣

qµ0

2⇡m

⌘
. Thus

s̈� s�̇
2 = �↵ ż

s
, s�̈+ 2ṡ�̇ = 0, z̈ = ↵

ṡ

s
.

(d) If ż is constant, then z̈ = 0, and it follows from the third equation that ṡ = 0, and hence s is constant.

Then the first equation says �̇2 = ↵(ż/s
2), so �̇ = ±1

s

p
↵ż is also constant (the second equation holds

automatically). The charge moves in a helix around the wire.

Problem 5.40

The mobile charges do pull in toward the axis, but the resulting concentration of (negative) charge sets up
an electric field that repels away further accumulation. Equilibrium is reached when the electric repulsion on a
mobile charge q balances the magnetic attraction: F = q[E + (v ⇥B)] = 0) E = �(v ⇥B). Say the current
is in the z direction: J = ⇢�v ẑ (where ⇢� and v are both negative).

I
B · dl = B 2⇡s = µ0J⇡s

2 ) B =
µ0⇢�vs

2
�̂;

Z
E · da = E 2⇡sl =

1
✏0

(⇢+ + ⇢�)⇡s
2
l) E =

1
2✏0

(⇢+ + ⇢�)s ŝ.

1
2✏0

(⇢+ + ⇢�)s ŝ = �
h
(v ẑ)⇥

⇣
µ0⇢�vs

2
�̂
⌘i

=
µ0

2
⇢�v

2
s ŝ) ⇢+ + ⇢� = ⇢�(✏0µ0v

2) = ⇢�

✓
v
2

c2

◆
.

Evidently ⇢+ = �⇢�
✓

1� v
2

c2

◆
=
⇢�
�2

, or ⇢� = ��2
⇢+. In this naive model the mobile negative charges fill a

smaller inner cylinder, leaving a shell of positive (stationary) charge at the outside. But since v ⌧ c, the e↵ect
is extremely small.
Problem 5.41

(a) If positive charges flow to the right, they are deflected down, and the bottom plate acquires a positive

charge.
(b) qvB = qE ) E = vB ) V = Et = vBt, with the bottom at higher potential.
(c) If negative charges flow to the left, they are also deflected down, and the bottom plate acquires a negative

charge. The potential di↵erence is still the same, but this time the top plate is at the higher potential.
Problem 5.42

From Eq. 5.17, F = I
R

(dl ⇥ B). But B is constant, in this case, so it comes outside the integral: F =
I
�R

dl
�
⇥B, and

R
dl = w, the vector displacement from the point at which the wire first enters the field to

the point where it leaves. Since w and B are perpendicular, F = IBw, and F is perpendicular to w.
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Problem 5.43

The angular momentum acquired by the particle as it moves out from the center to the edge is

L =
Z

dL

dt
dt =

Z
N dt =

Z
(r⇥F) dt =

Z
r⇥ q(v⇥B) dt = q

Z
r⇥ (dl⇥B) = q

Z
(r ·B) dl�

Z
B(r · dl)

�
.

But r is perpendicular to B, so r · B = 0, and r · dl = r · dr = 1
2d(r · r) = 1

2d(r2) = r dr = (1/2⇡)(2⇡r dr).

So L = � q

2⇡

Z R

0
B 2⇡r dr = � q

2⇡

Z
B da. It follows that L = � q

2⇡
�, where � =

R
B da is the total flux.

In particular, if � = 0, then L = 0, and the charge emerges with zero angular momentum, which means it is
going along a radial line. qed
Problem 5.44

From Eq. 5.24, F =
R

(K⇥Bave) da. Here K = �v, v = !R sin ✓ �̂, da = R
2 sin ✓ d✓ d�, and

Bave = 1
2 (Bin + Bout). From Eq. 5.70,

Bin =
2
3
µ0�R! ẑ =

2
3
µ0�R!(cos ✓ r̂� sin ✓ ✓̂). From Eq. 5.69,

Bout = r⇥A = r⇥
✓

µ0R
4
!�

3
sin ✓
r2

�̂

◆
=

µ0R
4
!�

3


1

r sin ✓
@

@✓

✓
sin2

✓

r2

◆
r̂� 1

r

@

@r

✓
sin ✓

r

◆
✓̂

�

=
µ0R

4
!�

3r3
(2 cos ✓ r̂ + sin ✓ ✓̂) =

µ0R!�

3
(2 cos ✓ r̂ + sin ✓ ✓̂) (since r = R).

Bave =
µ0R!�

6
(4 cos ✓ r̂� sin ✓ ✓̂).

K⇥Bave = (�!R sin ✓)
✓

µ0R!�

6

◆h
�̂⇥ (4 cos ✓ r̂� sin ✓ ✓̂)

i
=

µ0

6
(�!R)2(4 cos ✓ ✓̂ + sin ✓ r̂) sin ✓.

Picking out the z component of ✓̂ (namely, � sin ✓) and of r̂ (namely, cos ✓), we have
(K⇥Bave)z = �µ0

2
(�!R)2 sin2

✓ cos ✓, so

Fz = �µ0

2
(�!R)2R2

Z
sin3

✓ cos ✓ d✓ d� = �µ0

2
(�!R

2)2 2⇡
✓

sin4
✓

4

◆����
⇡/2

0

, or F = �µ0⇡

4
(�!R

2)2 ẑ.

Problem 5.45

(a) F = ma = qe(v ⇥B) =
µ0

4⇡
qeqm

r2
(v ⇥ r̂); a =

µ0

4⇡
qeqm

mr3
(v ⇥ r).

(b) Because a ? v, a · v = 0. But a · v =
1
2

d

dt
(v · v) =

1
2

d

dt
(v2) = v

dv

dt
. So

dv

dt
= 0. qed

(c)
dQ

dt
= m(v ⇥ v) + m(r⇥ a)� µ0qeqm

4⇡
d

dt

⇣
r

r

⌘
= 0 +

µ0qeqm

4⇡r3
[r⇥ (v ⇥ r]� µ0qeqm

4⇡

✓
v

r
� r

r2

dr

dt

◆

=
µ0qeqm

4⇡

⇢
1
r3

[r2
v � (r · v)r]� v

r
+

r

r2

d

dt
(
p

r · r)
�

=
µ0qeqm

4⇡


v

r
� (r̂ · v)

r
r̂� v

r
+

r̂

2r

2(r · v)
r

�
= 0. X

(d) (i) Q · �̂ = Q(ẑ · �̂) = m(r ⇥ v) · �̂ � µ0qeqm

4⇡
(r̂ · �̂). But ẑ · �̂ = r̂ · �̂ = 0, so (r ⇥ v) · �̂ = 0. But
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r = r r̂, and v =
dl

dt
= ṙ r̂ + r✓̇ ✓̂ + r sin ✓�̇ �̂ (where dots denote di↵erentiation with respect to time), so

r⇥ v =

������

r̂ ✓̂ �̂
r 0 0
ṙ r✓̇ r sin ✓�̇

������
= (�r

2 sin ✓�̇) ✓̂ + (r2
✓̇) �̂.

Therefore (r⇥ v) · �̂ = r
2
✓̇ = 0, so ✓ is constant. qed

(ii) Q · r̂ = Q(ẑ · r̂) = m(r⇥ v) · r̂� µ0qeqm

4⇡
(r̂ · r̂). But ẑ · r̂ = cos ✓, and (r⇥ v) ? r) (r⇥ v) · r̂ = 0, so

Q cos ✓ = �µ0qeqm

4⇡
, or Q = � µ0qeqm

4⇡ cos ✓
. And since ✓ is constant, so too is Q. qed

(iii) Q · ✓̂ = Q(ẑ · ✓̂) = m(r⇥v) · ✓̂� µ0qeqm

4⇡
(r̂ · ✓̂). But ẑ · ✓̂ = � sin ✓, r̂ · ✓̂ = 0, and (r⇥v) · ✓̂ = �r

2 sin ✓�̇

(from (i)), so �Q sin ✓ = �mr
2 sin ✓�̇) �̇ =

Q

mr2
=

k

r2
, with k ⌘ Q

m
= � µ0qeqm

4⇡m cos ✓
.

(e) v
2 = ṙ

2 + r
2
✓̇
2 + r

2 sin2
✓�̇

2, but ✓̇ = 0 and �̇ =
k

r2
, so ṙ

2 = v
2 � r

2 sin2
✓
k

2

r4
= v

2 � k
2 sin2

✓

r2
.

✓
dr

d�

◆2

=
ṙ
2

�̇2
=

v
2 � (k sin ✓/r)2

(k2/r4)
= r

2

⇣
vr

k

⌘2
� sin2

✓

�
;

dr

d�
= r

r⇣
vr

k

⌘2
� sin2

✓.

(f)
Z

dr

r

q
(vr/k)2 � sin2

✓

=
Z

d�) �� �0 =
1

sin ✓
sec�1

⇣
vr

k sin ✓

⌘
; sec[(�� �0) sin ✓] =

vr

k sin ✓
, or

r(�) =
A

cos[(�� �0) sin ✓]
, where A ⌘ �µ0qeqm tan ✓

4⇡mv
.

Problem 5.46

Put the field point on the x axis, so r = (s, 0, 0). Then B =
µ0

4⇡

Z
(K⇥ r̂ )

r 2 da; da = R d� dz; K = K �̂ = K(� sin� x̂ +

cos� ŷ); r = (s�R cos�) x̂�R sin� ŷ � z ẑ.

K ⇥ r = K

������

x̂ ŷ ẑ

� sin� cos� 0
(s�R cos�) (�R sin�) (�z)

������
=

K [(�z cos�) x̂ + (�z sin�) ŷ + (R� s cos�) ẑ] ;
r 2 = z

2 + R
2 + s

2 � 2Rs cos�. The x and y components
integrate to zero (z integrand is odd, as in Prob. 5.18).

Bz =
µ0

4⇡
KR

Z
(R� s cos�)

(z2 + R2 + s2 � 2Rs cos�)3/2
d� dz =

µ0KR

4⇡

Z 2⇡

0
(R� s cos�)

⇢Z 1

�1

dz

(z2 + d2)3/2

�
d�,

where d
2 ⌘ R

2 + s
2 � 2Rs cos�. Now

Z 1

�1

dz

(z2 + d2)3/2
=

2z

d2
p

z2 + d2

���
1

0
=

2
d2

.

=
µ0KR

2⇡

Z 2⇡

0

(R� s cos�)
(R2 + s2 � 2Rs cos�)

d�; (R� s cos�) =
1

2R

⇥
(R2 � s

2) + (R2 + s
2 � 2Rs cos�)

⇤
.

=
µ0K

4⇡


(R2 � s

2)
Z 2⇡

0

d�

(R2 + s2 � 2Rs cos�)
+
Z 2⇡

0
d�

�
.
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Z 2⇡

0

d�

a + b cos�
= 2

Z ⇡

0

d�

a + b cos�
=

4p
a2 � b2

tan�1

"p
a2 � b2 tan(�/2)

a + b

#����
⇡

0

=
4p

a2 � b2
tan�1

"p
a2 � b2 tan(⇡/2)

a + b

#
=

4p
a2 � b2

⇣
⇡

2

⌘
=

2⇡p
a2 � b2

. Here a = R
2 + s

2
,

b = �2Rs, so a
2 � b

2 = R
4 + 2R

2
s
2 + s

4 � 4R
2
s
2 = R

4 � 2R
2
s
2 + s

4 = (R2 � s
2)2;

p
a2 � b2 = |R2 � d

2|.

Bz =
µ0K

4⇡


(R2 � s

2)
|R2 � s2| 2⇡ + 2⇡

�
=

µ0K

2

✓
R

2 � s
2

|R2 � s2| + 1
◆

.

Inside the solenoid, s < R, so Bz =
µ0K

2
(1+1) = µ0K. Outside the solenoid, s > R, so Bz =

µ0K

2
(�1+1) = 0.

Here K = nI, so B = µ0nI ẑ(inside), and 0(outside) (as we found more easily using Ampére’s law, in Ex. 5.9).

Problem 5.47

(a) From Eq. 5.41, B =
µ0IR

2

2

(
1

[R2 + (d/2 + z)2]3/2
+

1
[R2 + (d/2� z)2]3/2

)
.

@B

@z
=

µ0IR
2

2

(
(�3/2)2(d/2 + z)

[R2 + (d/2 + z)2]5/2
+

(�3/2)2(d/2� z)(�1)
[R2 + (d/2� z)2]5/2

)

=
3µ0IR

2

2

(
�(d/2 + z)

[R2 + (d/2 + z)2]5/2
+

(d/2� z)
[R2 + (d/2� z)2]5/2

)
.

@B

@z

����
z=0

=
3µ0IR

2

2

(
�d/2

[R2 + (d/2)2]5/2
+

d/2
[R2 + (d/2)2]5/2

)
= 0. X

(b) Di↵erentiating again:

@
2
B

@z2
=

3µ0IR
2

2

n �1
[R2 + (d/2 + z)2]5/2

+
�(d/2 + z)(�5/2)2(d/2 + z)

[R2 + (d/2 + z)2]7/2

+
�1

[R2 + (d/2� z)2]5/2
+

(d/2� z)(�5/2)2(d/2� z)(�1)
[R2 + (d/2� z)2]7/2

o
.

@
2
B

@z2

����
z=0

=
3µ0IR

2

2

(
�2

[R2 + (d/2)2]5/2
+

2(5/2)2(d/2)22
[R2 + (d/2)2]7/2

)
=

3µ0IR
2

[R2 + (d/2)2]7/2

✓
�R

2 � d
2

4
+

5d
2

4

◆

=
3µ0IR

2

[R2 + (d/2)2]7/2

�
d
2 �R

2
�
. Zero if d = R, in which case

B(0) =
µ0IR

2

2

(
1

[R2 + (R/2)2]3/2
+

1
[R2 + (R/2)2]3/2

)
= µ0IR

2 1
(5R2/4)3/2

=
8µ0I

53/2R
.

Problem 5.48

The total charge on the shaded ring is dq = �(2⇡r) dr. The
time for one revolution is dt = 2⇡/!. So the current in the

ring is I =
dq

dt
= �!r dr. From Eq. 5.41, the magnetic field of
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this ring (for points on the axis) is dB =
µ0

2
�!r

r
2

(r2 + z2)3/2
dr ẑ, and the total field of the disk is

B =
µ0�!

2

Z R

0

r
3
dr

(r2 + z2)3/2
ẑ. Let u ⌘ r

2
, so du = 2r dr. Then

=
µ0�!

4

Z R2

0

u du

(u + z2)3/2
=

µ0�!

4


2
✓

u + 2z
2

p
u + z2

◆�����
R2

0

=
µ0�!

2


(R2 + 2z

2)p
R2 + z2

� 2z

�
ẑ.

When z � R, the term in square brackets is

[ ] =
2z

2(1 + R
2
/2z

2)
z[1 + (R/z)2]�1/2

� 2z ⇡ 2z

✓
1 +

R
2

2z2

◆✓
1� 1

2
R

2

z2
+

3
8

R
4

z4

◆
� 1
�

⇡ 2z

✓
1� R

2

2z2
+

3
8

R
4

z4
+

R
2

2z2
� R

4

4z4
� 1
◆

= 2z

✓
1
8

R
4

z4

◆
=

R
4

4z4
,

so
B ⇡ µ0�!

2
R

4

4z4
ẑ =

µ0�!R
4

8z3
ẑ.

Meanwhile, from Eq. 5.88, the dipole field is

Bdip =
µ0m

4⇡r3

⇣
2 cos ✓ r̂ + sin ✓ ✓̂

⌘
,

and for points on the +z axis ✓ = 0, r = z, r̂ = ẑ, so Bdip =
µ0m

2⇡z3
ẑ. In this case (Problem 5.37a) m = ⇡�!R

4
/4,

so Bdip =
µ0�!R

4

8z3
ẑ, in agreement with the approximation. X

Problem 5.49

B =
µ0I

4⇡

Z
dl
0 ⇥ r
r 3 ; r = �R cos� x̂ + (y � R sin�) ŷ + z ẑ. (For simplicity I’ll drop the prime on

�.) r 2 = R
2 cos2 � + y

2 � 2Ry sin� + R
2 sin2

� + z
2 = R

2 + y
2 + z

2 � 2Ry sin�. The source coordinates
(x0, y0, z0) satisfy x

0 = R cos� ) dx
0 = �R sin� d�; y

0 = R sin� ) dy
0 = R cos� d�; z0 = 0 ) dz

0 = 0. So
dl
0 = �R sin� d� x̂ + R cos� d� ŷ.

dl
0 ⇥ r =

������

x̂ ŷ ẑ

�R sin� d� R cos� d� 0
�R cos� (y �R sin�) z

������
= (Rz cos� d�) x̂ + (Rz sin� d�) ŷ + (�Ry sin� d�+ R

2
d�) ẑ.

Bx =
µ0IRz

4⇡

Z 2⇡

0

cos� d�

(R2 + y2 + z2 � 2Ry sin�)3/2
=

µ0IRz

4⇡
1

Ry

1p
R2 + y2 + z2 � 2Ry sin�

����
2⇡

0

= 0,

since sin� = 0 at both limits. The y and z components are elliptic integrals, and cannot be expressed in terms
of elementary functions.

Bx = 0; By =
µ0IRz

4⇡

Z 2⇡

0

sin� d�

(R2 + y2 + z2 � 2Ry sin�)3/2
;Bz =

µ0IR

4⇡

Z 2⇡

0

(R� y sin�) d�

(R2 + y2 + z2 � 2Ry sin�)3/2
.
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Problem 5.50

From the Biot-Savart law, the field of loop #1 is B =
µ0I1

4⇡

I

1

dl1 ⇥ r̂
r 2 ; the force on loop #2 is

F = I2

I

2
dl2 ⇥B =

µ0

4⇡
I1I2

I

1

I

2

dl2 ⇥ (dl1 ⇥ r̂ )
r 2 . Now dl2 ⇥ (dl1 ⇥ r̂ ) = dl1(dl2 · r̂ )� r̂ (dl1 · dl2), so

F = �µ0

4⇡
I1I2

⇢I I r̂
r 2 (dl1 · dl2)�

I
dl1

I
(dl2 · r̂ )

r 2

�

The first term is what we want. It remains to show that the second term is zero:
r = (x2�x1) x̂+(y2�y1) ŷ+(z2�z1) ẑ, so r2(1/r ) =

@

@x2

⇥
(x2 � x1)2 + (y2 � y1)2 + (z2 � z1)2

⇤�1/2
x̂

+
@

@y2

⇥
(x2 � x1)2 + (y2 � y1)2 + (z2 � z1)2

⇤�1/2
ŷ +

@

@z2

⇥
(x2 � x1)2 + (y2 � y1)2 + (z2 � z1)2

⇤�1/2
ẑ

= � (x2 � x1)
r 3 x̂� (y2 � y1)

r 3 ŷ � (z2 � z1)
r 3 ẑ = � r

r 3 = � r̂
r 2 . So

I r̂
r 2 · dl2 = �

I
r2

✓
1
r
◆
· dl2 = 0 (by

Corollary 2 in Sect. 1.3.3). qed
Problem 5.51

(a) B =
µ0I

4⇡

I
dl⇥ r̂

r 2 = �µ0I

4⇡

I
dl⇥ r̂

r2
, dl⇥ r̂ = �dl sin� ẑ, dl sin� = r d✓ (see diagram in the book),

so B =
µ0I

4⇡

I
d✓

r
. X

(b) For a circular loop, r = R is constant; B =
µ0I

4⇡
1
R

I
d✓ =

µ0I

2R
, which agrees with Eq. 5.41 (z = 0).

(c)

-0.5 0.5 1.0 1.5

-0.4

-0.2

0.2

0.4

0.6

0.8

B =
µ0I

4⇡a

Z 2⇡

0

p
✓ d✓ =

µ0I

4⇡a


2
3
✓
3/2

� �����

2⇡

0

=
µ0I
p

2⇡
3a

.

(d) B =
µ0I

4⇡p

Z 2⇡

0
(1 + e cos ✓) d✓ =

µ0I

4⇡p
(2⇡) =

µ0I

2p
. X

Problem 5.52

(a)

B =
µ0

4⇡

Z
J⇥ r̂

r 2 d⌧ ) A =
1
4⇡

Z
B⇥ r̂

r 2 d⌧.

(b) Poisson’s equation (Eq. 2.24) says r2
V = � 1

✏0
⇢. For dielectrics (with no free charge), ⇢b = �r · P

(Eq. 4.12), and the resulting potential is V (r) =
1

4⇡✏0

Z
P(r0) · r̂

r 2 d⌧
0. In general, ⇢ = ✏0r ·E (Gauss’s law),
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so the analogy is P! �✏0E, and hence V (r) = � 1
4⇡

Z
E(r0) · r̂

r 2 d⌧
0
. qed

[There are many other ways to obtain this result. For example, using Eq. 1.100:

r ·
✓ r̂

r 2

◆
= �r0 ·

✓ r̂
r 2

◆
= 4⇡�3(r ) = 4⇡�3(r� r

0),

V (r) =
Z

V (r0)�3(r�r
0) d⌧

0 = � 1
4⇡

Z
V (r0)r0 ·

✓ r̂
r 2

◆
d⌧
0 =

1
4⇡

Z r̂
r 2 ·

⇥
r0

V (r0)
⇤

d⌧
0� 1

4⇡

I
V (r0)

r̂
r 2 ·da

0

(Eq. 1.59). But r0
V (r0) = �E(r0), and the surface integral ! 0 at 1, so V (r) = � 1

4⇡

Z
E(r0) · r̂

r 2 d⌧
0, as

before. You can also check the result, by computing its gradient—but it’s not easy.]
Problem 5.53

(a) For uniform B,
R r
0 (B⇥ dl) = B⇥

R r
0 dl = B⇥ r 6= A = � 1

2 (B⇥ r).

(b) B =
µ0I

2⇡s
�̂, so

I
B⇥ dl =

✓
µ0I

2⇡a
ŝ� µ0I

2⇡b
ŝ

◆
w =

µ0Iw

2⇡

✓
1
a
� 1

b

◆
ŝ 6= 0.

(c) A = �r⇥B
R 1
0 � d� = � 1

2 (r⇥B).

(d) B =
µ0I

2⇡s
�̂; B(�r) =

µ0I

2⇡�s
�̂; A = �µ0I

2⇡s
(r ⇥ �̂)

Z 1

0
�

1
�

d� = �µ0I

2⇡s
(r ⇥ �̂). But r here is the

vector from the origin—in cylindrical coordinates r = s ŝ + z ẑ. So A = �µ0I

2⇡s

h
s(̂s⇥ �̂) + z(ẑ⇥ �̂)

i
, and

(̂s⇥ �̂) = ẑ, (ẑ⇥ �̂) = �ŝ. So A =
µ0I

2⇡s
(z ŝ� s ẑ.

The examples in (c) and (d) happen to be divergenceless, but this is not in general the case. For (letting
L ⌘

R 1
0 �B(�r) d�, for short) r · A = �r · (r ⇥ L) = �[L · (r ⇥ r) � r · (r ⇥ L)] = r · (r ⇥ L), and

r⇥L =
R 1
0 �[r⇥B(�r)] d� =

R 1
0 �

2[r� ⇥B(�r)] d� = µ0

R 1
0 �

2
J(�r) d�, so r ·A = µ0r ·

R 1
0 �

2
J(�r) d�, and

it vanishes in regions where J = 0 (which is why the examples in (c) and (d) were divergenceless). To construct
an explicit counterexample, we need the field at a point where J 6= 0—say, inside a wire with uniform current.

Here Ampére’s law gives B 2⇡s = µ0Ienc = µ0J⇡s
2 ) B =

µ0J

2
s �̂, so

A = �r⇥
Z 1

0
�

✓
µ0J

2

◆
�s �̂ d� = �µ0J

6
s(r⇥ �̂) =

µ0Js

6
(z ŝ� sẑ).

r ·A =
µ0J

6


1
s

@

@s
(s2

z) +
@

@z
(�s

2)
�

=
µ0J

6

✓
1
s
2sz

◆
=

µ0Jz

3
6= 0.

Conclusion: (ii) does not automatically yield r ·A = 0.

Problem 5.54

(a) Exploit the analogy with the electrical case:

E =
1

4⇡✏0
1
r3

[3(p · r̂) r̂� p] (Eq. 3.104) = �rV, with V =
1

4⇡✏0
p · r̂
r2

(Eq. 3.102).

B =
µ0

4⇡
1
r3

[3(m · r̂) r̂�m] (Eq. 5.89) = �rU, (Eq. 5.67).
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Evidently the prescription is p/✏0 ! µ0m : U(r) =
µ0

4⇡
m · r̂
r2

.

(b) Comparing Eqs. 5.69 and 5.87, the dipole moment of the shell is m = (4⇡/3)!�R
4
ẑ (which we also got

in Prob. 5.37). Using the result of (a), then, U(r) =
µ0!�R

4

3
cos ✓
r2

for r > R.

Inside the shell, the field is uniform (Eq. 5.70): B = 2
3µ0�!R ẑ, so U(r) = � 2

3µ0�!Rz +constant. We may

as well pick the constant to be zero, so U(r) = � 2
3µ0�!Rr cos ✓ for r < R.

[Notice that U(r) is not continuous at the surface (r = R): Uin(R) = � 2
3µ0�!R

2 cos ✓ 6= Uout(R) =
1
3µ0�!R

2 cos ✓. As I warned you on p. 245: if you insist on using magnetic scalar potentials, keep away from
places where there is current!]

(c)

B =
µ0!Q

4⇡R

✓
1� 3r

2

5R2

◆
cos ✓ r̂�

✓
1� 6r

2

5R2

◆
sin ✓ ✓̂

�
= �rU = �@U

@r
r̂� 1

r

@U

@✓
✓̂ � 1

r sin ✓
@U

@�
�̂.

@U

@�
= 0) U(r, ✓,�) = U(r, ✓).

1
r

@U

@✓
=
✓

µ0!Q

4⇡R

◆✓
1� 6r

2

5R2

◆
sin ✓ ) U(r, ✓) = �

✓
µ0!Q

4⇡R

◆✓
1� 6r

2

5R2

◆
r cos ✓ + f(r).

@U

@r
= �

✓
µ0!Q

4⇡R

◆✓
1� 3r

2

5R2

◆
cos ✓ ) U(r, ✓) = �

✓
µ0!Q

4⇡R

◆✓
r � r

3

5R2

◆
cos ✓ + g(✓).

Equating the two expressions:

�
✓

µ0!Q

4⇡R

◆✓
1� 6r

2

5R2

◆
r cos ✓ + f(r) = �

✓
µ0!Q

4⇡R

◆✓
1� r

2

5R2

◆
r cos ✓ + g(✓),

or ✓
µ0!Q

4⇡R3

◆
r
3 cos ✓ + f(r) = g(✓).

But there is no way to write r
3 cos ✓ as the sum of a function of ✓ and a function of r, so we’re stuck. The

reason is that you can’t have a scalar magnetic potential in a region where the current is nonzero.
Problem 5.55

(a) r ·B = 0, r⇥B = µ0J, and r ·A = 0, r⇥A = B ) A =
µ0

4⇡

Z
J

r d⌧
0, so

r ·A = 0, r⇥A = B, and r ·W = 0 (we’ll choose it so), r⇥W = A ) W =
1
4⇡

Z
B

r d⌧
0
.

(b) W will be proportional to B and to two factors of r (since di↵erentiating twice must recover B), so I’ll
try something of the form W = ↵r(r ·B) + �r

2
B, and see if I can pick the constants ↵ and � in such a way

that r ·W = 0 and r⇥W = A.
r ·W = ↵ [(r ·B)(r · r) + r ·r(r ·B)] + �

⇥
r
2(r ·B) + B ·r(r2)

⇤
. rr =

@x

@x
+
@y

@y
+
@z

@z
= 1 + 1 + 1 = 3;

r(r ·B) = r⇥ (r⇥B) +B⇥ (r⇥ r) + (r ·r)B+ (B ·r)r; but B is constant, so all derivatives of B vanish,
and r⇥ r = 0 (Prob. 1.63), so

r(r ·B) = (B ·r)r =
✓

Bx
@

@x
+ By

@

@y
+ Bz

@

@z

◆
(x x̂ + y ŷ + z ẑ) = Bx x̂ + By ŷ + Bz ẑ = B;

r(r2) =
✓
x̂
@

@x
+ ŷ

@

@y
+ ẑ

@

@z

◆
(x2 + y

2 + z
2) = 2x x̂ + 2y ŷ + 2z ẑ = 2r. So
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r ·W = ↵ [3(r ·B) + (r ·B)] + � [0 + 2(r ·B)] = 2(r ·B)(2↵+ �), which is zero if 2↵+ � = 0.
r⇥W = ↵ [(r ·B)(r⇥ r)� r⇥r(r ·B)] + �

⇥
r
2(r⇥B)�B⇥r(r2)

⇤
= ↵ [0� (r⇥B)] + � [0� 2(B⇥ r)]

= �(r⇥B)(↵� 2�) = �1
2
(r⇥B) (Prob. 5.25). So we want ↵� 2� = 1/2. Evidently ↵� 2(�2↵) = 5↵ = 1/2,

or ↵ = 1/10;� = �2↵ = �1/5. Conclusion: W =
1
10
⇥
r(r ·B)� 2r

2
B
⇤
. (But this is certainly not unique.)

(c) r⇥W = A)
R

(r⇥W) · da =
R

A · da. Or
H

W · dl =R
A · da. Integrate around the amperian loop shown, taking

W to point parallel to the axis, and choosing W = 0 on the
axis:
�Wl =

Z s

0

✓
µ0nI

2

◆
ls̄ ds̄ =

µ0nI

2
s
2
l

2
(using Eq. 5.72 for A).

W = �µ0nIs
2

4
ẑ (s < R).

For s > R, �Wl =
µ0nIR

2
l

4
+
Z s

R

✓
µ0nI

2

◆
R

2

s̄
l ds̄ =

µ0nIR
2
l

4
+

µ0nIR
2
l

2
ln(s/R);

W = �µ0nIR
2

4
[1 + 2 ln(s/R)] ẑ (s > R).

Problem 5.56

Apply the divergence theorem to the function [U⇥ (r⇥V)], noting (from the product rule) that
r · [U⇥ (r⇥V)] = (r⇥V) · (r⇥U)�U · [r⇥ (r⇥V)]:

Z
r · [U⇥ (r⇥V)] d⌧ =

Z
{(r⇥V) · (r⇥U)�U · [r⇥ (r⇥V)]} d⌧ =

I
[U⇥ (r⇥V)] · da.

As always, suppose we have two solutions, B1 (and A1) and B2 (and A2). Define B3 ⌘ B2 � B1 (and
A3 ⌘ A2 �A1), so that r⇥A3 = B3 and r⇥B3 = r⇥B1 �r⇥B2 = µ0J� µ0J = 0. Set U = V = A3

in the above identity:Z
{(r⇥A3) · (r⇥A3)�A3 · [r⇥ (r⇥A3)]} d⌧ =

Z
{(B3) · (B3)�A3 · [r⇥B3]} d⌧ =

Z
(B3)2 d⌧

=
I

[A3 ⇥ (r⇥A3)] · da =
I

(A3 ⇥B3) · da. But either A is specified (in which case A3 = 0), or else B is

specified (in which case B3 = 0), at the surface. In either case
H

(A3 ⇥B3) · da = 0. So
Z

(B3)2 d⌧ = 0, and

hence B1 = B2. qed
Problem 5.57

From Eq. 5.88, Btot = B0 ẑ� µ0m0

4⇡r3
(2 cos ✓ r̂+sin ✓ ✓̂). There-

fore B · r̂ = B0(ẑ · r̂) �
µ0m0

4⇡r3
2 cos ✓ =

⇣
B0 �

µ0m0

2⇡r3

⌘
cos ✓.

This is zero, for all ✓, when r = R, given by B0 =
µ0m0

2⇡R3
, or

R =
✓

µ0m0

2⇡B0

◆1/3

. Evidently no field lines cross this sphere.
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Problem 5.58

(a) I =
Q

(2⇡/!)
=

Q!

2⇡
; a = ⇡R

2; m =
Q!

2⇡
⇡R

2
ẑ =

Q

2
!R

2
ẑ. L = RMv = M!R

2;L = M!R
2
ẑ.

m

L
=

Q

2
!R

2

M!R2
=

Q

2M
. m =

✓
Q

2M

◆
L, and the gyromagnetic ratio is g =

Q

2M
.

(b) Because g is independent of R, the same ratio applies to all “donuts”, and hence to the entire sphere

(or any other figure of revolution): g =
Q

2M
.

(c) m =
e

2m

~
2

=
e~
4m

=
(1.60⇥ 10�19)(1.05⇥ 10�34)

4(9.11⇥ 10�31)
= 4.61⇥ 10�24 A m2.

Problem 5.59

(a) Bave =
1

(3/4)⇡R3

Z
B d⌧ =

3
4⇡R3

Z
(r ⇥ A) d⌧ =

� 3
4⇡R3

I
A ⇥ da = � 3

4⇡R3

µ0

4⇡

I ⇢Z
J

r d⌧
0
�
⇥ da =

� 3µ0

(4⇡)2R3

Z
J ⇥

⇢I
1
r da

�
d⌧
0. Note that J depends on

the source point r
0, not on the field point r. To do the surface

integral, choose the (x, y, z) coordinates so that r
0 lies on the

z axis (see diagram). Then r =
p

R2 + (z0)2 � 2Rz0 cos ✓,
while da = R

2 sin ✓ d✓ d� r̂. By symmetry, the x and y com-
ponents must integrate to zero; since the z component of r̂ is
cos ✓, we have

I
1
r da = ẑ

Z
cos ✓p

R2 + (z0)2 � 2Rz0 cos ✓
R

2 sin ✓ d✓ d� = 2⇡R
2
ẑ

Z ⇡

0

cos ✓ sin ✓p
R2 + (z0)2 � 2Rz0 cos ✓

d✓.

Let u ⌘ cos ✓, so du = � sin ✓ d✓.

= 2⇡R
2
ẑ

Z 1

�1

up
R2 + (z0)2 � 2Rz0u

du

= 2⇡R
2
ẑ

(
�

2
⇥
2(R2 + (z0)2) + 2Rz

0
u
⇤

3(2Rz0)2
p

R2 + (z0)2 � 2Rz0u

)����
1

�1

= � 2⇡R
2
ẑ

3(Rz0)2
n⇥

R
2 + (z0)2 + Rz

0⇤p
R2 + (z0)2 � 2Rz0 �

⇥
R

2 + (z0)2 �Rz
0⇤p

R2 + (z0)2 + 2Rz0
o

= �


2⇡
3(z0)2

ẑ

��⇥
R

2 + (z0)2 + Rz
0⇤ |R� z

0|�
⇥
R

2 + (z0)2 �Rz
0⇤ (R + z

0)
 

=

8
>>><

>>>:

4⇡
3

z
0
ẑ =

4⇡
3

r
0
, (r0 < R);

4⇡R
3

3(z0)2
ẑ =

4⇡
3

R
3

(r0)3
r
0
, (r0 > R).

9
>>>=

>>>;
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For now we want r
0
< R, so Bave = � 3µ0

(4⇡)2R3

4⇡
3

Z
(J⇥r

0) d⌧
0 = � µ0

4⇡R3

Z
(J⇥r

0) d⌧
0. Now m = 1

2

R
(r⇥J) d⌧

(Eq. 5.90), so Bave =
µ0

4⇡
2m
R3

. qed

(b) This time r
0
> R, so Bave = � 3µ0

(4⇡)2R3

4⇡
3

R
3

Z ✓
J⇥ r

0

(r0)3

◆
d⌧
0 =

µ0

4⇡

Z
J⇥ r̂

r 2 d⌧
0, where r now

goes from the source point to the center (r = �r
0). Thus Bave = Bcen. qed

Problem 5.60

(a) Problem 5.53 gives the dipole moment of a shell: m =
4⇡
3
�!R

4
ẑ. Let R! r,� ! ⇢ dr, and integrate:

m =
4⇡
3
!⇢ ẑ

Z R

0
r
4
dr =

4⇡
3
!⇢

R
5

5
ẑ. But ⇢ =

Q

(4/3)⇡R3
, so m =

1
5
Q!R

2
ẑ.

(b) Bave =
µ0

4⇡
2m
R3

=
µ0

4⇡
2Q!

5R
ẑ.

(c) A ⇠=
µ0

4⇡
m sin ✓

r2
�̂ =

µ0

4⇡
Q!R

2

5
sin ✓
r2

�̂.

(d) Use Eq. 5.69, with R! r̄,� ! ⇢ dr̄, and integrate:

A =
µ0!⇢

3
sin ✓
r2

�̂

Z R

0
r̄
4
dr̄ =

µ0!

3
3Q

4⇡R3

sin ✓
r2

R
5

5
�̂ =

µ0

4⇡
Q!R

2

5
sin ✓
r2

�̂.

This is identical to (c); evidently the field is pure dipole, for points outside the sphere.

(e) According to Prob. 5.30, the field is B =
µ0!Q

4⇡R

✓
1� 3r

2

5R2

◆
cos ✓ r̂�

✓
1� 6r

2

5R2

◆
sin ✓ ✓̂

�
. The average

obviously points in the z direction, so take the z component of r̂ (cos ✓) and ✓̂ (� sin ✓):

Bave =
µ0!Q

4⇡R

1
(4/3)⇡R3

Z ✓
1� 3r

2

5R2

◆
cos2 ✓ +

✓
1� 6r

2

5R2

◆
sin2

✓

�
r
2 sin ✓ dr d✓ d�

=
3µ0!Q

(4⇡R2)2
2⇡
Z ⇡

0

✓
r
3

3
� 3

5
R

5

5R2

◆
cos2 ✓ +

✓
R

3

3
� 6

5
R

5

5R2

◆
sin2

✓

�
sin ✓ d✓

=
3µ0!Q

8⇡R4
R

3

Z ⇡

0

✓
16
75

cos2 ✓ +
7
75

sin2
✓

◆
sin ✓ d✓ =

3µ0!Q

8⇡R

1
75

Z ⇡

0

�
7 + 9 cos2 ✓

�
sin ✓ d✓

=
µ0!Q

200⇡R

�
�7 cos ✓ � 3 cos3 ✓

����
⇡

0
=

µ0!Q

200⇡R
(20) =

µ0!Q

10⇡R
(same as (b)). X

Problem 5.61

The issue (and the integral) is identical to the one in Prob. 3.48. The resolution (as before) is to regard
Eq. 5.89 as correct outside an infinitesimal sphere centered at the dipole. Inside this sphere the field is a
delta-function, A�

3(r), with A selected so as to make the average field consistent with Prob. 5.59:

Bave =
1

(4/3)⇡R3

Z
A�

3(r) d⌧ =
3

4⇡R3
A =

µ0

4⇡
2m
R3
) A =

2µ0m

3
. The added term is

2µ0

3
m�

3(r).
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Problem 5.62

For a dipole at the origin and a field point in the x z plane (� = 0), we have

B =
µ0

4⇡
m

r3
(2 cos ✓ r̂ + sin ✓ ✓̂) =

µ0

4⇡
m

r3
[2 cos ✓(sin ✓ x̂ + cos ✓ ẑ) + sin ✓(cos ✓ x̂� sin ✓ ẑ)]

=
µ0

4⇡
m

r3
[3 sin ✓ cos ✓ x̂ + (2 cos2 ✓ � sin2

✓) ẑ].

Here we have a stack of such dipoles, running from z =
�L/2 to z = +L/2. Put the field point at s on the
x axis. The x̂ components cancel (because of symmetri-
cally placed dipoles above and below z = 0), leaving B =
µ0

4⇡
2M ẑ

Z L/2

0

(3 cos2 ✓ � 1)
r3

dz, where M is the dipole mo-

ment per unit length: m = I⇡R
2 = (�vh)⇡R

2 = �!R⇡R
2
h)

M =
m

h
= ⇡�!R

3. Now sin ✓ =
s

r
, so

1
r3

=
sin3

✓

s3
; z =

�s cot ✓ ) dz =
s

sin2
✓

d✓. Therefore

B =
µ0

2⇡
(⇡�!R

3) ẑ
Z ✓m

⇡/2
(3 cos2 ✓ � 1)

sin3
✓

s3

s

sin2
✓

d✓ =
µ0�!R

3

2s2
ẑ

Z ✓m

⇡/2
(3 cos2 ✓ � 1) sin ✓ d✓

=
µ0�!R

3

2s2
ẑ
�
� cos3 ✓ + cos ✓

����
✓m

⇡/2
=

µ0�!R
3

2s2
cos ✓m

�
1� cos2 ✓m

�
ẑ =

µ0�!R
3

2s2
cos ✓m sin2

✓m ẑ.

But sin ✓m =
sp

s2 + (L/2)2
, and cos ✓m =

�(L/2)p
s2 + (L/2)2

, so B = � µ0�!R
3
L

4[s2 + (L/2)2]3/2
ẑ.
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Chapter 6

Magnetic Fields in Matter

Problem 6.1

N = m2⇥B1; B1 =
µ0

4⇡
1
r3

[3(m1 ·̂r)r̂�m1] ; r̂ = ŷ;m1 = m1ẑ; m2 = m2ŷ. B1 = �µ0

4⇡
m1

r3
ẑ.

N = �µ0

4⇡
m1m2

r3
(ŷ⇥ẑ) = �µ0

4⇡
m1m2

r3
x̂. Here m1 = ⇡a

2
I, m2 = b

2
I. So N = �µ0

4
(abI)2

r3
x̂. Final orientation :

downward (�ẑ).

Problem 6.2

dF = I dl⇥B; dN = r⇥dF = I r⇥(dl⇥B). Now (Prob. 1.6): r⇥(dl⇥B) + dl⇥(B⇥r) + B⇥(r⇥dl) = 0.
But d [r⇥(r⇥B)] = dr⇥(r⇥B)+ r⇥(dr⇥B) (since B is constant), and dr = dl, so dl⇥(B⇥r) = r⇥(dl⇥B)�
d [r⇥(r⇥B)]. Hence 2r⇥(dl⇥B) = d [r⇥(r⇥B)] � B⇥(r⇥dl). dN = 1

2I {d [r⇥(r⇥B)]�B⇥(r⇥dl)}.
) N = 1

2I
�H

d [r⇥(r⇥B)]�B⇥
H
(r⇥dl)

 
. But the first term is zero (

H
d(· · · ) = 0), and the second integral is

2a (Eq. 1.107). So N = �I(B⇥a) = m⇥B. qed
Problem 6.3

(a)

1

Problem 6.3

✻m1

✻ẑ

R ✲ ŷ
✸

B✕
r̂

r
φ

θ

❥I

Problem 6.5

✲
y

✻
z

❂
x

❂
m

! J = J0ẑ
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According to Eq. 6.2, F = 2⇡IRB cos ✓. But B =
µ0
4⇡

[3(m1 ·̂r)r̂�m1]
r3 , and B cos ✓ = B · ŷ, so B cos ✓ =

µ0
4⇡

1
r3 [3(m1 · r̂)(r̂ · ŷ)� (m1 · ŷ)]. But m1 · ŷ = 0 and

r̂ · ŷ = sin�, while m1 · r̂ = m1 cos ✓. ) B cos ✓ =
µ0
4⇡

1
r3 3m1 sin� cos�.

F = 2⇡IR
µ0
4⇡

1
r3 3m1 sin� cos�. Now sin� = R

r , cos� =
p

r2 �R2/r, so F = 3µ0
2 m1IR

2
p

r2�R2

r5 .

But IR
2
⇡ = m2, so F = 3µ0

2⇡ m1m2

p
r2�R2

r5 , while for a dipole, R⌧ r, so F =
3µ0

2⇡
m1m2

r4
.

(b) F = r(m2·B) = (m2·r)B =
�
m2

d
dz

� ⇥µ0
4⇡

1
z3 (3(m1·ẑ)ẑ�m1| {z }

2m1

)
⇤

= µ0
2⇡ m1m2ẑ

d
dz

�
1
z3

�
| {z }
�3 1

z4

,

or, since z = r: F = �3µ0

2⇡
m1m2

r4
ẑ.
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Problem 6.4

dF = I {(dy ŷ)⇥B(0, y, 0) + (dz ẑ)⇥B(0, ✏, z)� (dy ŷ)⇥B(0, y, ✏)� (dz ẑ)⇥B(0, 0, z)}

= I

n
�(dy ŷ)⇥ [B(0, y, ✏)�B(0, y, 0)]| {z }

⇡ ✏@B
@z

+(dz ẑ)⇥ [B(0, ✏, z)�B(0, 0, z)]| {z }
⇡ ✏@B

@y

o

) I✏
2

⇢
ẑ⇥@B

@y
� ŷ⇥@B

@z

�
.


Note that

R
dy

@B
@z

��
0,y,0

⇡ ✏ @B
@z

��
0,0,0

and
R

dz
@B
@y

���
0,0,z

⇡ ✏ @B
@y

���
0,0,0

.

�

F = m

(������

x̂ ŷ ẑ

0 0 1
@Bx
@y

@By

@y
@Bz
@y

������
�

������

x̂ ŷ ẑ

0 1 0
@Bx
@z

@By

@z
@Bz
@z

������

)
= m

⇢
ŷ
@Bx

@y
� x̂

@By

@y
� x̂

@Bz

@z
+ ẑ

@Bx

@z

�

= m


x̂
@Bx

@x
+ ŷ

@Bx

@y
+ ẑ

@Bx

@z

� ✓
using r·B = 0 to write

@By

@y
+
@Bz

@z
= �@Bx

@x

◆
.

But m·B = mBx (since m = mx̂, here), so r(m·B) = mr(Bx) = m

⇣
@Bx
@x x̂ + @Bx

@y ŷ + @Bx
@z ẑ

⌘
.

Therefore F = r(m·B). qed
Problem 6.5

1

Problem 6.3

✻m1

✻ẑ

R ✲ ŷ
✸

B✕
r̂

r
φ

θ

❥I

Problem 6.5

✲
y

✻
z

❂
x

❂
m

! J = J0ẑ
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(a) B = µ0J0xŷ (Prob. 5.15).
m·B = 0, so Eq. 6.3 says F = 0.

(b) m·B = m0µ0J0x, so F = m0µ0J0x̂.

(c) Use product rule #4: r(p ·E)
= p⇥ (r⇥E) + E⇥ (r⇥ p) + (p ·r)E + (E ·r)p.
But p does not depend on (x, y, z), so the second
and fourth terms vanish, and r⇥E = 0, so the
first term is zero. Hence r(p ·E) = (p ·r)E. qed

This argument does not apply to the magnetic analog,
since r⇥B 6= 0. In fact, r(m ·B) = (m ·r)B + µ0(m⇥ J).
(m·r)Ba = m0

@
@x (B) = m0µ0J0ŷ, (m·r)Bb = m0

@
@y (µ0J0xŷ) = 0.

Problem 6.6

Aluminum, copper, copper chloride, and sodium all have an odd number of electrons, so we expect them to
be paramagnetic. The rest (having an even number) should be diamagnetic.
Problem 6.7

1

Problem 6.7

✻M ✲ n̂
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Jb = r⇥M = 0; Kb = M⇥n̂ = M �̂.
The field is that of a surface current Kb = M �̂,
but that’s just a solenoid, so the field
outside is zero, and inside B = µ0Kb = µ0M . Moreover, it points upward (in the drawing), so B = µ0M.
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Problem 6.8

r⇥M = Jb =
1
s

@

@s
(s ks

2)ẑ =
1
s
(3ks

2)ẑ = 3ksẑ, Kb = M⇥n̂ = ks
2(�̂⇥ŝ) = �kR

2
ẑ.

So the bound current flows up the cylinder, and returns down the surface. [Incidentally, the total current should
be zero. . . is it? Yes, for

R
Jb da =

R R
0 (3ks)(2⇡s ds) = 2⇡kR

3, while
R

Kb dl = (�kR
2)(2⇡R) = �2⇡kR

3.] Since
these currents have cylindrical symmetry, we can get the field by Ampère’s law:

B · 2⇡s = µ0Ienc = µ0

Z s

0
Jb da = 2⇡kµ0s

3 ) B = µ0ks
2�̂ = µ0M.

Outside the cylinder Ienc = 0, so B = 0.

Problem 6.9

1

Problem 6.9

B
✿
③

▼

✌
✎

✎ ✎ ✎ ✎ ✎ ✎
K✲

M

Kb = M×n̂ = M φ̂.

(Essentially a long solenoid)
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2

Problem 6.7

✻M ✲ n̂

Problem 6.9

B
✿
③

▼

✌
✎

✎ ✎ ✎ ✎ ✎ ✎
K✲

M

Kb = M×n̂ = M φ̂.

(Essentially a long solenoid)

!

K B
✶

'

✻

❄

✻

❄

(Essentially a physical dipole)
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3

B✶
"

❖

✎

✛

✛
✎ ✎K

✲M (Intermediate case)

Problem 6.12 . }l

✲R

✻z

❃Kb

■
Jb
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[The external fields are the same as in the electrical
case; the internal fields (inside the bar) are completely
di↵erent—in fact, opposite in direction.]

Problem 6.10

Kb = M , so the field inside a complete ring would be µ0M . The field of a square loop, at the center, is
given by Prob. 5.8: Bsq =

p
2 µ0I/⇡R. Here I = Mw, and R = a/2, so

Bsq =
p

2 µ0Mw

⇡(a/2)
=

2
p

2 µ0Mw

⇡a
; net field in gap : B = µ0M

 
1� 2

p
2 w

⇡a

!
.
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Problem 6.11

As in Sec. 4.2.3, we want the average of B = Bout + Bin, where Bout is due to molecules outside a small
sphere around point P , and Bin is due to molecules inside the sphere. The average of Bout is same as field at
center (Prob. 5.59b), and for this it is OK to use Eq. 6.10, since the center is “far” from all the molecules in
question:

Aout =
µ0

4⇡

Z

outside

M⇥ r̂
r 2 d⌧

The average of Bin is µ0
4⇡

�
2m
R3

�
—Eq. 5.93—where m = 4

3⇡R
3
M. Thus the average Bin is 2µ0M/3. But what is

left out of the integral Aout is the contribution of a uniformly magnetized sphere, to wit: 2µ0M/3 (Eq. 6.16),
and this is precisely what Bin puts back in. So we’ll get the correct macroscopic field using Eq. 6.10. qed
Problem 6.12

1

Problem 6.12

. }l

✲R

✻z

❃Kb

■
Jb
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(a) M = ksẑ; Jb = r⇥M = �k�̂; Kb = M⇥n̂ = kR�̂.
B is in the z direction (this is essentially a superposition of solenoids). So
B = 0 outside. Use the amperian loop shown (shaded)—inner side at radius s:H
B · dl = Bl = µ0Ienc = µ0

⇥R
Jb da + Kbl

⇤
= µ0 [�kl(R� s) + kRl] = µ0kls.

) B = µ0ksẑ inside.

(b) By symmetry, H points in the z direction. That same amperian loop gives
H
H·dl = Hl = µ0Ifenc = 0, since

there is no free current here. So H = 0 , and hence B = µ0M. Outside M = 0, so B = 0; inside M = ksẑ,
so B = µ0ksẑ.

Problem 6.13

(a) The field of a magnetized sphere is 2
3µ0M (Eq. 6.16), so B = B0 �

2
3
µ0M, with the sphere removed.

In the cavity, H = 1
µ0

B, so H = 1
µ0

�
B0 � 2

3µ0M
�

= H0 + M� 2
3M) H = H0 +

1
3
M.

(b)

1

Problem 6.13

▼Kb
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The field inside a long solenoid is µ0K. Here K = M , so the field of the bound current on
the inside surface of the cavity is µ0M , pointing down. Therefore

B = B0 � µ0M;

H =
1
µ0

(B0 � µ0M) =
1
µ0

B0 �M) H = H0.

(c)

1

Problem 6.13

✰✸ Kb
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This time the bound currents are small, and far away from the center, so B = B0,

while H = 1
µ0

B0 = H0 + M) H = H0 + M.

[Comment : In the wafer, B is the field in the medium; in the needle, H is the H in the medium; in the
sphere (intermediate case) both B and H are modified.]
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Problem 6.14

M:

1

Problem 6.14

✲

✲

✲
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; B is the same as the field of a short solenoid; H = 1
µ0

B�M.

1

✲✲
✲

✲✲
✲✲
✲✲
✲✲
✲

✲✲✲✲✲✲✲✲

✛

✛

✛

✛

✛

✛

❄
✻

✻
❄

◆
✍

✍
◆

❯
✕

✕
❯

❥ ✯

✯ ❥

+ ✶

✶ +
✲ ✲

B
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1

Problem 6.14

✛

✛

✛

✛

✛

✛

✛

✛

❄
✻

✻
❄

◆
✍

✍
◆

❯
✕

✕
❯

❥ ✯

✯ ❥

* ✶

✶ *
✲ ✲

H
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Problem 6.15

“Potentials”:⇢
Win(r, ✓) =

P
Alr

l
Pl(cos ✓), (r < R);

Wout(r, ✓) =
P Bl

rl+1 Pl(cos ✓), (r > R).
Boundary Conditions:⇢

(i) Win(R, ✓) = Wout(R, ✓),
(ii) �@Wout

@r

��
R

+ @Win
@r

��
R

= M
? = M ẑ · r̂ = M cos ✓.

(The continuity of W follows from the gradient theorem: W (b)�W (a) =
R b
a rW · dl = �

R b
a H · dl;

if the two points are infinitesimally separated, this last integral ! 0.)
⇢

(i) ) AlR
l = Bl

Rl+1 ) Bl = R
2l+1

Al,

(ii) )
P

(l + 1) Bl

Rl+2 Pl(cos ✓) +
P

lAlR
l�2

Pl(cos ✓) = M cos ✓.
Combining these:

X
(2l + 1)Rl�1

AlPl(cos ✓) = M cos ✓, so Al = 0 (l 6= 1), and 3A1 = M ) A1 =
M

3
.

Thus Win(r, ✓) =
M

3
r cos ✓ =

M

3
z, and hence Hin = �rWin = �M

3
ẑ = �1

3
M, so

B = µ0(H + M) = µ0

✓
�1

3
M + M

◆
=

2
3
µ0M. X
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Problem 6.16

H
H·dl = Ifenc = I, so H = I

2⇡s �̂. B = µ0(1 + �m)H = µ0(1 + �m)
I

2⇡s
�̂. M = �mH =

�mI

2⇡s
�̂.

Jb = r⇥M =
1
s

@

@s

✓
s
�mI

2⇡s

◆
ẑ = 0. Kb = M⇥n̂ =

(
�mI
2⇡a ẑ, at s = a;
��mI

2⇡b ẑ, at s = b.

Total enclosed current, for an amperian loop between the cylinders:

I +
�mI

2⇡a
2⇡a = (1 + �m)I, so

I
B · dl = µ0Ienc = µ0(1 + �m)I ) B =

µ0(1 + �m)I
2⇡s

�̂. X

Problem 6.17

From Eq. 6.20:
H
H·dl = H(2⇡s) = Ifenc =

(
I(s2

/a
2), (s < a);

I (s > a).

H =
⇢

Is
2⇡a2 , (s < a)
I

2⇡s , (s > a)

�
, so B = µH =

(
µ0(1+�m)Is

2⇡a2 , (s < a);
µ0I
2⇡s , (s > a).

Jb = �mJf (Eq. 6.33), and Jf = I
⇡a2 , so Jb =

�mI

⇡a2
(same direction as I).

Kb = M⇥n̂ = �mH⇥n̂) Kb =
�mI

2⇡a
(opposite direction to I).

Ib = Jb(⇡a
2) + Kb(2⇡a) = �mI � �mI = 0 (as it should be, of course).

Problem 6.18

By the method of Prob. 6.15:

For large r, we want B(r, ✓) ! B0 = B0 ẑ, so H = 1
µ0

B ! 1
µ0

B0 ẑ, and hence W ! � 1
µ0

B0z =
� 1

µ0
B0r cos ✓.

“Potentials”:⇢
Win(r, ✓) =

P
Alr

l
Pl(cos ✓), (r < R);

Wout(r, ✓) = � 1
µ0

B0r cos ✓ +
P Bl

rl+1 Pl(cos ✓), (r > R).
Boundary Conditions:⇢

(i) Win(R, ✓) = Wout(R, ✓),
(ii) �µ0

@Wout
@r

��
R

+ µ
@Win

@r

��
R

= 0.

(The latter follows from Eq. 6.26.)

(ii) ) µ0


1
µ0

B0 cos ✓ +
X

(l + 1)
Bl

Rl+2
Pl(cos ✓)

�
+ µ

X
lAlR

l�1
Pl(cos ✓) = 0.

For l 6= 1, (i) ) Bl = R
2l+1

Al, so [µ0(l + 1) + µl]AlR
l�1 = 0, and hence Al = 0.

For l = 1, (i)) A1R = � 1
µ0

B0R+B1/R
2, and (ii)) B0 +2µ0B1/R

3 +µA1 = 0, so A1 = �3B0/(2µ0 +µ).

Win(r, ✓) = � 3B0

(2µ0 + µ)
r cos ✓ = � 3B0z

(2µ0 + µ)
. Hin = �rWin =

3B0

(2µ0 + µ)
ẑ =

3B0

(2µ0 + µ)
.

B = µH =
3µB0

(2µ0 + µ)
=
✓

1 + �m

1 + �m/3

◆
B0.
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By the method of Prob. 4.23:

Step 1 : B0 magnetizes the sphere: M0 = �mH0 = �m

µ0(1+�m)B0. This magnetization sets up a field within
the sphere given by Eq. 6.16:

B1 =
2
3
µ0M0 =

2
3

�m

1 + �m
B0 =

2
3
B0 (where  ⌘ �m

1+�m
).

Step 2 : B1 magnetizes the sphere an additional amount M1 = 
µ0

B1. This sets up an additional field in
the sphere:

B2 =
2
3
µ0M1 =

2
3
B1 =

✓
2
3

◆2

B0, etc.

The total field is:

B = B0 +B1 +B2 + · · · = B0 + (2/3)B0 + (2/3)2B0 + · · · =
⇥
1 + (2/3) + (2/3)2 + · · ·

⇤
B0 =

B0

(1� 2/3)
.

1
1� 2/3

=
3

3� 2�m/(1 + �m)
=

3 + 3�m

3 + 3�m � 2�m
=

3(1 + �m)
3 + �m

, so B =
✓

1 + �m

1 + �m/3

◆
B0.

Problem 6.19

�m = � e2r2

4me
B; M = �m

V = � e2r2

4meV B, where V is the volume per electron. M = �mH (Eq. 6.29)
= �m

µ0(1+�m)B (Eq. 6.30). So �m = � e2r2

4meV µ0. [Note: �m ⌧ 1, so I won’t worry about the (1 + �m)
term; for the same reason we need not distinguish B from Belse, as we did in deriving the Clausius-Mossotti
equation in Prob. 4.41.] Let’s say V = 4

3⇡r
3. Then �m = �µ0

4⇡

⇣
3e2

4mer

⌘
. I’ll use 1 Å= 10�10 m for r.

Then �m = �(10�7)
⇣

3(1.6⇥10�19)2

4(9.1⇥10�31)(10�10)

⌘
= �2⇥ 10�5

, which is not bad—Table 6.1 says �m = �1 ⇥ 10�5.
However, I used only one electron per atom (copper has 29) and a very crude value for r. Since the orbital
radius is smaller for the inner electrons, they count for less (�m ⇠ r

2). I have also neglected competing
paramagnetic e↵ects. But never mind. . . this is in the right ball park.
Problem 6.20

Place the object in a region of zero magnetic field, and heat it above the Curie point—or simply drop it on
a hard surface. If it’s delicate (a watch, say), place it between the poles of an electromagnet, and magnetize it
back and forth many times; each time you reverse the direction, reduce the field slightly.
Problem 6.21

(a) The magnetic force on the dipole is given by Eq. 6.3; to move the dipole in from infinity we must exert an
opposite force, so the work done is

U = �
Z r

1
F · dl = �

Z r

1
r(m ·B) · dl = �m ·B(r) + m ·B(1)

(I used the gradient theorem, Eq. 1.55). As long as the magnetic field goes to zero at infinity, then, U = �m·B.
If the magnetic field does not go to zero at infinity, one must stipulate that the dipole starts out oriented
perpendicular to the field.

(b) Identical to Prob. 4.8, but starting with Eq. 5.89 instead of 3.104.

(c) U = �µ0
4⇡

1
r3 [3 cos ✓1 cos ✓2 � cos(✓2 � ✓1)]m1m2. Or, using cos(✓2 � ✓1) = cos ✓1 cos ✓2 + sin ✓1 sin ✓2,

U =
µ0

4⇡
m1m2

r3
(sin ✓1 sin ✓2 � 2 cos ✓1 cos ✓2) .
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Stable position occurs at minimum energy: @U
@✓1

= @U
@✓2

= 0

(
@U
@✓1

= µ0m1m2
4⇡r3 (cos ✓1 sin ✓2 + 2 sin ✓1 cos ✓2) = 0) 2 sin ✓1 cos ✓2 = � cos ✓1 sin ✓2;

@U
@✓2

= µ0m1m2
4⇡r3 (sin ✓1 cos ✓2 + 2 cos ✓1 sin ✓2) = 0) 2 sin ✓1 cos ✓2 = �4 cos ✓1 sin ✓2.

Thus sin ✓1 cos ✓2 = sin ✓2 cos ✓1 = 0.

8
<

:
Either sin ✓1 = sin ✓2 = 0 : 1��! �! or 2��! �

or cos ✓1 = cos ✓2 = 0 : " "
3�

or " #
4�

Which of these is the stable minimum? Certainly not 2� or 3�—for these m2 is not parallel to B1, whereas we
know m2 will line up along B1. It remains to compare 1� (with ✓1 = ✓2 = 0) and 4� (with ✓1 = ⇡/2, ✓2 = �⇡/2):
U1 = µ0m1m2

4⇡r3 (�2); U2 = µ0m1m2
4⇡r3 (�1). U1 is the lower energy, hence the more stable configuration.

Conclusion: They line up parallel, along the line joining them: �! �!

(d) They’d line up the same way: �! �! �! �! �! �!
Problem 6.22

F = I

I
dl⇥B = I

✓I
dl

◆
⇥B0 + I

I
dl⇥ [(r ·r0)B0]� I

✓I
dl

◆
⇥ [(r0 ·r0)B0] = I

I
dl⇥ [(r ·r0)B0]

(because
H

dl = 0). Now

(dl⇥B0)i =
X

j,k

✏ijkdlj(B0)k, and (r ·r0) =
X

l

rl(r0)l, so

Fi = I

X

j,k,l

✏ijk

I
rl dlj

�
[(r0)l(B0)k]

(
Lemma 1 :

I
rl dlj =

X

m

✏ljmam (proof below).

)

= I

X

j,k,l,m

✏ijk✏ljmam(r0)l(B0)k

8
<

:Lemma 2 :
X

j

✏ijk✏ljm = �il�km � �im�kl (proof below).

9
=

;

= I

X

k,l,m

(�il�km � �im�kl) am(r0)l(B0)k = I

X

k

[ak(r0)i(B0)k � ai(r0)k(B0)k]

= I [(r0)i(a ·B0)� ai(r0 ·B0)] .

But r0 ·B0 = 0 (Eq. 5.50), and m = Ia (Eq. 5.86), so F = r0(m ·B0) (the subscript just reminds us to take
the derivatives at the point where m is located). qed

Proof of Lemma 1:

Eq. 1.108 says
H

(c · r) dl = a ⇥ c = �c ⇥ a. The jth component is
P

p

H
cprp dlj = �

P
p,m ✏jpmcpam. Pick

cp = �pl (i.e. 1 for the lth component, zero for the others). Then
H

rl dlj = �
P

m ✏jlmam =
P

m ✏ljmam. qed

Proof of Lemma 2:

✏ijk✏ljm = 0 unless ijk and ljm are both permutations of 123. In particular, i must either be l or m, and k

must be the other, so X

j

✏ijk✏ljm = A�il�km + B�im�kl.
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To determine the constant A, pick i = l = 1, k = m = 3; the only contribution comes from j = 2:

✏123✏123 = 1 = A�11�33 + B�13�31 = A) A = 1.

To determine B, pick i = m = 1, k = l = 3:

✏123✏321 = �1 = A�13�31 + B�11�33 = B ) B = �1.

So X

j

✏ijk✏ljm = �il�km � �im�kl. qed

Problem 6.23

(a) B1 = µ0
4⇡

2m
z3 ẑ (Eq. 5.88, with ✓ = 0). So m2·B1 = �µ0

2⇡
m2

z3 . F = r(m·B) (Eq. 6.3)) F = @
@z

h
�µ0

2⇡
m2

z3

i
ẑ =

3µ0m2

2⇡z4 ẑ. This is the magnetic force upward (on the upper magnet); it balances the gravitational force downward
(�mdgẑ):

3µ0m
2

2⇡z4
�mdg = 0) z =


3µ0m

2

2⇡mdg

�1/4

.

(b) The middle magnet is repelled upward by lower magnet and downward by upper magnet:

3µ0m
2

2⇡x4
� 3µ0m

2

2⇡y4
�mdg = 0.

The top magnet is repelled upward by middle magnet, and attracted downward by lower magnet:

3µ0m
2

2⇡y4
� 3µ0m

2

2⇡(x + y)4
�mdg = 0.

Subtracting: 3µ0m2

2⇡

h
1
x4 � 1

y4 � 1
y4 + 1

(x+y)4

i
�mdg+mdg = 0, or 1

x4 � 2
y4 + 1

(x+y)4 = 0, so: 2 = 1
(x/y)4 + 1

(x/y+1)4 .

Let ↵ ⌘ x/y; then 2 = 1
↵4 + 1

(↵+1)4 . Mathematica gives the numerical solution ↵ = x/y = 0.850115 . . .

Problem 6.24

(a) Forces on the upper charge:

Fq =
1

4⇡✏0
q
2

z2
ẑ, Fm = r(m ·B) = r

✓
m

2µ0m

4⇡z3

◆
=

µ0m
2

2⇡

✓
�3
z4

◆
ẑ.

At equilibrium,
1

4⇡✏0
q
2

z2
=

3µ0m
2

2⇡z4
) z

2 =
6µ0✏0m

2

q2
) z =

p
6
m

qc
,

where 1/
p
✏0µ0 = c, the speed of light.

(b) For electrons, q = 1.6 ⇥ 10�19 C (actually, it’s the magnitude of the charge we want in the expression
above), and m = 9.22⇥ 10�24 A m2 (the Bohr magneton—see Problem 5.58), so

z =
p

6
9.22⇥ 10�24

(1.6⇥ 10�19)(3⇥ 108)
= 4.72⇥ 10�13 m.
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(For comparison, the Bohr radius is 0.5 ⇥ 10�10 m, so the equilibrium separation is about 1% of the size of a
hydrogen atom.)

(c) Good question! Certainly the answer is no. Presumably this is an unstable equilibrium, so unless you
could find a way to maintain the orientation of the dipoles, and keep them on the z axis, the structure would
fall apart.
Problem 6.25

(a) The electric field inside a uniformly polarized sphere, E = � 1
3✏0

P (Eq. 4.14) translates to H = � 1
3µ0

(µ0M) =
� 1

3M. But B = µ0(H+M). So the magnetic field inside a uniformly magnetized sphere is B = µ0(� 1
3M+M) =

2
3
µ0M (same as Eq. 6.16).

(b) The electric field inside a sphere of linear dielectric in an otherwise uniform electric field is E = 1
1+�e/3E0

(Eq. 4.49). Now �e translates to �m, for then Eq. 4.30 (P = ✏0�eE) goes to µ0M = µ0�mH, or M = �mH

(Eq. 6.29). So Eq. 4.49 ) H = 1
1+�m/3H0. But B = µ0(1 + �m)H, and B0 = µ0H0 (Eqs. 6.31 and 6.32),

so the magnetic field inside a sphere of linear magnetic material in an otherwise uniform magnetic field is
B

µ0(1 + �m)
=

1
(1 + �m/3)

B0

µ0
, or B =

✓
1 + �m

1 + �m/3

◆
B0 (as in Prob. 6.18).

(c) The average electric field over a sphere, due to charges within, is Eave = � 1
4⇡✏0

p
R3 . Let’s pretend the charges

are all due to the frozen-in polarization of some medium (whatever ⇢ might be, we can solve r·P = �⇢ to find
the appropriate P). In this case there are no free charges, and p =

R
P d⌧ , so Eave = � 1

4⇡✏0
1

R3

R
P d⌧ , which

translates to
Have = � 1

4⇡µ0

1
R3

Z
µ0M d⌧ = � 1

4⇡R3
m.

But B = µ0(H + M), so Bave = �µ0
4⇡

m
R3 + µ0Mave, and Mave = m

4
3 ⇡R3 , so Bave =

µ0

4⇡
2m
R3

, in agreement

with Eq. 5.93. (We must assume for this argument that all the currents are bound, but again it doesn’t really
matter, since we can model any current configuration by an appropriate frozen-in magnetization. See G. H.
Goedecke, Am. J. Phys. 66, 1010 (1998).)
Problem 6.26

Eq. 2.15 : E = ⇢

n
1

4⇡✏0

R
V

r̂r 2 d⌧
0
o

(for uniform charge density);

Eq. 4.9 : V = P ·
n

1
4⇡✏0

R
V

r̂r 2 d⌧
0
o

(for uniform polarization);

Eq. 6.11 : A = µ0✏0M⇥
n

1
4⇡✏0

R
V

r̂r 2 d⌧
0
o

(for uniform magnetization).

For a uniformly charged sphere (radius R):

8
<

:
Ein = ⇢

⇣
1

3✏0
r

⌘
(Prob. 2.12),

Eout = ⇢

⇣
1

3✏0
R3

r2 r̂

⌘
(Ex. 2.3).

So the scalar potential of a uniformly polarized sphere is:

(
Vin = 1

3✏0
(P · r),

Vout = 1
3✏0

R3

r2 (P · r̂),

and the vector potential of a uniformly magnetized sphere is:
⇢

Ain = µ0
3 (M⇥ r),

Aout = µ0
3

R3

r2 (M⇥ r̂),
(confirming the results of Ex. 4.2 and of Exs. 6.1 and 5.11).
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Problem 6.27

At the interface, the perpendicular component of B is continuous (Eq. 6.26), and the parallel component of
H is continuous (Eq. 6.25 with Kf = 0). So B

?
1 = B

?
2 , H

k
1 = H

k
2. But B = µH (Eq. 6.31), so 1

µ1
B
k
1 = 1

µ2
B
k
2.

Now tan ✓1 = B
k
1/B

?
1 , and tan ✓2 = B

k
2/B

?
2 , so

tan ✓2
tan ✓1

=
B
k
2

B
?
2

B
?
1

B
k
1

=
B
k
2

B
k
1

=
µ2

µ1

(the same form, though for di↵erent reasons, as Eq. 4.68).
Problem 6.28

In view of Eq. 6.33, there is a bound dipole at the center: mb = �mm. So the net dipole moment at the
center is mcenter = m + mb = (1 + �m)m = µ

µ0
m. This produces a field given by Eq. 5.89:

Bcenter
dipole

=
µ

4⇡
1
r3

[3(m·̂r)r̂�m] .

This accounts for the first term in the field. The remainder must be due to the bound surface current (Kb) at
r = R (since there can be no volume bound current, according to Eq. 6.33). Let us make an educated guess
(based either on the answer provided or on the analogous electrical Prob. 4.37) that the field due to the surface
bound current is (for interior points) of the form Bsurface

current
= Am (i.e. a constant, proportional to m). In that

case the magnetization will be:

M = �mH =
�m

µ
B =

�m

4⇡
1
r3

[3(m·̂r)r̂�m] +
�m

µ
Am.

This will produce bound currents Jb = r⇥M = 0, as it should, for 0 < r < R (no need to calculate this
curl—the second term is constant, and the first is essentially the field of a dipole, which we know is curl-less,
except at r = 0), and

Kb = M(R)⇥r̂ =
�m

4⇡R3
(�m⇥r̂) +

�mA

µ
(m⇥r̂) = �mm

✓
� 1

4⇡R3
+

A

µ

◆
sin ✓ �̂.

But this is exactly the surface current produced by a spinning sphere: K = �v = �!R sin ✓ �̂, with (�!R)$
�mm

⇣
A
µ �

1
4⇡R3

⌘
. So the field it produces (for points inside) is (Eq. 5.70):

Bsurface
current

=
2
3
µ0(�!!!R) =

2
3
µ0�mm

✓
A

µ
� 1

4⇡R3

◆
.

Everything is consistent, therefore, provided A = 2
3µ0�m

⇣
A
µ �

1
4⇡R3

⌘
, or A

⇣
1� 2µ0

3µ �m

⌘
= � 2

3
µ0�m

4⇡R3 . But

�m =
⇣

µ
µ0

⌘
� 1, so A

⇣
1� 2

3 + 2
3

µ0
µ

⌘
= � 2

3
(µ�µ0)
4⇡R3 , or A

⇣
1 + 2µ0

µ

⌘
= 2 (µ0�µ)

4⇡R3 ; A = µ
4⇡

2(µ0�µ)
R3(2µ0+µ) , and hence

B =
µ

4⇡

⇢
1
r3

[3(m·̂r)r̂�m] +
2(µ0 � µ)m
R3(2µ0 + µ)

�
. qed

The exterior field is that of the central dipole plus that of the surface current, which, according to Prob. 5.37,
is also a perfect dipole field, of dipole moment

msurface
current

=
4
3
⇡R

3(�!!!R) =
4
3
⇡R

3

✓
3

2µ0
Bsurface

current

◆
=

2⇡R
3

µ0

µ

4⇡
2(µ0 � µ)m
R3(2µ0 + µ)

=
µ(µ0 � µ)m
µ0(2µ0 + µ)

.
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So the total dipole moment is:

mtot =
µ

µ0
m +

µ

µ0
m

(µ0 � µ)
(2µ0 + µ)

=
3µm

(2µ0 + µ)
,

and hence the field (for r > R) is

B =
µ0

4⇡

✓
3µ

2µ0 + µ

◆
1
r3

[3(m·̂r)r̂�m] .

Problem 6.29

The problem is that the field inside a cavity is not the same as the field in the material itself.
(a) Ampére type. The field deep inside the magnet is that of a long solenoid, B0 ⇡ µ0M. From Prob. 6.13:8
<

:

Sphere : B = B0 � 2
3µ0M = 1

3µ0M;
Needle : B = B0 � µ0M = 0;
Wafer : B = µ0M.

(b) Gilbert type. This is analogous to the electric case. The field at the center is approximately that midway
between two distant point charges, B0 ⇡ 0. From Prob. 4.16 (with E! B, 1/✏0 ! µ0, P!M):8
<

:

Sphere : B = B0 + µ0
3 M = 1

3µ0M;
Needle : B = B0 = 0;
Wafer : B = B0 + µ0M = µ0M.

In the cavities, then, the fields are the same for the two models, and this will be no test at all. Yes. Fund it
with $1 M from the O�ce of Alternative Medicine.

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



CHAPTER 7. ELETRODYNAMICS 145

Chapter 7

Electrodynamics

Problem 7.1

(a) Let Q be the charge on the inner shell. Then E = 1
4⇡✏0

Q
r2 r̂ in the space between them, and (Va � Vb) =

�
R a

b E·dr = � 1
4⇡✏0

Q
R a

b
1
r2 dr = Q

4⇡✏0

�
1
a �

1
b

�
.

I =
Z

J·da = �

Z
E·da = �

Q

✏0
=
�

✏0

4⇡✏0(Va � Vb)
(1/a� 1/b)

= 4⇡�
(Va � Vb)

(1/a� 1/b)
.

(b) R =
Va � Vb

I
=

1
4⇡�

✓
1
a
� 1

b

◆
.

(c) For large b (b � a), the second term is negligible, and R = 1/4⇡�a. Essentially all of the resistance is in
the region right around the inner sphere. Successive shells, as you go out, contribute less and less, because the
cross-sectional area (4⇡r

2) gets larger and larger. For the two submerged spheres, R = 2
4⇡�a = 1

2⇡�a (one R as
the current leaves the first, one R as it converges on the second). Therefore I = V/R = 2⇡�aV.

Problem 7.2

(a) V = Q/C = IR. Because positive I means the charge on the capacitor is decreasing,
dQ

dt
= �I = � 1

RC
Q, so Q(t) = Q0e

�t/RC . But Q0 = Q(0) = CV0, so Q(t) = CV0e
�t/RC

.

Hence I(t) = �dQ

dt
= CV0

1
RC

e
�t/RC =

V0

R
e
�t/RC

.

(b) W = 1
2CV

2
0 . The energy delivered to the resistor is

Z 1

0
P dt =

Z 1

0
I
2
R dt =

V
2
0

R

Z 1

0
e
�2t/RC

dt =

V
2
0

R

✓
�RC

2
e
�2t/RC

◆����
1

0

=
1
2
CV

2
0 . X

(c) V0 = Q/C + IR. This time positive I means Q is increasing:
dQ

dt
= I =

1
RC

(CV0 �Q)) dQ

Q� CV0
=

� 1
RC

dt ) ln(Q � CV0) = � 1
RC

t + constant ) Q(t) = CV0 + ke
�t/RC . But Q(0) = 0 ) k = �CV0, so

Q(t) = CV0

⇣
1� e

�t/RC
⌘

. I(t) =
dQ

dt
= CV0

✓
1

RC
e
�t/RC

◆
=

V0

R
e
�t/RC

.
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(d) Energy from battery:
Z 1

0
V0I dt =

V
2
0

R

Z 1

0
e
�t/RC

dt =
V

2
0

R

⇣
�RCe

�t/RC
⌘���
1

0
=

V
2
0

R
RC = CV

2
0 .

Since I(t) is the same as in (a), the energy delivered to the resistor is again 1
2CV

2
0 . The final energy in

the capacitor is also 1
2CV

2
0 , so half the energy from the battery goes to the capacitor, and the other half

to the resistor.
Problem 7.3

(a) I =
R
J · da, where the integral is taken over a surface enclosing the positively charged conductor. But

J = �E, and Gauss’s law says
R
E · da = 1

✏0
Q, so I = �

R
E · da = �

✏0
Q. But Q = CV , and V = IR, so

I = �
✏0

CIR, or R =
✏0

�C
. qed

(b) Q = CV = CIR) dQ
dt = �I = � 1

RC Q) Q(t) = Q0e
�t/RC , or, since V = Q/C, V (t) = V0e

�t/RC . The

time constant is ⌧ = RC = ✏0/�.

Problem 7.4

I = J(s) 2⇡sL ) J(s) = I/2⇡sL. E = J/� = I/2⇡s�L = I/2⇡kL.

V = �
Z a

b
E · dl = � I

2⇡kL
(a� b). So R =

b� a

2⇡kL
.

Problem 7.5

I =
E

r + R
; P = I

2
R =

E2
R

(r + R)2
;

dP

dR
= E2


1

(r + R)2
� 2R

(r + R)3

�
= 0) r + R = 2R) R = r.

Problem 7.6

E =
H

E·dl = zero for all electrostatic fields. It looks as though E =
H

E · dl = (�/✏0)h, as would indeed
be the case if the field were really just �/✏0 inside and zero outside. But in fact there is always a “fringing
field” at the edges (Fig. 4.31), and this is evidently just right to kill o↵ the contribution from the left end of
the loop. The current is zero.

Problem 7.7

(a) E = �d�
dt = �Bl

dx
dt = �Blv; E = IR ) I =

Blv

R
. (Never mind the minus sign—it just tells you the

direction of flow: (v⇥B) is upward, in the bar, so downward through the resistor.)

(b) F = IlB =
B

2
l
2
v

R
, to the left.

(c) F = ma = m
dv

dt
= �B

2
l
2

R
v ) dv

dt
= �

�B2
l
2

Rm

�
v ) v = v0e

�B2l2
mR t

.

(d) The energy goes into heat in the resistor. The power delivered to resistor is I
2
R, so

dW

dt
= I

2
R =

B
2
l
2
v
2

R2
R =

B
2
l
2

R
v
2
0e
�2↵t

, where ↵ ⌘ B
2
l
2

mR
;

dW

dt
= ↵mv

2
0e
�2↵t

.

The total energy delivered to the resistor is W = ↵mv
2
0

Z 1

0
e
�2↵t

dt = ↵mv
2
0

e
�2↵t

�2↵

����
1

0

= ↵mv
2
0

1
2↵

=
1
2
mv

2
0 . X
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Problem 7.8

(a) The field of long wire is B =
µ0I

2⇡s
�̂, so � =

Z
B·da =

µ0I

2⇡

s+aZ

s

1
s
(a ds) =

µ0Ia

2⇡
ln
✓

s + a

s

◆
.

(b) E = �d�
dt

= �µ0Ia

2⇡
d

dt
ln
✓

s + a

s

◆
, and

ds

dt
= v, so �µ0Ia

2⇡

✓
1

s + a

ds

dt
� 1

s

ds

dt

◆
=

µ0Ia
2
v

2⇡s(s + a)
.

The field points out of the page, so the force on a charge in the nearby side of the square is to the right. In
the far side it’s also to the right, but here the field is weaker, so the current flows counterclockwise.

(c) This time the flux is constant, so E = 0.

Problem 7.9

Since r·B = 0, Theorem 2(c) (Sect. 1.6.2) guarantees that
R
B·da is the same for all surfaces with a given

boundary line.
Problem 7.10

1

Contents

Problem 7.10

❘

✲
✲
✲

θ
B

a

(view from above)
Φ = B · a = Ba2 cos θ
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� = B · a = Ba
2 cos ✓

Here ✓ = !t, so
E = �d�

dt = �Ba
2(� sin!t)!;

E = B!a
2 sin!t.

Problem 7.11

E = Blv = IR ) I = Bl
R v ) upward magnetic force = IlB = B2l2

R v. This opposes the gravitational force
downward:

mg � B
2
l
2

R
v = m

dv

dt
;

dv

dt
= g � ↵v, where ↵ ⌘ B

2
l
2

mR
. g � ↵vt = 0) vt =

g

↵
=

mgR

B2l2
.

dv

g � ↵v
= dt) � 1

↵
ln(g � ↵v) = t + const.) g � ↵v = Ae

�↵t; at t = 0, v = 0, so A = g.

↵v = g(1� e
�↵t); v =

g

↵
(1� e

�↵t) = vt(1� e
�↵t).

At 90% of terminal velocity, v/vt = 0.9 = 1� e
�↵t ) e

�↵t = 1� 0.9 = 0.1; ln(0.1) = �↵t; ln 10 = ↵t;

t = 1
↵ ln 10, or t90% =

vt

g
ln 10.

Now the numbers: m = 4⌘Al, where ⌘ is the mass density of aluminum, A is the cross-sectional area, and
l is the length of a side. R = 4l/A�, where � is the conductivity of aluminum. So

vt =
4⌘Alg4l

A�B2l2
=

16⌘g
�B2

=
16g⌘⇢

B2
, and

8
>><

>>:

⇢ = 2.8⇥ 10�8 ⌦ m
g = 9.8 m/s2
⌘ = 2.7⇥ 103 kg/m3

B = 1 T

9
>>=

>>;
.

So vt = (16)(9.8)(2.7⇥103)(2.8⇥10�8)
1 = 1.2 cm/s; t90% = 1.2⇥10�2

9.8 ln(10) = 2.8 ms.

If the loop were cut, it would fall freely, with acceleration g.
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Problem 7.12

� = ⇡

⇣
a

2

⌘2
B =

⇡a
2

4
B0 cos(!t); E = �d�

dt
=
⇡a

2

4
B0! sin(!t). I(t) =

E
R

=
⇡a

2
!

4R
B0 sin(!t).

Problem 7.13

� =
Z

B dxdy = kt
2

Z a

0
dx

Z a

0
y
3
dy =

1
4
kt

2
a
5
. E = �d�

dt
= � 1

2kta
5
.

Problem 7.14

2

Problem 7.14

②
Iind

✿Iind

✲ring

✲pipe

✲falling
magnet

✻✗ ❖
B

✻❑ ✕B

✿
✿
✿

I
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Suppose the current (I) in the magnet flows counterclockwise (viewed from
above), as shown, so its field, near the ends, points upward. A ring of
pipe below the magnet experiences an increasing upward flux, as the magnet
approaches, and hence (by Lenz’s law) a current (Iind) will be induced in it
such as to produce a downward flux. Thus Iind must flow clockwise, which is
opposite to the current in the magnet. Since opposite currents repel, the force
on the magnet is upward. Meanwhile, a ring above the magnet experiences
a decreasing (upward) flux, so its induced current is parallel to I, and it
attracts the magnet upward. And the flux through rings next to the magnet
is constant, so no current is induced in them. Conclusion: the delay is due
to forces exerted on the magnet by induced eddy currents in the pipe.

Problem 7.15

In the quasistatic approximation, B =
⇢

µ0nI ẑ, (s < a);
0, (s > a).

Inside: for an “amperian loop” of radius s < a,

� = B⇡s
2 = µ0nI⇡s

2;
I

E · dl = E 2⇡s = �d�
dt

= �µ0n⇡s
2 dI

dt
; E = �µ0ns

2
dI

dt
�̂.

Outside: for an “amperian loop” of radius s > a:

� = B⇡a
2 = µ0nI⇡a

2; E 2⇡s = �µ0n⇡a
2 dI

dt
; E = �µ0na

2

2s

dI

dt
�̂.

Problem 7.16

(a) The magnetic field (in the quasistatic approximation) is “circumferential”. This is analogous to the current
in a solenoid, and hence the field is longitudinal.

(b) Use the “amperian loop” shown.
Outside, B = 0, so here E = 0 (like B outside a solenoid).
So
H

E·dl = El = �d�
dt = � d

dt

R
B·da = � d

dt

R a
s

µ0I
2⇡s0 l ds

0

) E = �µ0
2⇡

dI
dt ln

�
a
s

�
. But dI

dt = �I0! sin!t,

so E =
µ0I0!

2⇡
sin(!t) ln

⇣
a

s

⌘
ẑ.

3

Problem 7.16

✲ ✲
I z

✻a ✻

❄
✛ ✲l

✻s
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Problem 7.17

(a) The field inside the solenoid is B = µ0nI. So � = ⇡a
2
µ0nI ) E = �⇡a

2
µ0n(dI/dt).

In magnitude, then, E = ⇡a
2
µ0nk. Now E = IrR, so Iresistor =

⇡a
2
µ0nk

R
.

B is to the right and increasing, so the field of the loop is to the left, so the current is counterclockwise, or
to the right, through the resistor.

(b) �� = 2⇡a
2
µ0nI; I =

dQ

dt
=

E
R

= � 1
R

d�
dt
) �Q =

1
R

��, in magnitude. So �Q =
2⇡a

2
µ0nI

R
.

Problem 7.18

� =
Z

B·da; B =
µ0I

2⇡s
�̂; � =

µ0Ia

2⇡

Z s+a

s

ds
0

s0
=

µ0Ia

2⇡
ln

s + a

s
;

E = IloopR =
dQ

dt
R = �d�

dt
= �µ0a

2⇡
ln(1 + a/s)

dI

dt
.

dQ = � µ0a

2⇡R
ln(1 + a/s) dI ) Q =

Iµ0a

2⇡R
ln(1 + a/s).

The field of the wire, at the square loop, is out of the page, and decreasing, so the field of the induced
current must point out of page, within the loop, and hence the induced current flows counterclockwise.

Problem 7.19

In the quasistatic approximation, B =
⇢

µ0NI
2⇡s �̂, (inside toroid);

0, (outside toroid)
(Eq. 5.60). The flux around the toroid is therefore

� =
µ0NI

2⇡

Z a+w

a

1
s
h ds =

µ0NIh

2⇡
ln
⇣
1 +

w

a

⌘
⇡ µ0Nhw

2⇡a
I.

d�
dt

=
µ0Nhw

2⇡a

dI

dt
=

µ0Nhwk

2⇡a
.

The electric field is the same as the magnetic field of a circular current (Eq. 5.41):

B =
µ0I

2
a
2

(a2 + z2)3/2
ẑ,

with (Eq. 7.19)

I ! � 1
µ0

d�
dt

= �Nhwk

2⇡a
. So E =

µ0

2

✓
�Nhwk

2⇡a

◆
a
2

(a2 + z2)3/2
ẑ = �µ0

4⇡
Nhwka

(a2 + z2)3/2
ẑ.

Problem 7.20

@B/@t is nonzero along the left and right edges of the shaded rectangle:
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E

The (inward) flux through the strip on the left is increasing; the (inward) flux through the strip on the right
is decreasing. This is analogous to two current sheets under Ampère’s law, with B! E and µ0Ienc ! �d�/dt

(Eq. 7.19). The one on the left is like a current flowing out (taking account of the minus sign), so its field is
counterclockwise and the one on the right is like a current flowing in, so its field is clockwise.
Problem 7.21

The answer is indeterminate, until some boundary conditions are supplied. We know that r ⇥ E =
�(dB0/dt) ẑ (and r · E = 0), but this is insu�cient information to determine E. Ordinarily we would invoke
some symmetry of the configuration, or require that the field go to zero at infinity, to resolve the ambiguity,
but neither is available in this case. E = 1

2
dB0
dt (y x̂ � x ŷ) would do the job, in which case the force would be

zero, but we could add any constant vector to this, and make the force anything we like.
Problem 7.22

(a) From Eq. 5.41, the field (on the axis) is B = µ0I
2

b2

(b2+z2)3/2 ẑ, so the flux through the little loop (area ⇡a
2)

is � =
µ0⇡Ia

2
b
2

2(b2 + z2)3/2
.

(b) The field (Eq. 5.88) is B = µ0
4⇡

m
r3 (2 cos ✓ r̂ + sin ✓ ✓̂), where m = I⇡a

2. Integrating over the spherical “cap”
(bounded by the big loop and centered at the little loop):

� =
Z

B·da =
µ0

4⇡
I⇡a

2

r3

Z
(2 cos ✓)(r2 sin ✓ d✓ d�) =

µ0Ia
2

2r
2⇡
Z ✓̄

0
cos ✓ sin ✓ d✓

where r =
p

b2 + z2 and sin ✓̄ = b/r. Evidently � = µ0I⇡a2

r
sin2 ✓

2

���
✓̄

0
=

µ0⇡Ia
2
b
2

2(b2 + z2)3/2
, the same as in (a)!!

(c) Dividing o↵ I (�1 = M12I2, �2 = M21I1): M12 = M21 =
µ0⇡a

2
b
2

2(b2 + z2)3/2
.

Problem 7.23

E = �d�
dt

= �M
dI

dt
= �Mk.
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Problem 7.21

E = −
dΦ

dt
= −M

dI

dt
= −Mk.

✻

❄

❄

✻

✻
❄

a

a

a
❖
I
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It’s hard to calculate M using a current in the little loop, so, exploiting the equality of the mutual inductances,
I’ll find the flux through the little loop when a current I flows in the big loop: � = MI. The field of one long
wire is B = µ0I

2⇡s ) �1 = µ0I
2⇡

R 2a
a

1
sa ds = µ0Ia

2⇡ ln 2, so the total flux is

� = 2�1 =
µ0Ia ln 2

⇡
) M =

µ0a ln 2
⇡

) E =
µ0ka ln 2

⇡
, in magnitude.

Direction: The net flux (through the big loop), due to I in the little loop, is into the page. (Why? Field
lines point in, for the inside of the little loop, and out everywhere outside the little loop. The big loop encloses
all of the former, and only part of the latter, so net flux is inward.) This flux is increasing, so the induced
current in the big loop is such that its field points out of the page: it flows counterclockwise.

Problem 7.24

B = µ0nI ) �1 = µ0nI⇡R
2 (flux through a single turn). In a length l there are nl such turns, so the

total flux is � = µ0n
2
⇡R

2
Il. The self-inductance is given by � = LI, so the self-inductance per unit length is

L = µ0n
2
⇡R

2
.

Problem 7.25

The field of one wire is B1 = µ0
2⇡

I
s , so � = 2 · µ0I

2⇡ · l
d�✏R
✏

ds
s = µ0Il

⇡ ln
�

d�✏
✏

�
. The ✏ in the numerator is

negligible (compared to d), but in the denominator we cannot let ✏! 0, else the flux is infinite.

L =
µ0l

⇡
ln(d/✏). Evidently the size of the wire itself is critical in determining L.

Problem 7.26

(a) In the quasistatic approximation B =
µ0

2⇡s
�̂. So �1 =

µ0I

2⇡

Z b

a

1
s
h ds =

µ0Ih

2⇡
ln(b/a).

This is the flux through one turn; the total flux is N times �1: � =
µ0Nh

2⇡
ln(b/a)I0 cos(!t). So

E = �d�
dt

=
µ0Nh

2⇡
ln(b/a)I0! sin(!t) =

(4⇡ ⇥ 10�7)(103)(10�2)
2⇡

ln(2)(0.5)(2⇡ 60) sin(!t)

= 2.61⇥ 10�4 sin(!t) (in volts), where ! = 2⇡ 60 = 377/s. Ir =
E
R

=
2.61⇥ 10�4

500
sin(!t)

= 5.22⇥ 10�7 sin(!t) (amperes).

(b) Eb = �L
dIr

dt
; where (Eq. 7.28) L = µ0N2h

2⇡ ln(b/a) = (4⇡⇥10�7)(106)(10�2)
2⇡ ln(2) = 1.39⇥ 10�3 (henries).

Therefore Eb = �(1.39⇥ 10�3)(5.22⇥ 10�7
!) cos(!t) = �2.74⇥ 10�7 cos(!t) (volts).

Ratio of amplitudes:
2.74⇥ 10�7

2.61⇥ 10�4
= 1.05⇥ 10�3 =

µ0N
2
h!

2⇡R
ln(b/a).

Problem 7.27

With I positive clockwise, E = �L
dI
dt = Q/C, where Q is the charge on the capacitor; I = dQ

dt , so
d2Q
dt2 = � 1

LC Q = �!2
Q, where ! = 1p

LC
. The general solution is Q(t) = A cos!t + B sin!t. At t = 0,
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Q = CV , so A = CV ; I(t) = dQ
dt = �A! sin!t + B! sin!t. At t = 0, I = 0, so B = 0, and

I(t) = �CV ! sin!t = �V

r
C

L
sin
✓

tp
LC

◆
.

If you put in a resistor, the oscillation is “damped”. This time �L
dI
dt = Q

C + IR, so L
d2Q
dt2 +R

dQ
dt + 1

C Q = 0.
For an analysis of this case, see Purcell’s Electricity and Magnetism (Ch. 8) or any book on oscillations and
waves.
Problem 7.28

(a) W = 1
2LI

2. L = µ0n
2
⇡R

2
l (Prob. 7.24) W =

1
2
µ0n

2
⇡R

2
lI

2
.

(b) W = 1
2

H
(A·I)dl. A = (µ0nI/2)R �̂, at the surface (Eq. 5.72 or 5.73). So W1 = 1

2
µ0nI

2 RI · 2⇡R, for one
turn. There are nl such turns in length l, so W = 1

2µ0n
2
⇡R

2
lI

2
. X

(c) W = 1
2µ0

R
B

2
d⌧. B = µ0nI, inside, and zero outside;

R
d⌧ = ⇡R

2
l, so W = 1

2µ0
µ

2
0n

2
I
2
⇡R

2
l =

1
2µ0n

2
⇡R

2
lI

2
. X

(d) W = 1
2µ0

⇥R
B

2
d⌧ �

H
(A⇥B)·da

⇤
. This time

R
B

2
d⌧ = µ

2
0n

2
I
2
⇡(R2 � a

2)l. Meanwhile,
A⇥B = 0 outside (at s = b). Inside, A = µ0nI

2 a �̂ (at s = a), while B = µ0nI ẑ.
A⇥B = 1

2µ
2
0n

2
I
2
a(�̂⇥ẑ| {z }

ŝ

)

5

Problem 7.26

☛
points inward (“out” of the volume)
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H
(A⇥B) · da =

R
( 1
2µ

2
0n

2
I
2
aŝ) · [a d� dz(�ŝ)] = � 1

2µ
2
0n

2
I
2
a
22⇡l.

W = 1
2µ0

⇥
µ

2
0n

2
I
2
⇡(R2 � a

2)l + µ
2
0n

2
I
2
⇡a

2
l
⇤

= 1
2µ0n

2
I
2
R

2
⇡l. X

1

Contents

Problem 7.26

✲ ẑ

φ̂❖

✕
ŝ

✲ ẑ

❄

✻
h

✕

☛
w

✛ ✲l

→I

✛
I

→

B
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Problem 7.29

B =
µ0nI

2⇡s
; W =

1
2µ0

Z
B

2
d⌧ =

1
2µ0

µ
2
0n

2
I
2

4⇡2

Z
1
s2

hs d� ds =
µ0n

2
I
2

8⇡2
h2⇡ ln

✓
b

a

◆
=

1
4⇡

µ0n
2
I
2
h ln(b/a).

L =
µ0

2⇡
n

2
h ln (b/a) (same as Eq. 7.28).

Problem 7.30I
B·dl = B(2⇡s) = µ0Ienc = µ0I(s2

/R
2)) B =

µ0Is

2⇡R2
.

W =
1

2µ0

Z
B

2
d⌧ =

1
2µ0

µ
2
0I

2

4⇡2R4

Z R

0
s
2(2⇡s)l ds =

µ0I
2
l

4⇡R4

�s4

4
����

R

0
=

µ0l

16⇡
I
2 =

1
2
LI

2
.

So L =
µ0

8⇡
l, and L = L/l = µ0/8⇡, independent of R!

Problem 7.31

(a) Initial current: I0 = E0/R. So �L
dI

dt
= IR) dI

dt
= �R

L
I ) I = I0e

�Rt/L, or I(t) =
E0

R
e
�Rt/L

.

(b) P = I
2
R = (E0/R)2 e

�2Rt/L
R =

E2
0

R
e
�2Rt/L =

dW

dt
.

W =
E2
0

R

Z 1

0
e
�2Rt/L

dt =
E2
0

R

✓
� L

2R
e
�2Rt/L

◆����
1

0

=
E2
0

R
(0 + L/2R) =

1
2
L (E0/R)2 .

(c) W0 = 1
2LI

2
0 = 1

2L (E0/R)2 . X
Problem 7.32

(a) B1 = µ0
4⇡

1
r3 I1[3(a1· r̂ ) r̂ � a1], since m1 = I1a1. The flux through loop 2 is then

�2 = B1·a2 =
µ0

4⇡
1

r 3 I1[3(a1· r̂ )(a2· r̂ )� a1·a2] = MI1. M =
µ0

4⇡ r 3 [3(a1· r̂ )(a2· r̂ )� a1·a2].
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(b) E1 = �M
dI2
dt ,

dW
dt

��
1

= �E1I1 = MI1
dI2
dt . (This is the work done per unit time against the mutual emf in

loop 1—hence the minus sign.) So (since I1 is constant) W1 = MI1I2, where I2 is the final current in loop 2:

W =
µ0

4⇡ r 3 [3(m1· r̂ )(m2· r̂ )�m1·m2].

Notice that this is opposite in sign to Eq. 6.35. In Prob. 6.21 we assumed that the magnitudes of the dipole
moments were fixed, and we did not worry about the energy necessary to sustain the currents themselves—only
the energy required to move them into position and rotate them into their final orientations. But in this

problem we are including it all, and it is a curious fact that this merely changes the sign of the answer. For
commentary on this subtle issue see R. H. Young, Am. J. Phys. 66, 1043 (1998), and the references cited
there.
Problem 7.33

(a) The (solenoid) magnetic field is

B =

(
µ0K ẑ = µ0�!R ẑ (s < R),
0 (s > R).

From Example 7.7, the electric field is

E =

8
>>><

>>>:

�s

2
dB

dt
�̂ = �sR

2
µ0�!̇ �̂ (s < R),

�R
2

2s

dB

dt
�̂ = �R

3

2s
µ0�!̇ �̂ (s > R).

At the surface (s = R) E = � 1
2µ0R

2
�!̇ �̂, so the torque on a length ` of the cylinder is

N = �R(�2⇡R`)
✓

1
2
µ0R

2
�!̇

◆
ẑ = �⇡µ0�

2
R

4
!̇` ẑ,

and the work done per unit length is
W

`
= �⇡µ0�

2
R

4

Z
d!

dt
d�.

But d� = ! dt, and the integral becomes
Z !f

0
! d! =

1
2
!

2
f ; ) W

`
= � µ0⇡

2
�
�!fR

2
�2

.

(This is the work done by the field; the work you must do does not include the minus sign.)

(b) Because B = µ0K ẑ = µ0�!fR ẑ is uniform inside the solenoid (and zero outside), W =
1

2µ0
B

2
⇡R

2
`.

W

`
=

1
2µ0

(µ0�!fR)2⇡R
2 =

µ0⇡

2
�
�!fR

2
�2

.

Problem 7.34

The displacement current density (Sect. 7.3.2) is Jd = ✏0
@E
@t = I

A = I
⇡a2 ẑ. Drawing an “amperian loop” at

radius s,
I

B·dl = B · 2⇡s = µ0Idenc = µ0
I

⇡a2
· ⇡s

2 = µ0I
s
2

a2
) B =

µ0Is
2

2⇡sa2
; B =

µ0Is

2⇡a2
�̂.
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Problem 7.35

(a) E =
�(t)
✏0

ẑ; �(t) =
Q(t)
⇡a2

=
It

⇡a2
;

It

⇡✏0a
2
ẑ.

(b) Idenc = Jd⇡s
2 = ✏0

dE

dt
⇡s

2 = I
s
2

a2
.

I
B · dl = µ0Idenc ) B 2⇡s = µ0I

s
2

a2
) B =

µ0I

2⇡a2
s �̂.

(c) A surface current flows radially outward over the left plate; let I(s) be the total current crossing a circle
of radius s. The charge density (at time t) is

�(t) =
[I � I(s)]t

⇡s2
.

Since we are told this is independent of s, it must be that I � I(s) = �s
2, for some constant �. But I(a) = 0,

so �a
2 = I, or � = I/a

2. Therefore I(s) = I(1� s
2
/a

2).

B 2⇡s = µ0Ienc = µ0[I � I(s)] = µ0I
s
2

a2
) B =

µ0I

2⇡a2
s �̂. X

Problem 7.36

(a) Jd = ✏0
µ0I0!

2

2⇡
cos(!t) ln (a/s) ẑ. But I0 cos(!t) = I. So Jd =

µ0✏0

2⇡
!

2
I ln(a/s) ẑ.

(b) Id =
Z

Jd · da =
µ0✏0!

2
I

2⇡

Z a

0
ln(a/s)(2⇡s ds) = µ0✏0!

2
I

Z a

0
(s ln a� s ln s)ds

= µ0✏0!
2
I

h
(ln a) s2

2 �
s2

2 ln s + s2

4

i���
a

0
= µ0✏0!

2
I

h
a2

2 ln a� � a2

2 ln a� + a2

4

i
=

µ0✏0!
2
Ia

2

4
.

(c)
Id

I
=

µ0✏0!
2
a
2

4
. Since µ0✏0 = 1/c

2, Id/I = (!a/2c)2. If a = 10�3 m, and Id
I = 1

100 , so that !a
2c = 1

10 ,

! = 2c
10a = 3⇥108 m/s

5⇥10�3 m , or ! = 0.6 ⇥ 1011
/s = 6⇥ 1010 /s; ⌫ = !

2⇡ ⇡ 1010 Hz, or 104 megahertz. (This is the
microwave region, way above radio frequencies.)
Problem 7.37

Physically, this is the field of a point charge q at the origin, out to an expanding spherical shell of radius vt;
outside this shell the field is zero. Evidently the shell carries the opposite charge, �q. Mathematically, using
product rule #5 and Eq. 1.99:

r ·E = ✓(vt� r)r ·
✓

1
4⇡✏0

q

r2
r̂

◆
+

1
4⇡✏0

q

r2
r̂ ·r[✓(vt� r)] =

q

✏0
�
3(r)✓(vt� r) +

1
4⇡✏0

q

r2
(r̂ · r̂) @

@r
✓(vt� r).

But �3(r)✓(vt� r) = �
3(r)✓(t), and @

@r ✓(vt� r) = ��(vt� r) (Prob. 1.46), so

⇢ = ✏0r ·E = q�
3(r)✓(t)� q

4⇡r2
�(vt� r).

(For t < 0 the field and the charge density are zero everywhere.)
Clearly r ·B = 0, and r ⇥ E = 0 (since E has only an r component, and it is independent of ✓ and �).

There remains only the Ampére/Maxwell law, r⇥B = 0 = µ0J + µ0✏0@E/@t. Evidently

J = �✏0
@E

@t
= �✏0

⇢
q

4⇡✏0r2

@

@t
[✓(vt� r)]

�
r̂ = � q

4⇡r2
v�(vt� r) r̂.
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(The stationary charge at the origin does not contribute to J, of course; for the expanding shell we have J = ⇢v,
as expected—Eq. 5.26.)
Problem 7.38

From r·B = µ0⇢m it follows that the field of a point monopole is B = µ0
4⇡

qmr 2 r̂ . The force law has the
form F / qm

�
B� 1

c2 v⇥E
�

(see Prob. 5.22—the c
2 is needed on dimensional grounds). The proportionality

constant must be 1 to reproduce “Coulomb’s law” for point charges at rest. So F = qm

✓
B� 1

c2
v⇥E

◆
.

Problem 7.39

Integrate the “generalized Faraday law” (Eq. 7.44iii), r⇥E = �µ0Jm � @B
@t , over the surface of the loop:

Z
(r⇥E) · da =

I
E · dl = E = �µ0

Z
Jm · da� d

dt

Z
B · da = �µ0Imenc �

d�
dt

.

But E = �L
dI

dt
, so

dI

dt
=

µ0

L
Imenc +

1
L

d�
dt

, or I =
µ0

L
�Qm +

1
L

��, where �Qm is the total magnetic charge
passing through the surface, and �� is the change in flux through the surface. If we use the flat surface, then
�Qm = qm and �� = 0 (when the monopole is far away, � = 0; the flux builds up to µ0qm/2 just before
it passes through the loop; then it abruptly drops to �µ0qm/2, and rises back up to zero as the monopole
disappears into the distance). If we use a huge balloon-shaped surface, so that qm remains inside it on the far
side, then �Qm = 0, but � rises monotonically from 0 to µ0qm. In either case,

I =
µ0qm

L
.

[The analysis is slightly di↵erent for a superconducting loop, but the conclusion is the same.]
Problem 7.40

E =
V

d
) Jc = �E =

1
⇢
E =

V

⇢d
. Jd =

@D

@t
=

@

@t
(✏E) = ✏

@

@t


V0 cos(2⇡⌫t)

d

�
=
✏V0

d
[�2⇡⌫ sin(2⇡⌫t)].

The ratio of the amplitudes is therefore:

Jc

Jd
=

V0

⇢d

d

2⇡⌫✏V0
=

1
2⇡⌫✏⇢

=
⇥
2⇡(4⇥ 108)(81)(8.85⇥ 10�12)(0.23)

⇤�1 = 2.41.

Problem 7.41

Begin with a di↵erent problem: two parallel
wires carrying charges +� and �� as shown.

9

Problem 7.39

✲ y

✻z

✰
x

b b

+λ−λ

c⃝2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.

Field of one wire: E = �
2⇡✏0s ŝ; potential: V = � �

2⇡✏0
ln(s/a).

Potential of combination: V = �
2⇡✏0

ln(s�/s+),

or V (y, z) = �
4⇡✏0

ln
n

(y+b)2+z2

(y�b)2+z2

o
.

Find the locus of points of fixed V (i.e. equipotential surfaces):

e
4⇡✏0V/� ⌘ µ =

(y + b)2 + z
2

(y � b)2 + z2
=) µ(y2 � 2yb + b

2 + z
2) = y

2 + 2yb + b
2 + z

2;

y
2(µ� 1) + b

2(µ� 1) + z
2(µ� 1)� 2yb(µ + 1) = 0 =) y

2 + z
2 + b

2 � 2yb� = 0
✓
� ⌘ µ + 1

µ� 1

◆
;

(y � b�)2 + z
2 + b

2 � b
2
�

2 = 0 =) (y � b�
2) + z

2 = b
2(�2 � 1).
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This is a circle, with center at y0 = b� = b
�µ+1

µ�1

�
and radius = b

p
�2 � 1 = b

q
(µ2+2µ+1)�(µ2�2µ+1)

(µ�1)2 = 2b
p

µ
µ�1 .

This suggests an image solution to the problem at hand. We want y0 = d, radius = a, and V = V0. These
determine the parameters b, µ, and � of the image solution:

d

a
=

y0

radius
=

b
�µ+1

µ�1

�

2b
p

µ
µ�1

=
µ + 1
2pµ

. Call
d

a
⌘ ↵.

4↵2
µ = (µ + 1)2 = µ

2 + 2µ + 1 =) µ
2 + (2� 4↵2)µ + 1 = 0;

µ =
4↵2 � 2±

p
4(1� 2↵2)2 � 4
2

= 2↵2 � 1±
p

1� 4↵2 + 4↵4 � 1 = 2↵2 � 1± 2↵
p
↵2 � 1;

4⇡✏0V0

�
= ln µ =) � =

4⇡✏0V0

ln
�
2↵2 � 1± 2↵

p
↵2 � 1

� . That’s the line charge in the image problem.

I =
Z

J·da = �

Z
E·da = �

1
✏0

Qenc =
�

✏0
�l.

The current per unit length is i =
I

l
=
��

✏0
=

4⇡�V0

ln
�
2↵2 � 1± 2↵

p
↵2 � 1

� . Which sign do we want? Suppose

the cylinders are far apart, d� a, so that ↵� 1.

( ) = 2↵2 � 1± 2↵2
p

1� 1/↵2 = 2↵2 � 1± 2↵2


1� 1

2↵2
� 1

8↵4
+ · · ·

�

= 2↵2(1± 1)� (1± 1)⌥ 1
4↵2

± · · · =
(

4↵2 � 2� 1/2↵2 + · · · ⇡ 4↵2 (+ sign),
�1/4↵2 (� sign).

The current must surely decrease with increasing ↵, so evidently the + sign is correct:

i =
4⇡�V0

ln
�
2↵2 � 1 + 2↵

p
↵2 � 1

� , where ↵ =
d

a
.

Problem 7.42

From Prob. 3.24,

8
>>>>>><

>>>>>>:

Vin(s,�) =
1X

k=1

s
k
bk sin(k�), (s < a);

Vout(s,�) =
1X

k=1

s
�k

dk sin(k�), (s > a).

(We don’t need the cosine terms, because V is clearly an odd function of �.) At s = a, Vin = Vout = V0�/2⇡.

Let’s start with Vin, and use Fourier’s trick to determine bk:
1X

k=1

a
k
bk sin(k�) =

V0�

2⇡
)

1X

k=1

a
k
bk

Z ⇡

�⇡
sin(k�) sin(k0�) d� =

V0

2⇡

Z ⇡

�⇡
� sin(k0�) d�. But

Z ⇡

�⇡
sin(k�) sin(k0�) d� = ⇡�kk0 , and

Z ⇡

�⇡
� sin(k0�) d� =


1

(k0)2
sin(k0�)� �

k0
cos(k0�)

�����
⇡

�⇡

= �2⇡
k0

cos(k0�) = �2⇡
k0

(�1)k0
. So

⇡a
k
bk =

V0

2⇡


�2⇡

k
(�1)k

�
, or bk = � V0

⇡k

✓
�1

a

◆k

, and hence Vin(s,�) = �V0

⇡

1X

k=1

1
k

⇣
� s

a

⌘k
sin(k�).
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Similarly, Vout(s,�) = �V0

⇡

1X

k=1

1
k

⇣
�a

s

⌘k
sin(k�). Both sums are of the form S ⌘

1X

k=1

1
k

(�x)k sin(k�) (with

x = s/a for r < a and x = a/s for r > a). This series can be summed explicitly, using Euler’s formula

(ei✓ = cos ✓ + i sin ✓): S = Im
1X

k=1

1
k

(�x)k
e
ik� = Im

1X

k=1

1
k

�
�xe

i�
�k

.

But ln(1 + w) = w � 1
2
w

2 +
1
3
w

3 � 1
4
w

4 · · · = �
1X

k=1

1
k

(�w)k
, so S = �Im

⇥
ln
�
1 + xe

i�
�⇤

.

Now ln
�
Re

i✓
�

= lnR + i✓, so S = �✓, where

tan ✓ =
Im
�
1 + xe

i�
�

Re (1 + xei�)
=

1
2i

⇥�
1 + xe

i�
�
�
�
1 + xe

�i�
�⇤

1
2 [(1 + xei�) + (1 + xe�i�)]

=
x
�
e
i� � e

�i�
�

i [2 + x (ei� + e�i�)]
=

x sin�
1 + x cos�

.

Conclusion:

8
>>>><

>>>>:

Vin(s,�) =
V0

⇡
tan�1

✓
s sin�

a + s cos�

◆
, (s < a);

Vout(s,�) =
V0

⇡
tan�1

✓
a sin�

s + a cos�

◆
, (s > a).

(b) From Eq. 2.36, �(�) = �✏0
⇢
@Vout

@s

����
s=a

� @Vin

@s

����
s=a

�
.

@Vout

@s
=

V0

⇡

8
>><

>>:

1
1 +

⇣
a sin �

s+a cos �

⌘2
� (�a sin�)

(s + a cos�)2

9
>>=

>>;
= �V0

⇡


a sin�

(s + a cos�)2 + (a sin�)2

�

= �V0

⇡

✓
a sin�

s2 + 2as cos�+ a2

◆
;

@Vin

@s
=

V0

⇡

8
>><

>>:

1
1 +

⇣
s sin �

a+s cos �

⌘2
� [(a + s cos�) sin�� s sin� cos�]

(a + s cos�)2

9
>>=

>>;
=

V0

⇡


a sin�

(a + s cos�)2 + (s sin�)2

�

=
V0

⇡

✓
a sin�

s2 + 2as cos�+ a2

◆
.

@Vin

@s

����
s=a

= �@Vout

@s

����
s=a

=
V0

2⇡a

✓
sin�

1 + cos�

◆
, so �(�) =

✏0V0

⇡a

sin�
(1 + cos�)

=
✏0V0

⇡a
tan(�/2).

Problem 7.43

(a) r2
V =

1
s

@

@s

✓
s
@(zf)
@s

◆
+
@

2(zf)
@z2

=
z

s

d

ds

✓
s
df

ds

◆
= 0 ) d

ds

✓
s
df

ds

◆
= 0 ) s

df

ds
= A (a constant) )

A
ds

s
= df ) f = A ln(s/s0) (s0 another constant). But (ii) ) f(b) = 0, so ln(b/s0) = 0, so s0 = b, and

V (s, z) = Az ln(s/b). But (i) ) Az ln(a/b) = �(I⇢z)/(⇡a
2), so A = � I⇢

⇡a2

1
ln(a/b)

; V (s, z) = � I⇢z

⇡a2

ln(s/b)
ln(a/b)

.
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(b) E = �rV = �@V

@s
ŝ� @V

@z
ẑ =

I⇢z

⇡a2

1
s ln(a/b)

ŝ +
I⇢

⇡a2

ln(s/b)
ln(a/b)

ẑ =
I⇢

⇡a2 ln(a/b)

⇣
z

s
ŝ + ln

⇣
s

b

⌘
ẑ

⌘
.

(c) �(z) = ✏0

⇥
Es(a+)� Es(a�)

⇤
= ✏0


I⇢

⇡a2 ln(a/b)

⇣
z

a

⌘
� 0
�

=
✏0I⇢z

⇡a3 ln(a/b)
.

Problem 7.44

(a) Faraday’s law says r⇥E = �@B
@t , so E = 0) @B

@t = 0) B(r) is independent of t.
(b) Faraday’s law in integral form (Eq. 7.19) says

H
E ·dl = �d�/dt. In the wire itself E = 0, so � through

the loop is constant.
(c) Ampère-Maxwell)r⇥B = µ0J + µ0✏0

@E
@t , so E = 0, B = 0) J = 0, and hence any current must be

at the surface.
(d) From Eq. 5.70, a rotating shell produces a uniform magnetic field (inside): B = 2

3µ0�!aẑ. So to cancel

such a field, we need �!a = �3
2

B0

µ0
. Now K = �v = �!a sin ✓ �̂, so K = �3B0

2µ0
sin ✓ �̂.

Problem 7.45

(a) To make the field parallel to the plane, we need image monopoles of the same sign (compare Figs. 2.13
and 2.14), so the image dipole points down (-z).

(b) From Prob. 6.3 (with r ! 2z):

F =
3µ0

2⇡
m

2

(2z)4
.

3µ0

2⇡
m

2

(2h)4
= Mg ) h =

1
2

✓
3µ0m

2

2⇡Mg

◆1/4

.

(c) Using Eq. 5.89, and referring to the figure:

11

Problem 7.43

✻

h

❄

h

✲r ❯

r1

✕

r2

✲ r̂
❯

r̂2
✕

r̂1

✻m

❄
−m

θ

θ
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B =
µ0

4⇡
1

(r1)3
{[3(m ẑ · r̂1) r̂1 �mẑ] + [3(�m ẑ · r̂2) r̂2 + mẑ]}

=
3µ0m

4⇡(r1)3
[(ẑ · r̂1) r̂1 � (ẑ · r̂2) r̂2] . But ẑ · r̂1 = �ẑ · r̂2 = cos ✓.

= � 3µ0m

4⇡(r1)3
cos ✓(r̂1 + r̂2). But r̂1 + r̂2 = 2 sin ✓ r̂.

= � 3µ0m

2⇡(r1)3
sin ✓ cos ✓ r̂. But sin ✓ =

r

r1
, cos ✓ =

h

r1
, and r1 =

p
r2 + h2.

= �3µ0mh

2⇡
r

(r2 + h2)5/2
r̂.

Now B = µ0(K ⇥ ẑ) ) ẑ ⇥ B = µ0 ẑ ⇥ (K ⇥ ẑ) = µ0 [K� ẑ(K · ẑ)] = µ0K. (I used the BAC-CAB rule,
and noted that K · ẑ = 0, because the surface current is in the x y plane.)

K =
1
µ0

(ẑ⇥B) = �3mh

2⇡
r

(r2 + h2)5/2
(ẑ⇥ r̂) = �3mh

2⇡
r

(r2 + h2)5/2
�̂. qed
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Problem 7.46

Say the angle between the dipole (m1) and the z axis is ✓ (see diagram).

12

Problem 7.44

✲ x

✻
z

✒

−

+
m1

θ

❘

−

+

m2

θ

h
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The field of the image dipole (m2) is

B(z) =
µ0

4⇡
1

(h + z)3
[3(m2 · ẑ) ẑ�m2]

for points on the z axis (Eq. 5.89). The torque on m1 is (Eq. 6.1)

N = m1 ⇥B =
µ0

4⇡(2h)3
[3(m2 · ẑ)(m1 ⇥ ẑ)� (m1 ⇥m2)] .

But m1 = m(sin ✓ x̂ + cos ✓ẑ), m2 = m(sin ✓ x̂� cos ✓ẑ), so m2 · ẑ = �m cos ✓, m1 ⇥ ẑ = �m sin ✓ ŷ, and
m1 ⇥m2 = 2m

2 sin ✓ cos ✓ŷ.

N =
µ0

4⇡(2h)3
⇥
3m

2 sin ✓ cos ✓ ŷ � 2m
2 sin ✓ cos ✓ ŷ)

⇤
=

µ0m
2

4⇡(2h)3
sin ✓ cos ✓ ŷ.

Evidently the torque is zero for ✓ = 0, ⇡/2, or ⇡. But 0 and ⇡ are clearly unstable, since the nearby
ends of the dipoles (minus, in the figure) dominate, and they repel. The stable configuration is ✓ = ⇡/2:
parallel to the surface (contrast Prob. 4.6).

In this orientation, B(z) = � µ0m
4⇡(h+z)3 x̂, and the force on m1 is (Eq. 6.3):

F = r

� µ0m

2

4⇡(h + z)3

�����
z=h

=
3µ0m

2

4⇡(h + z)4
ẑ

����
z=h

=
3µ0m

2

4⇡(2h)4
ẑ.

At equilibrium this force upward balances the weight Mg:

3µ0m
2

4⇡(2h)4
= Mg ) h =

1
2

✓
3µ0m

2

4⇡Mg

◆1/4

.

Incidentally, this is (1/2)1/4 = 0.84 times the height it would adopt in the orientation perpendicular to the
plane (Prob. 7.45b).
Problem 7.47

f = v⇥B; v = !a sin ✓ �̂; f = !aB0 sin ✓(�̂⇥ẑ). E =
R
f ·dl, and dl = a d✓ ✓̂.

So E = !a
2
B0

R ⇡/2
0 sin ✓(�̂⇥ẑ)·✓̂ d✓. But ✓̂·(�̂⇥ẑ) = ẑ·(✓̂⇥�̂) = ẑ·̂r = cos ✓.

E = !a
2
B0

Z ⇡/2

0
sin ✓ cos ✓ d✓ = !a

2
B0

⇥ sin2
✓

2
⇤��⇡/2

0
=

1
2
!a

2
B0 (same as the rotating disk in Ex. 7.4).

Problem 7.48

1

Contents

✲
x

✻z

✲✛
y

} l/2
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F = IBl; � = 2B
R y
�a

p
a2 � x2 dx (a = radius of circle).

E = �d�
dt = �2B

p
a2 � y2 dy

dt = 2Bv

p
a2 � y2 = IR.

I = 2Bv
R

p
a2 � y2; l/2 =

p
a2 � y2. So F = 4B2v

R (a2 � y
2) = mg.

vcircle =
mgR

4B2(a2 � y2)
;

tcircle =
Z �a

+a
�dy

v
=

4B
2

mgR

Z a

�a
(a2 � y

2)dy =
4B

2

mgR
(a2

y � 1
3
y
3)
����
a

�a

=
4B

2

mgR
(
4
3
a
3) =

16
3

B
2
a
3

mgR
.
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Problem 7.49

(a) From Prob. 5.52a,

A(r, t) =
1
4⇡

Z
B(r0, t)⇥ r̂

r 2 d⌧
0
, so E = �@A

@t
.

[Check: r⇥E = � @
@t (r⇥A) = �@B

@t , and we recover Faraday’s law.]
(b) The Coulomb field is zero inside and 1

4⇡✏0
Q
r2 r̂ = 1

4⇡✏0
�4⇡R2

r2 r̂ = �R2

✏0r2 r̂ outside. The Faraday field is
�@A

@t , where A is given (in the quasistatic approximation) by Eq. 5.69, with ! a function of time. Letting
!̇ ⌘ d!/dt,

E(r, ✓,�, t) =

8
>>><

>>>:

�µ0R!̇�

3
r sin ✓ �̂ (r < R),

�R
2

✏0r
2
r̂� µ0R

4
!̇�

3
sin ✓
r2

�̂ (r > R).

Problem 7.50

qBR = mv (Eq. 5.3). If R is to stay fixed, then qR
dB

dt
= m

dv

dt
= ma = F = qE, or E = R

dB

dt
. But

I
E·dl = �d�

dt
, so E 2⇡R = �d�

dt
, so � 1

2⇡R

d�
dt

= R
dB

dt
, or B = �1

2

✓
1

⇡R2
�
◆

+ constant. If at time t = 0

the field is o↵, then the constant is zero, and B(R) =
1
2

✓
1

⇡R2
�
◆

(in magnitude). Evidently the field at R

must be half the average field over the cross-section of the orbit. qed
Problem 7.51

In the quasistatic approximation the magnetic field of the wire is B = (µ0I/2⇡s) �̂, or, in Cartesian
coordinates,

B =
µ0I

2⇡s
(� sin� x̂ + cos� ŷ) =

µ0I

2⇡s

⇣
�y

s
x̂ +

x

s
ŷ

⌘
=

µ0I

2⇡
(�y x̂ + x ŷ)

x2 + y2
,

where x and y are measured from the wire. To convert to the stationary coordinates in the diagram, y ! y�vt:

B =
µ0I

2⇡
[�(y � vt) x̂ + x ŷ]

x2 + (y � vt)2
.

Faraday’s law says

r⇥E = �@B
@t

= �µ0I

2⇡

⇢
v x̂

x2 + (y � vt)2
� [�(y � vt) x̂ + x ŷ]

[x2 + (y � vt)2]2
(�2v)(y � vt)

�
.

At t = 0, then,

r⇥E = �µ0Iv

2⇡

⇢
x̂

x2 + y2
+ 2

[�y
2
x̂ + xy ŷ]

[x2 + y2]2

�
= �µ0Iv

2⇡

⇢
(x2 � y

2) x̂ + 2xy ŷ]
[x2 + y2]2

�
= �µ0Iv

2⇡s2

⇣
cos� ŝ + sin� �̂

⌘
.

Our problem is to find a vector function of s and � (it obviously doesn’t depend on z) whose divergence is
zero, whose curl is as given above, that goes to zero at large s:

E(s,�) = Es(s,�) ŝ + E�(s,�) �̂ + Ez(s,�) ẑ,
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with

r ·E =
1
s

@

@s
(sEs) +

1
s

@E�

@�
= 0,

(r⇥E)s =
1
s

@Ez

@�
= �µ0Iv

2⇡s2
cos�

(r⇥E)� = �@Ez

@s
= �µ0Iv

2⇡s2
sin�,

(r⇥E)z =
1
s


@

@s
(sE�)� @Es

@�

�
= 0.

The first and last of these are satisfied if Es = E� = 0, the middle two are satisfied by Ez = �µ0Iv

2⇡s
sin�.

Evidently E = �µ0Iv

2⇡s
sin� ẑ. The electric and magnetic fields ride along with the wire.

Problem 7.52

Initially, mv2

r = 1
4⇡✏0

qQ
r2 ) T = 1

2mv
2 = 1

2
1

4⇡✏0
qQ
r . After the magnetic field is on, the electron circles in a

new orbit, of radius r1 and velocity v1:

mv
2
1

r1
=

1
4⇡✏0

qQ

r
2
1

+ qv1B ) T1 =
1
2
mv

2
1 =

1
2

1
4⇡✏0

qQ

r1
+

1
2
qv1r1B.

But r1 = r + dr, so (r1)�1 = r
�1
�
1 + dr

r

��1 ⇠= r
�1
�
1� dr

r

�
, while v1 = v + dv, B = dB. To first order, then,

T1 =
1
2

1
4⇡✏0

qQ

r

✓
1� dr

r

◆
+

1
2
q(vr) dB, and hence dT = T1 � T =

qvr

2
dB � 1

2
1

4⇡✏0
qQ

r2
dr.

Now, the induced electric field is E = r
2

dB
dt (Ex. 7.7), so m

dv
dt = qE = qr

2
dB
dt , or m dv = qr

2 dB. The increase in
kinetic energy is therefore dT = d( 1

2mv
2) = mv dv = qvr

2 dB. Comparing the two expressions, I conclude that
dr = 0. qed
Problem 7.53

E = �d�
dt

= �↵. So the current in R1 and R2 is I =
↵

R1 + R2
; by Lenz’s law, it flows counterclockwise. Now

the voltage across R1 (which voltmeter #1 measures) is V1 = IR1 =
↵R1

R1 + R2
(Vb is the higher potential),

and V2 = �IR2 =
�↵R2

R1 + R2
(Vb is lower).

Problem 7.54

(a) E = �d�
dt

= �⇡r
2 dB

dt
= �↵⇡r

2 = IR ) (in magnitude) I =
⇡↵r

2

R
. If B is out of the page, Lenz’s

law says the current is clockwise.
(b) Inside the shaded region, for a circle of radius s, apply Faraday’s law:

I
E ·dl = E2⇡s = �⇡s

2
↵ ) E = �↵s

2
�̂ = �↵s

2
(� sin� x̂+cos� ŷ) =

↵

2
(s sin� x̂�s cos� ŷ) =

↵

2
(y x̂�x ŷ).

Along the line from P to Q, dl = dx x̂, and y = r/
p

2, so V = �
Z

E · dl = �↵
2

Z
y dx = �↵

2
rp
2
(r
p

2). Thus

P is at the higher voltage, and the meter reads
↵r

2

2
.
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That’s the simplest way to do it. But you might instead regard the 3/4-circle+chord as a circuit, and use
Kirchho↵’s rule (the total emf around a closed loop is zero): V + IR1 � ↵A1 = 0, where R1 = 3/4R is the
resistance of the curved portion, and A1 = (3/4)⇡r

2 + r
2
/2 = (r2

/4)(3⇡+ 2) is the area (3/4 of the circle, plus
the triangle). Then

V = ↵
r
2

4
(3⇡ + 2)� ⇡r

2
↵

R

3
4
R =

↵r
2

4
(3⇡ + 2� 3⇡) =

↵r
2

2
. X

Or we could do the same thing, using the small loop at the top: �V + IR2 �↵A2 = 0, where R2 = (1/4)R
and A2 = (1/4)⇡r

2 � r
2
/2 = (r2

/4)(⇡ � 2).

V =
⇡↵r

2

R

R

4
� ↵r

2

4
(⇡ � 2) =

↵r
2

4
(⇡ � ⇡ + 2) =

↵r
2

2
. X

Problem 7.55

E = vBh = �L
dI

dt
; F = IhB = m

dv

dt
;

d
2
v

dt2
=

hB

m

dI

dt
= �hB

m

✓
hB

L

◆
v,

d
2
v

dt2
= �!2

v, with ! =
hBp
mL

.

Problem 7.56

A point on the upper loop: r2 = (a cos�2, a sin�2, z); a point on the lower loop: r1 = (b cos�1, b sin�1, 0).

r 2 = (r2 � r1)2 = (a cos�2 � b cos�1)2 + (a sin�2 � b sin�1)2 + z
2

= a
2 cos2 �2 � 2ab cos�2 cos�1 + b

2 cos2 �1 + a
2 sin2

�2 � 2ab sin�1 sin�2 + b
2 sin2

�1 + z
2

= a
2 + b

2 + z
2 � 2ab(cos�2 cos�1 + sin�2 sin�1) = a

2 + b
2 + z

2 � 2ab cos(�2 � �1)

= (a2 + b
2 + z

2)
⇥
1� 2� cos(�2 � �1)

⇤
=

ab

�

⇥
1� 2� cos(�2 � �1)

⇤
.

dl1 = b d�1 �̂1 = b d�1[� sin�1 x̂ + cos�1 ŷ]; dl2 = a d�2 �̂2 = a d�2[� sin�2 x̂ + cos�2 ŷ], so
dl1·dl2 = ab d�1 d�2[sin�1 sin�2 + cos�1 cos�2] = ab cos(�2 � �1) d�1 d�2.

M =
µ0

4⇡

II
dl1·dl2

r =
µ0

4⇡
abp
ab/�

ZZ
cos(�2 � �1)p

1� 2� cos(�2 � �1)
d�2 d�1.

Both integrals run from 0 to 2⇡. Do the �2 integral first, letting u ⌘ �2 � �1:

2⇡��1Z

��1

cos up
1� 2� cos u

du =
2⇡Z

0

cos up
1� 2� cos u

du

(since the integral runs over a complete cycle of cos u, we may as well change the limits to 0! 2⇡). Then the
�1 integral is just 2⇡, and

M =
µ0

4⇡
p

ab� 2⇡
Z 2⇡

0

cos up
1� 2� cos u

du =
µ0

2
p

ab�

Z 2⇡

0

cos up
1� 2� cos u

du.

(a) If a is small, then � ⌧ 1, so (using the binomial theorem)

1p
1� 2� cos u

⇠= 1 + � cos u, and
Z 2⇡

0

cos up
1� 2� cos u

du ⇠=
Z 2⇡

0
cos u du + �

Z 2⇡

0
cos2 u du = 0 + �⇡,
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and hence M = (µ0⇡/2)
p

ab�3. Moreover, � ⇠= ab/(b2 + z
2), so M ⇠=

µ0⇡a
2
b
2

2(b2 + z2)3/2
(same as in Prob. 7.22).

(b) More generally,

(1 + ✏)�1/2 = 1� 1
2
✏+

3
8
✏
2 � 5

16
✏
3 + · · · =) 1p

1� 2� cos u
= 1 + � cos u +

3
2
�

2 cos2 u +
5
2
�

3 cos3 u + · · · ,

so

M =
µ0

2
p

ab�

⇢Z 2⇡

0
cos u du + �

Z 2⇡

0
cos2 u du +

3
2
�

2

Z 2⇡

0
cos3 u du +

5
2
�

3

Z 2⇡

0
cos4 u du + · · ·

�

=
µ0

2
p

ab�


0 + �(⇡) +

3
2
�

2(0) +
5
2
�

3(
3
4
⇡) + · · ·

�
=

µ0⇡

2

p
ab�3

✓
1 +

15
8
�

2 + ( )�4 + · · ·
◆

. qed

Problem 7.57

Let � be the flux of B through a single loop of either coil, so that �1 = N1� and �2 = N2�. Then

E1 = �N1
d�
dt

, E2 = �N2
d�
dt

, so
E2

E1
=

N2

N1
. qed

Problem 7.58

(a) Suppose current I1 flows in coil 1, and I2 in coil 2. Then (if � is the flux through one turn):

�1 = I1L1 + MI2 = N1�; �2 = I2L2 + MI1 = N2�, or � = I1
L1

N1
+ I2

M

N1
= I2

L2

N2
+ I1

M

N2
.

In case I1 = 0, we have M
N1

= L2
N2

; if I2 = 0, we have L1
N1

= M
N2

. Dividing: M
L1

= L2
M , or L1L2 = M

2. qed

(b) �E1 = d�1
dt = L1

dI1
dt + M

dI2
dt = V1 cos(!t); �E2 = d�2

dt = L2
dI2
dt + M

dI1
dt = �I2R. qed

(c) Multiply the first equation by L2: L1L2
dI1
dt + L2

dI2
dt M = L2V1 cos!t. Plug in L2

dI2
dt = �I2R�M

dI1
dt .

M
2 dI1

dt �MRI2 �M
2 dI1

dt = L2V1 cos!t) I2(t) = �L2V1

MR
cos!t. L1

dI1
dt + M

�
L2V1
MR ! sin!t

�
= V1 cos!t.

dI1

dt
=

V1

L1

✓
cos!t� L2

R
! sin!t

◆
) I1(t) =

V1

L1

✓
1
!

sin!t +
L2

R
cos!t

◆
.

(d)
Vout

Vin
=

I2R

V1 cos!t
=
�L2V1

MR cos!t R

V1 cos!t
= �L2

M
= �N2

N1
. The ratio of the amplitudes is

N2

N1
. qed

(e) Pin = VinI1 = (V1 cos!t)
�V1

L1

�✓ 1
!

sin!t +
L2

R
cos!t

◆
=

(V1)2

L1

✓
1
!

sin!t cos!t +
L2

R
cos2 !t

◆
.

Pout = VoutI2 = (I2)2R =
(L2V1)2

M2R
cos2 !t. Average of cos2 !t is 1/2; average of sin!t cos!t is zero.

So hPini =
1
2
(V1)2

✓
L2

L1R

◆
; hPouti =

1
2
(V1)2


(L2)2

M2R

�
=

1
2
(V1)2


(L2)2

L1L2R

�
; hPini = hPouti =

(V1)2L2

2L1R
.
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Problem 7.59

(a) The charge flowing into dz in time dt is

dq = I(z) dt� I(z + dz) dt = �dI

dt
dz dt = �(t + dt) dz � �(t) dz =

d�

dt
dt dz ) d�

dt
= �dI

dz
. X

Since the left side is a function only of t, and the right side is a function only of z, they must both be constant;
call it k:

d�

dt
= k ) �(t) = kt + C1;

dI

dz
= �k ) I(z) = �kz + C2.

If �(0) = 0 and I(0) = 0 the constants C1 and C2 must both be zero: �(t) = kt, I(z) = �kz. X
(b) In the quasistatic approximation, E =

�

2⇡✏0s
ŝ =

kt

2⇡✏0s
ŝ; B =

µ0I

2⇡s
�̂ = �µ0kz

2⇡s
�̂.

r ·E =
1
s

@

@s

✓
s

kt

2⇡✏0s

◆
= 0 X

r ·B =
1
s

@

@�

✓
�µ0kz

2⇡s

◆
= 0 X

r⇥E =
@E

@z
�̂� 1

s

@E

@�
ẑ = 0 = �@B

@t
X

r⇥B = �@B

@z
�̂ +

1
s

@(sB)
@s

ẑ =
µ0k

2⇡s
ẑ = µ0✏0

@E

@t
X

For a gaussian cylinder of radius s about the z axis, at height z and with width dz:
I

E · da =
kt

2⇡✏0s
(2⇡s) dz =

kt

✏0
dz =

� dz

✏0
=

Qenc

✏0
. X

I
B · da = 0. X

For a circular amperian loop of radius s about the z axis, at height z:
I

E · dl = 0 = � d

dt

Z
B · da, X

I
B · dl = �µ0kz

2⇡s
(2⇡s) = µ0I = µ0Ienc + µ0✏0

d

dt

Z
E · da. X

(Note that
R

B · da and
R

E · da are zero through this loop.)
Problem 7.60

(a) The continuity equation says @⇢
@t = �r·J. Here the right side is independent of t, so we can integrate:

⇢(t) = (�r·J)t+ constant. The “constant” may be a function of r—it’s only constant with respect to t. So,
putting in the r dependence explicitly, and noting that r·J = �⇢̇(r, 0), ⇢(r, t) = ⇢̇(r, 0)t + ⇢(r, 0). qed

(b) Suppose E = 1
4⇡✏0

R ⇢ r̂
r 2 d⌧ and B = µ0

4⇡

R J⇥ r̂
r 2 d⌧ . We want to show that r·B = 0, r⇥B =

µ0J + µ0✏0
@E
@t ; r·E = 1

✏0
⇢, and r⇥E = �@B

@t , provided that J is independent of t.

We know from Ch. 2 that Coulomb’s law
✓
E = 1

4⇡✏0

R ⇢ r̂
r 2 d⌧

◆
satisfies r·E = 1

✏0
⇢ and r⇥E = 0. Since

B is constant (in time), the r·E and r⇥E equations are satisfied. From Chapter 5 (specifically, Eqs. 5.47-
5.50) we know that the Biot-Savart law satisfies r·B = 0. It remains only to check r⇥B. The argument in
Sect. 5.3.2 carries through until the equation following Eq. 5.54, where I invoked r0·J = 0. In its place we
now put r0·J = �⇢̇:

r⇥B = µ0J�
µ0

4⇡

Z
(J·r)

r̂
r 2

| {z }
(�J·r0) r̂r 2

d⌧ (Eqs. 5.51-5.53)

(Eq. 5.54)
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Integration by parts yields two terms, one of which becomes a surface integral, and goes to zero. The other is
r
r 3 r0·J =

r̂
r 2 (�⇢̇). So:

r⇥B = µ0J�
µ0

4⇡

Z r̂
r 2 (�⇢̇)d⌧ = µ0J + µ0✏0

@

@t

⇢
1

4⇡✏0

Z
⇢ r̂
r 3 d⌧

�
= µ0J + µ0✏0

@E

@t
. qed

Problem 7.61

14

Problem 7.56

vt − ϵ vt︸ ︷︷ ︸

−z

✲ z

✻y

✼θ
dE

s
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(a) dEz =
1

4⇡✏0
(��)dz

r 2 sin ✓

sin ✓ =
�z

r ; r =
p

z2 + s2

Ez =
�

4⇡✏0

Z
z dz

(z2 + s2)3/2
=

�

4⇡✏0


�1p

z2 + s2

�����
vt

vt�✏

Ez =
�

4⇡✏0

(
1p

(vt� ✏)2 + s2
� 1p

(vt)2 + s2

)
.

r

(b)

�E =
�

4⇡✏0

Z a

0

(
1p

(vt� ✏)2 + s2
� 1p

(vt)2 + s2

)
2⇡s ds =

�

2✏0

hp
(vt� ✏)2 + s2 �

p
(vt)2 + s2

i���
a

0

=
�

2✏0

hp
(vt� ✏)2 + a2 �

p
(vt)2 + a2 � (✏� vt) + (vt)

i
.

(c) Id = ✏0
d�E

dt
=

�

2

(
v(vt� ✏)p

(vt� ✏)2 + a2
� v(vt)p

(vt)2 + a2
+ 2v

)
.

As ✏! 0, vt < ✏ also ! 0, so Id ! �
2 (2v) = �v = I. With an infinitesimal gap we attribute the magnetic field

to displacement current, instead of real current, but we get the same answer. qed
Problem 7.62

1

Contents

Problem 7.26

✲ ẑ

φ̂❖

✕
ŝ

✲ ẑ

❄

✻
h

✕

☛
w

✛ ✲l

→I

✛
I

→

B
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(a) Parallel-plate capacitor: E =
1
✏0
�; V = Eh =

1
✏0

Q

wl
h) C =

Q

V
=
✏0wl

h
) C =

✏0w

h
.

(b) B = µ0K = µ0
I

w
; � = Bhl =

µ0I

w
hl = LI ) L =

µ0h

w
l) L =

µ0h

w
.

(c) CL = µ0✏0 = (4⇡ ⇥ 10�7)(8.85⇥ 10�12) = 1.112⇥ 10�17 s2/m2
.

(Propagation speed 1/
p
LC = 1/

p
µ0✏0 = 2.999⇥ 108 m/s = c.)

(d) D = �, E = D/✏ = �/✏, so just replace ✏0 by ✏;
H = K, B = µH = µK, so just replace µ0 by µ.

�
LC = ✏µ; v = 1/

p
✏µ.

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



166 CHAPTER 7. ELETRODYNAMICS

Problem 7.63

(a) J = �(E + v⇥B); J finite, � = 1 ) E + (v⇥B) = 0. Take the curl: r⇥E + r⇥(v⇥B) = 0. But

Faraday’s law says r⇥E = �@B
@t

. So
@B

@t
= r⇥(v⇥B). qed

(b) r·B = 0)
H

B·da = 0 for any closed surface. Apply this at time (t + dt) to the surface consisting of
S, S 0, and R: Z

S0
B(t + dt)·da +

Z

R
B(t + dt)·da�

Z

S
B(t + dt)·da = 0

(the sign change in the third term comes from switching outward da to inward da).

d� =
Z

S0
B(t + dt)·da�

Z

S
B(t)·da =

Z

S

⇥
B(t + dt)�B(t)| {z }

@B
@t dt

⇤
·da�

Z

R
B(t + dt)·da

(for infinitesimal dt)

d� =
⇢Z

S

@B

@t
·da
�

dt�
Z

R
B(t + dt)·

⇥
(dl⇥v) dt

⇤
(Figure 7.13).

Since the second term is already first order in dt, we can replace B(t + dt) by B(t) (the distinction would be
second order):

d� = dt

Z

S

@B

@t
·da� dt

I

C
B·(dl⇥v)| {z }
(v⇥B)·dl

= dt

⇢Z

S

✓
@B

@t

◆
·da�

Z

S
r⇥(v⇥B)·da

�
.

d�
dt

=
Z

S


@B

@t
�r⇥(v⇥B)

�
·da = 0. qed

Problem 7.64

(a)

r ·E0 = (r ·E) cos↵+ c(r ·B) sin↵ =
1
✏0
⇢e cos↵+ cµ0⇢m sin↵

=
1
✏0

(⇢e cos↵+ cµ0✏0⇢m sin↵) =
1
✏0

(⇢e cos↵+
1
c
⇢m sin↵) =

1
✏0
⇢
0
e. X

r ·B0 = (r ·B) cos↵� 1
c
(r ·E) sin↵ = µ0⇢m cos↵� 1

c✏0
⇢e sin↵

= µ0(⇢m cos↵� 1
cµ0✏0

⇢e sin↵) = µ0(⇢m cos↵� c⇢e sin↵) = µ0⇢
0
m. X

r⇥E
0 = (r⇥E) cos↵+ c(r⇥B) sin↵ =

✓
�µ0Jm �

@B

@t

◆
cos↵+ c

✓
µ0Je + µ0✏0

@E

@t

◆
sin↵

= �µ0(Jm cos↵� cJe sin↵)� @

@t

✓
B cos↵� 1

c
E sin↵

◆
= �µ0J

0
m �

@B
0

@t
. X

r⇥B
0 = (r⇥B) cos↵� 1

c
(r⇥E) sin↵ =

✓
µ0Je + µ0✏0

@E

@t

◆
cos↵� 1

c

✓
�µ0Jm �

@B

@t

◆
sin↵

= µ0(Je cos↵+
1
c
Jm sin↵) + µ0✏0

@

@t
(E cos↵+ cB sin↵) = µ0J

0
e + µ0✏0

@E
0

@t
. X
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(b)

F
0 = q

0
e(E

0 + v ⇥B
0) + q

0
m(B0 � 1

c2
v ⇥E

0)

=
✓

qe cos↵+
1
c
qm sin↵

◆
(E cos↵+ cB sin↵) + v ⇥

✓
B cos↵� 1

c
E sin↵

◆�

+(qm cos↵� cqe sin↵)
✓

B cos↵� 1
c
E sin↵

◆
� 1

c2
v ⇥ (E cos↵+ cB sin↵)

�

= qe

h�
E cos2 ↵+ cB sin↵ cos↵� cB sin↵ cos↵+ E sin2

↵
�

+v ⇥
✓
B cos2 ↵� 1

c
E sin↵ cos↵+

1
c
E sin↵ cos↵+ B sin2

↵

◆i

+qm

h✓1
c
E sin↵ cos↵+ B sin2

↵+ B cos2 ↵� 1
c
E sin↵ cos↵

◆

+v ⇥
✓

1
c
B sin↵ cos↵� 1

c2
E sin2

↵� 1
c2

E cos2 ↵� 1
c
B sin↵ cos↵

◆i

= qe (E + v ⇥B) + qm

✓
B� 1

c2
v ⇥E

◆
= F. qed
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Chapter 8

Conservation Laws

Problem 8.1

Example 7.13.

E =
�

2⇡✏0
1
s

ŝ

B =
µ0I

2⇡
1
s

�̂

9
>>>=

>>>;
S =

1
µ0

(E⇥B) =
�I

4⇡2✏0

1
s2

ẑ;

P =
Z

S · da =
bZ

a

S2⇡s ds =
�I

2⇡✏0

bZ

a

1
s

ds =
�I

2⇡✏0
ln(b/a).

But V =
bZ

a

E · dl =
�

2⇡✏0

bZ

a

1
s

ds =
�

2⇡✏0
ln(b/a), so P = IV.

Problem 7.62.
E =

�

✏0
ẑ

B = µ0K x̂ =
µ0I

w
x̂

9
>>=

>>;
S =

1
µ0

(E⇥B) =
�I

✏0w
ŷ;

P =
Z

S · da = Swh =
�Ih

✏0
, but V =

Z
E · dl =

�

✏0
h, so P = IV.

Problem 8.2

(a) E =
�

✏0
ẑ; � =

Q

⇡a2
; Q(t) = It ) E(t) =

It

⇡✏0a
2
ẑ.

B 2⇡s = µ0✏0
@E

@t
⇡s

2 = µ0✏0
I⇡s

2

⇡✏0a
2
) B(s, t) =

µ0Is

2⇡a2
�̂.

(b) uem =
1
2

✓
✏0E

2 +
1
µ0

B
2

◆
=

1
2

"
✏0

✓
It

⇡✏0a
2

◆2

+
1
µ0

✓
µ0Is

2⇡a2

◆2
#

=
µ0I

2

2⇡2a4

⇥
(ct)2 + (s/2)2

⇤
.

S =
1
µ0

(E⇥B) =
1
µ0

✓
It

⇡✏0a
2

◆✓
µ0Is

2⇡a2

◆
(�ŝ) = � I

2
t

2⇡2✏0a
4
s ŝ.
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@uem

@t
=

µ0I
2

2⇡2a4
2c

2
t =

I
2
t

⇡2✏0a
4
; �r · S =

I
2
t

2⇡2✏0a
4
r · (s ŝ) =

I
2
t

⇡2✏0a
4

=
@uem

@t
. X

(c) Uem =
Z

uemw2⇡s ds = 2⇡w
µ0I

2

2⇡2a4

Z b

0
[(ct)2 + (s/2)2]s ds =

µ0wI
2

⇡a4


(ct)2

s
2

2
+

1
4

s
4

4

�����
b

0

=
µ0wI

2
b
2

2⇡a4


(ct)2 +

b
2

8

�
. Over a surface at radius b: Pin = �

Z
S · da =

I
2
t

2⇡2✏0a
4

[b ŝ · (2⇡bw ŝ)] =
I
2
wtb

2

⇡✏0a
4

.

dUem

dt
=

µ0wI
2
b
2

2⇡a4
2c

2
t =

I
2
wtb

2

⇡✏0a
4

= Pin. X (Set b = a for total.)

Problem 8.3

The force is clearly in the z direction, so we need

($T · da)z = Tzx dax + Tzy day + Tzz daz =
1
µ0

✓
BzBx dax + BzBy day + BzBz daz �

1
2
B

2
daz

◆

=
1
µ0


Bz(B · da)� 1

2
B

2
daz

�
.

Now B =
2
3
µ0�R! ẑ (inside) and B =

µ0m

4⇡r3
(2 cos ✓ r̂ + sin ✓ ✓̂) (outside), where m =

4
3
⇡R

3(�!R). (From
Eq. 5.70, Prob. 5.37, and Eq. 5.88.) We want a surface that encloses the entire upper hemisphere—say a
hemispherical cap just outside r = R plus the equatorial circular disk.

Hemisphere:

Bz =
µ0m

4⇡R3

h
2 cos ✓ (r̂)z + sin ✓ (✓̂)z

i
=

µ0m

4⇡R3

⇥
2 cos2 ✓ � sin2

✓
⇤

=
µ0m

4⇡R3

�
3 cos2 ✓ � 1

�
.

da = R
2 sin ✓ d✓ d� r̂; B · da =

µ0m

4⇡R3
(2 cos ✓)R2 sin ✓ d✓ d�; daz = R

2 sin ✓ d✓ d� cos ✓;

B
2 =

⇣
µ0m

4⇡R3

⌘2 �
4 cos2 ✓ + sin2

✓
�

=
⇣

µ0m

4⇡R3

⌘2 �
3 cos2 ✓ + 1

�
.

($T · da)z =
1
µ0

⇣
µ0m

4⇡R3

⌘2
�

3 cos2 ✓ � 1
�
2 cos ✓R2 sin ✓ d✓ d�� 1

2
�
3 cos2 ✓ + 1

�
R

2 sin ✓ cos ✓ d✓ d�

�

= µ0

✓
�!R

3

◆2 1
2
R

2 sin ✓ cos ✓ d✓ d�

� �
12 cos2 ✓ � 4� 3 cos2 ✓ � 1

�

=
µ0

2

✓
�!R

2

3

◆2 �
9 cos2 ✓ � 5

�
sin ✓ cos ✓ d✓ d�.

(Fhemi)z =
µ0

2

✓
�!R

2

3

◆2

2⇡

⇡/2Z

0

�
9 cos3 ✓ � 5 cos ✓

�
sin ✓ d✓ = µ0⇡

✓
�!R

2

3

◆2 
�9

4
cos4 ✓ +

5
2

cos2 ✓
������

⇡/2

0

= µ0⇡

✓
�!R

2

3

◆2✓
0 +

9
4
� 5

2

◆
= �µ0⇡

4

✓
�wR

2

3

◆2

.
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Disk:

Bz =
2
3
µ0�R!; da = r dr d� �̂ = �r dr d� ẑ;

B · da = �2
3
µ0�R!r dr d�; B

2 =
✓

2
3
µ0�R!

◆2

; daz = �r dr d�.

($T · da)z =
1
µ0

✓
2
3
µ0�R!

◆2 
�r dr d�+

1
2
r dr d�

�
= � 1

2µ0

✓
2
3
µ0�R!

◆2

r dr d�.

(Fdisk)z = �2µ0

✓
�!R

3

◆2

2⇡
RZ

0

r dr = �2⇡µ0

✓
�!R

2

3

◆2

.

Total:

F = �⇡µ0

✓
�!R

2

3

◆2✓
2 +

1
4

◆
ẑ = �⇡µ0

✓
�!R

2

2

◆2

ẑ (agrees with Prob. 5.44).

Alternatively, we could use a surface consisting of the entire equatorial plane, closing it with a hemispherical
surface “at infinity,” where (since the field is zero out there) the contribution is zero. We have already done
the integral over the disk; it remains to do rest of the integral over the plane, from R to 1. On the plane,
✓ = 0, and (for r > R) B =

µ0m

4⇡r3
✓̂ = �µ0m

4⇡r3
ẑ, so

($T · da)z =
1
µ0


Bz(Bz daz)�

1
2
B

2
z daz)

�
=

1
2µ0

B
2
z daz =

1
2µ0

⇣
µ0m

4⇡r3

⌘2
(�r dr d�).

The contribution from the rest of the plane is therefore

(Frest)z = � 1
2µ0

⇣
µ0m

4⇡

⌘2
2⇡
Z 1

R

1
r5

dr = � µ0

16⇡

✓
4
3
⇡R

4
�!

◆2 
� 1

4r4

� �����

1

R

= �µ0⇡

✓
R

4
�!

3

◆2  1
4R4

�

= �µ0⇡

4

✓
�!R

2

3

◆2

.

This is the same as (Fhemi)z, so—when added to (Fdisk)z—it will yield the same total force as before.

Problem 8.4

(a)
($T · da)z = Tzx dax + Tzy day + Tzz daz.

But for the x y plane dax = day = 0, and daz =
�r dr d� (I’ll calculate the force on the upper charge).

r

($T · da)z = ✏0

✓
EzEz �

1
2
E

2

◆
(�r dr d�).

Now E =
1

4⇡✏0
2

q

r 2 cos ✓ r̂, and cos ✓ =
r

r , so Ez =

0, E
2 =

✓
q

2⇡✏0

◆2
r
2

(r2 + a2)3
. Therefore

1

Hello

✲ y

✻z

❂x

a

a

r

✇
✼θ
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Fz =
1
2
✏0

✓
q

2⇡✏0

◆2

2⇡
1Z

0

r
3
dr

(r2 + a2)3
=

q
2

4⇡✏0
1
2

1Z

0

u du

(u + a2)3
(letting u ⌘ r

2)

=
q
2

4⇡✏0
1
2

"
� 1

(u + a2)
+

a
2

2 (u + a2)3

#�����

1

0

=
q
2

4⇡✏0
1
2


0 +

1
a2
� a

2

2a4

�
=

q
2

4⇡✏0
1

(2a)2
. X
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(b) In this case E = � 1
4⇡✏0

2
q

r 2 sin ✓ ẑ, and sin ✓ =
a

r , so

E
2 = E

2
z =

✓
qa

2⇡✏0

◆2 1
(r2 + a2)3

, and hence ($T · da)z = �✏0
2

✓
qa

2⇡✏0

◆2
r dr d�

(r2 + a2)3
. Therefore

Fz = �✏0
2

✓
qa

2⇡✏0

◆2

2⇡
1Z

0

r dr

(r2 + a2)3
= � q

2
a
2

4⇡✏0

"
�1

4
1

(r2 + a2)2

#1

0

= � q
2
a
2

4⇡✏0


0 +

1
4a4

�
= � q

2

4⇡✏0
1

(2a)2
. X

Problem 8.5

(a) E = � �
✏0

ẑ, B = �µ0�v x̂, g = ✏0(E⇥B) = µ0�
2
v ŷ, p = (dA)g = dAµ0�

2
v ŷ.

(b) (i) There is a magnetic force, due to the (average) magnetic field at the upper plate:

F = q(u⇥B) = �A[(�u ẑ)⇥ (� 1
2µ0�v x̂)] = 1

2µ0�
2
Avu ŷ,

I1 =
Z

F dt = 1
2µ0�

2
Av ŷ

Z
u dt = 1

2dµ0�
2
Av ŷ.

[The velocity of the patch (of area A) is actually v + u = v ŷ� u ẑ, but the y component produces a magnetic
force in the z direction (a repulsion of the plates) which reduces their (electrical) attraction but does not deliver
(horizontal) momentum to the plates.]

(ii) Meanwhile, in the space immediately above the upper plate the magnetic field drops abruptly to
zero (as the plate moves past), inducing an electric field by Faraday’s law. The magnetic field in the vicinity
of the top plate (at d(t) = d0 � ut) can be written, using Problem 1.46(b),

B(z, t) = �µ0�v ✓(d� z) x̂, ) @B

@t
= µ0�vu �(d� z) x̂.

In the analogy at the beginning of Section 7.2.2, the Faraday-induced electric field is just like the magnetostatic
field of a surface current K = ��vu x̂. Referring to Eq. 5.58, then,

Eind =

(
� 1

2µ0�vu ŷ, for z < d,

+ 1
2µ0�vu ŷ, for z > d.

This induced electric field exerts a force on area A of the bottom plate, F = (��A)(� 1
2µ0�vu ŷ), and delivers

an impulse

I2 = 1
2µ0�

2
Av ŷ

Z
u dt = 1

2µ0�
2
Avd ŷ.

(I dropped the subscript on d0, reverting to the original notation: d is the initial separation of the plates.)
The total impulse is thus I = I1 + I2 = dAµ0�

2
v ŷ, matching the momentum initially stored in the fields,

from part (a). [I thank Michael Ligare for untangling this surprisingly subtle problem. Incidentally, there is
also “hidden momentum” in the original configuration. It is not relevant here; it is (relativistic) mechanical
momentum (see Example 12.13), and is delivered to the plates as they come together, so it does not a↵ect the
overall conservation of momentum.]
Problem 8.6

(a) gem = ✏0(E⇥B) = ✏0EB ŷ; pem = ✏0EBAd ŷ.

(b) III =
Z 1

0
F dt =

Z 1

0
I(l⇥B) dt =

Z 1

0
IBd(ẑ⇥ x̂) dt = (Bd ŷ)

Z 1

0

✓
�dQ

dt

◆
dt
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= �(Bdŷ)[Q(1)�Q(0)] = BQd ŷ. But the original field was E = �/✏0 = Q/✏0A, so Q = ✏0EA, and hence
III = ✏0EBAd ŷ.

Problem 8.7

(a) Ex = Ey = 0, Ez = ��/✏0. Therefore

Txy = Txz = Tyz = · · · = 0; Txx = Tyy = �✏0
2

E
2 = � �

2

2✏0
; Tzz = ✏0

✓
E

2
z �

1
2
E

2

◆
=
✏0

2
E

2 =
�

2

2✏0
.

$
T =

�
2

2✏0

0

@
�1 0 0
0 �1 0
0 0 +1

1

A .

(b) F =
I
$
T · da (S = 0, since B = 0); integrate over the x y plane: da = �dx dy ẑ (negative because

outward with respect to a surface enclosing the upper plate). Therefore

Fz =
Z

Tzz daz = � �
2

2✏0
A, and the force per unit area is f =

F

A
= � �

2

2✏0
ẑ.

(c) �Tzz = ��2
/2✏0 is the momentum in the z direction crossing a surface perpendicular to z, per unit

area, per unit time.
(d) The recoil force is the momentum delivered per unit time, so the force per unit area on the top plate is

f = � �
2

2✏0
ẑ (same as (b)).

Problem 8.8

B = µ0nI ẑ (for s < R; outside the solenoid B = 0). The force on a segment ds of spoke is

dF = I
0
dl⇥B = I

0
µ0nI ds(̂s⇥ ẑ) = �I

0
µ0nI ds �̂.

The torque on the spoke is

N =
Z

r⇥ dF = I
0
µ0nI

RZ

a

s ds(�ŝ⇥ �̂) = I
0
µ0nI

1
2
�
R

2 � a
2
�
(�ẑ).

Therefore the angular momentum of the cylinders is L =
Z

N dt = �1
2
µ0nI(R2�a

2) ẑ
Z

I
0
dt. But

R
I
0
dt = Q,

so

L = �1
2
µ0nIQ(R2 � a

2) ẑ (in agreement with Eq. 8.34).

Problem 8.9

(a) Between the shells, E =
Q

4⇡✏0
1
r2

r̂, g = ✏0(E⇥B) =
QB0

4⇡r2
(r̂⇥ ẑ).

L =
Z

(r⇥ g) d⌧ =
QB0

4⇡

Z
1
r2

[r⇥ (r̂⇥ ẑ)]r2 sin ✓ dr d✓ d� =
QB0

4⇡

Z
r[̂r⇥ (r̂⇥ ẑ)] sin ✓ dr d✓ d�.
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Now r̂ ⇥ (r̂ ⇥ ẑ) = r̂(r̂ · ẑ) � ẑ(r̂ · r̂) = r̂ cos ✓ = ẑ, but L has to be along the z direction, so we pick o↵ the z

component of r̂: [̂r⇥ (r̂⇥ ẑ)]z = cos2 ✓ � 1 = � sin2
✓.

Lz = �QB0

4⇡

Z
r sin3

✓ dr d✓ d� = �QB0

4⇡
2⇡
Z ⇡

0
sin3

✓ d✓

Z b

a
r dr = �QB0

2

✓
4
3

◆✓
b
2 � a

2

2

◆
= �1

3
QB0(b2�a

2).

L = �1
3
QB0(b2 � a

2) ẑ.

(b) The changing magnetic field induces an electric field (Example 7.7). Assuming symmetry about the z

axis, E = �s

2
dB

dt
�̂. The force on a patch of area da is dF = E� da, and the torque on this patch is dN = s⇥dF.

The net torque on the sphere at radius a is (using s = a sin ✓ ŝ and da = a
2 sin ✓ d✓ d�):

Na = �
✓

Q

4⇡a2

◆✓
1
2

dB

dt
ẑ

◆Z
s
2
da = �Qa

2

8⇡
dB

dt
ẑ 2⇡

Z
sin3

✓ d✓ =
Qa

2

3
dB

dt
ẑ.

Similarly, Nb =
Qb

2

3
dB

dt
ẑ, so the total torque is N =

Q

3
dB

dt
(b2 � a

2) ẑ, and the angular momentum delivered
to the spheres is

L =
Z

N dt =
Q

3
(b2 � a

2) ẑ
Z 0

B0

dB

dt
dt = �Q

3
(b2 � a

2)B0 ẑ. X

Problem 8.10

(a)

E =

8
><

>:

0, (r < R)

1
4⇡✏0

Q

r2
r̂, (r > R)

9
>=

>;
; B =

8
><

>:

2
3µ0M ẑ, (r < R)

µ0

4⇡
m

r3

h
2 cos ✓ r̂ + sin ✓ ✓̂

i
, (r > R)

9
>=

>;
(Ex. 6.1)

(where m =
4
3
⇡R

3
M); g = ✏0(E⇥B) =

µ0

(4⇡)2
Qm

r5
(r̂⇥ ✓̂) sin ✓, and (r̂⇥ ✓̂) = �̂, so

` = r⇥ g =
µ0

(4⇡)2
mQ

r4
sin ✓(r̂⇥ �̂).

But (r̂⇥ �̂) = �✓̂, and only the z component will survive integration, so (since (✓̂)z = � sin ✓):

L =
µ0mQ

(4⇡)2
ẑ

Z
sin2

✓

r4

�
r
2 sin ✓ dr d✓ d�

�
.

2⇡Z

0

d� = 2⇡;
⇡Z

0

sin3
✓ d✓ =

4
3
;

1Z

R

1
r2

dr =
✓
�1

r

◆����
1

R

=
1
R

.

L =
µ0mQ

(4⇡)2
ẑ (2⇡)

✓
4
3

◆✓
1
R

◆
=

2
9
µ0MQR

2
ẑ.
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1

✲ x

✻z

❂y

a

a

r

✇
✼

+q

−q

θ

✻
z

Rθ

✲ x

✻
z

qe

qm

d

✸

r

✶
r
′

θ
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(b) Apply Faraday’s law to the ring shown:
I

E · dl = E(2⇡r sin ✓) = �d�
dt

= �⇡(r sin ✓)2
✓

2
3
µ0

dM

dt

◆

) E = �µ0

3
dM

dt
(r sin ✓) �̂.

The force on a patch of surface (da) is dF = �E da = �µ0�

3
dM

dt
(r sin ✓) da �̂

✓
� =

Q

4⇡R2

◆
.

The torque on the patch is dN = r ⇥ dF = �µ0�

3
dM

dt

�
r
2 sin ✓

�
da (r̂ ⇥ �̂). But (r̂ ⇥ �̂) = �✓̂, and we want

only the z component (✓̂z = � sin ✓):

N = �µ0�

3
dM

dt
ẑ

Z
r
2 sin2

✓
�
r
2 sin ✓ d✓ d�

�
.

Here r = R;
⇡Z

0

sin3
✓ d✓ =

4
3
;

2⇡Z

0

d� = 2⇡, so N = �µ0�

3
dM

dt
ẑR

4

✓
4
3

◆
(2⇡) = �2µ0

9
QR

2 dM

dt
ẑ.

L =
Z

N dt = �2µ0

9
QR

2
ẑ

0Z

M

dM =
2µ0

9
MQR

2
ẑ (same as (a)).

(c) Let the charge on the sphere at time t be q(t); the charge density is � =
q(t)

4⇡R2
. The charge below

(“south of”) the ring in the figure is

qs = �
�
2⇡R

2
�

⇡Z

0

sin ✓0 d✓0 =
q

2
(� cos ✓0)|⇡✓ =

q

2
(1 + cos ✓).

So the total current crossing the ring (flowing “north”) is I(t) = �1
2

dq

dt
(1 + cos ✓), and hence

K(t) =
I

2⇡R sin ✓
(�✓̂) =

1
4⇡R

dq

dt

(1 + cos ✓)
sin ✓

✓̂. The force on a patch of area da is dF = (K⇥B) da.

Bave =

2
3
µ0M ẑ +

µ0

4⇡

4
3⇡R

3
M

R3
(2 cos ✓ r̂ + sin ✓ ✓̂)

�
1
2

=
µ0M

6
[2 ẑ + 2 cos ✓ r̂ + sin ✓ ✓̂];

K⇥B =
1

4⇡R

dq

dt

µ0M

6
(1 + cos ✓)

sin ✓
[2(✓̂ ⇥ ẑ) + 2 cos ✓ (✓̂ ⇥ r̂)| {z }

��̂

].

dN = R r̂⇥ dF =
µ0M

24⇡

✓
dq

dt

◆
(1 + cos ✓)

sin ✓
2[ r̂⇥ (✓̂ ⇥ ẑ)| {z }

✓̂(r̂ · ẑ)� ẑ(r̂ · ✓̂)

� cos ✓ (r̂⇥ �̂)| {z }
�✓̂

]R2 sin ✓ d✓ d�

=
µ0M

12⇡

✓
dq

dt

◆
(1 + cos ✓)R2[cos ✓ ✓̂ + cos ✓ ✓̂] d✓ d� =

µ0MR
2

6⇡

✓
dq

dt

◆
(1 + cos ✓) cos ✓ d✓ d� ✓̂.
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The x and y components integrate to zero; (✓̂)z = � sin ✓, so (using
2⇡Z

0

d� = 2⇡):

Nz = �µ0MR
2

6⇡

✓
dq

dt

◆
(2⇡)

⇡Z

0

(1 + cos ✓) cos ✓ sin ✓ d✓ = �µ0MR
2

3

✓
dq

dt

◆ ✓
sin2

✓

2
� cos3 ✓

3

◆����
⇡

0

= �µ0MR
2

3

✓
dq

dt

◆✓
2
3

◆
= �2µ0

9
MR

2 dq

dt
. N = �2µ0

9
MR

2 dq

dt
ẑ.

Therefore

L =
Z

N dt = �2µ0

9
MR

2
ẑ

0Z

Q

dq =
2µ0

9
MR

2
Q ẑ (same as (a)).

(I used the average field at the discontinuity—which is the correct thing to do—but in this case you’d get the
same answer using either the inside field or the outside field.)

Problem 8.11 The magnetic field of the upper loop is given by Eq. 5.41: B =
µ0Ib

2
b
2

(b2 + z2)3/2
ẑ. (I put the

origin at the center of the upper loop, with the z axis pointing up, so z = �h at the location of the lower loop.)
Treat the lower loop as a magnetic dipole, with moment m = Ia⇡a

2
ẑ. The force on m is given by Eq. 6.3:

F = r(m ·B) = r
✓

Ia⇡a
2 µ0Ib

2
b
2

(b2 + z2)3/2

◆
=

µ0⇡a
2
b
2
IaIb

2
@

@z

�
b
2 + z

2
��3/2

ẑ

=
µ0⇡a

2
b
2
IaIb

2

✓
�3

2

◆�
b
2 + z

2
��5/2 (2z) ẑ =

3⇡
2

µ0IaIb
a
2
b
2
h

(b2 + h2)5/2
ẑ. X

Problem 8.12 Following the method of Section 7.2.4 (leading up to Eq. 7.30), the power delivered to the two
loops is

dW

dt
= �EaIa � EbIb

(where these are the changing values as the currents are turned on, not the final values). Now

Ea = �La
dIa

dt
�M

dIb

dt
, Eb = �Lb

dIb

dt
�M

dIa

dt
,

so
dW

dt
=
✓

LaIa
dIa

dt
+ MIa

dIb

dt

◆
+
✓

LbIb
dIb

dt
+ MIb

dIa

dt

◆
=

d

dt

✓
1
2
LaI

2
a +

1
2
LbI

2
b + MIaIb

◆
.

The total work done, then, to increase the currents from zero to their final values, is

W =
1
2
LaI

2
a +

1
2
LbI

2
b + MIaIb. qed

Problem 8.13

(a) E = �d�
dt

; � = ⇡a
2
B; B = µ0nIs; E = IrR. So Ir = � 1

R

�
µ0⇡a

2
n
� dIs

dt
.
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(b)
I

E · dl = �d�
dt
) E(2⇡a) = �µ0⇡a

2
n

dIs

dt
) E = �1

2
µ0an

dIs

dt
�̂. B =

µ0Ir

2
b
2

(b2 + z2)3/2
ẑ (Eq. 5.41).

S =
1
µ0

(E⇥B) =
1
µ0

✓
�µ0an

2
dIs

dt

◆ 
µ0Ir

2
b
2

(b2 + z2)3/2

!
(�̂⇥ ẑ) = �1

4
µ0Ir

dIs

dt

ab
2
n

(b2 + z2)3/2
ŝ.

Power:

P =
Z

S · da =
1Z

�1

(S)(2⇡a) dz = �1
2
⇡µ0a

2
b
2
nIr

dIs

dt

1Z

�1

1
(b2 + z2)3/2

dz

The integral is
z

b2
p

z2 + b2

���
1

�1
=

1
b2
�
✓
� 1

b2

◆
=

2
b2

.

= �
✓
⇡µ0a

2
n

dIs

dt

◆
Ir = (RIr)Ir = Ir

2
R. qed

Problem 8.14 The fields are zero for s < a and s > b; between the cylinders,

E =
1

2⇡✏0
�

s
ŝ, B =

µ0

2⇡
I

s
�̂,

where I = �v.
(a) From Eq. 8.5:

u =
1
2

✓
✏0E

2 +
1
µ0

B
2

◆
=

1
2

"
✏0

✓
1

2⇡✏0

◆2
�

2

s2
+

1
µ0

⇣
µ0

2⇡

⌘2 �2
v
2

s2

#
=

�
2

8⇡2✏0
(1 + ✏0µ0v

2)
1
s2

.

Writing ✏0µ0 = 1/c
2, and integrating over the volume between the cylinders:

W

`
=

�
2

8⇡2✏0

✓
1 +

v
2

c2

◆Z b

a

1
s2

2⇡s ds =
�

2

4⇡✏0

✓
1 +

v
2

c2

◆
ln(b/a).

(b) From Eq. 8.29:

g = ✏0(E⇥B) = ✏0

✓
�

2⇡✏0s

◆✓
µ0�v

2⇡s

◆
ẑ =

µ0�
2
v

4⇡2s2
ẑ.

p

`
=

µ0�
2
v

4⇡2
ẑ

Z b

a

1
s2

2⇡s ds =
µ0�

2
v

2⇡
ln(b/a) ẑ.

(c) From Eq. 8.10:

S =
1
µ0

(E⇥B) =
1

✏0µ0
g = c

2
g.

dW

dt
=
Z

S · da =
µ0�

2
c
2
v

2⇡
ln(b/a) ẑ.

Problem 8.15

(a) The fields are E =
1

4⇡✏0
q

r2
r̂, B =

µ0

2⇡
NI

s
�̂ (for points inside the toroid—see Eq. 5.60).

g = ✏0(E⇥B) = ✏0
q

4⇡✏0a2

µ0NI

2⇡a
ẑ =

µ0

8⇡2

qNI

a3
ẑ.
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(Note that inside the toroid r ⇡ a ŝ and s ⇡ a.)

p =
✓

µ0

8⇡2

qNI

a3
ẑ

◆
(2⇡awh) =

µ0

4⇡
qNIwh

a2
ẑ.

(b) The changing magnetic field induces an electric field, as given by Problem 7.19 (with z = 0):

E = � µ0

4⇡a2
Nhw

dI

dt
ẑ. The impulse delivered to q is therefore

I =
Z

F dt =
Z

qE dt = �q
µ0

4⇡a2
Nhw ẑ

Z
dI

dt
dt =

µ0q

4⇡a2
NhwI ẑ. X

Problem 8.16

According to Eqs. 3.104, 4.14, 5.89, and 6.16, the fields are

E =

8
>>><

>>>:

� 1
3✏0

P, (r < R),

1
4⇡✏0

1
r3

[3(p · r̂) r̂� p], (r > R),

9
>>>=

>>>;
B =

8
>><

>>:

2
3
µ0M, (r < R),

µ0

4⇡
m

r3
[3(m · r̂) r̂�m] , (r > R),

9
>>=

>>;

where p = (4/3)⇡R
3
P, and m = (4/3)⇡R

3
M. Now p = ✏0

R
(E⇥B) d⌧ , and there are two contributions, one

from inside the sphere and one from outside.
Inside:

pin = ✏0

Z ✓
� 1

3✏0
P

◆
⇥
✓

2
3
µ0M

◆
d⌧ = �2

9
µ0(P⇥M)

Z
d⌧ = �2

9
µ0(P⇥M)

4
3
⇡R

3 =
8
27

µ0⇡R
3(M⇥P).

Outside:

pout = ✏0
1

4⇡✏0
µ0

4⇡

Z
1
r6
{[3(p · r̂) r̂� p]⇥ [3(m · r̂) r̂�m]} d⌧.

Now r̂⇥(p⇥m) = p(r̂·m)�m(r̂·p), so r̂⇥ [̂r⇥(p⇥m)] = (r̂·m)(r̂⇥p)�(r̂·p)(r̂⇥m), whereas using the BAC-
CAB rule directly gives r̂⇥ [̂r⇥(p⇥m)] = r̂[̂r·(p⇥m)]�(p⇥m)(r̂·r̂). So {[3(p · r̂) r̂� p]⇥ [3(m · r̂) r̂�m]} =
�3(p·r̂)(r̂⇥m)+3(m·r̂)(r̂⇥p)+(p⇥m) = 3 {r̂[̂r · (p⇥m)]� (p⇥m)}+(p⇥m) = �2(p⇥m)+3r̂[̂r·(p⇥m)].

pout =
µ0

16⇡2

Z
1
r6
{�2(p⇥m) + 3 r̂[̂r · (p⇥m)]} r

2 sin ✓ dr d✓ d�.

To evaluate the integral, set the z axis along (p ⇥m); then r̂ · (p ⇥m) = |p ⇥m| cos ✓. Meanwhile, r̂ =
sin ✓ cos� x̂+sin ✓ sin� ŷ+cos ✓ ẑ. But sin� and cos� integrate to zero, so the x̂ and ŷ terms drop out, leaving

pout =
µ0

16⇡2

✓Z 1

0

1
r4

dr

◆⇢
�2(p⇥m)

Z
sin ✓ d✓ d�+ 3|p⇥m| ẑ

Z
cos2 ✓ sin ✓ d✓ d�

�

=
µ0

16⇡2

✓
� 1

3r3

◆����
1

R


�2(p⇥m)4⇡ + 3(p⇥m)

4⇡
3

�
= � µ0

12⇡R3
(p⇥m)

= � µ0

12⇡R3

✓
4
3
⇡R

3
P

◆
⇥
✓

4
3
⇡R

3
M

◆
=

4µ0

27
R

3(M⇥P).

ptot =
✓

8
27

+
4
27

◆
µ0R

3(M⇥P) =
4
9
µ0R

3(M⇥P).
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Problem 8.17

(a) From Eq. 5.70 and Prob. 5.37,
8
><

>:

r < R : E = 0, B =
2
3
µ0�R! ẑ, with � =

e

4⇡R2
;

r > R : E =
1

4⇡✏0
e

r2
r̂, B =

µ0

4⇡
m

r3
(2 cos ✓ r̂ + sin ✓ ✓̂), with m =

4
3
⇡�!R

4
.

The energy stored in the electric field is (Ex. 2.9):

WE =
1

8⇡✏0
e
2

R
.

The energy density of the internal magnetic field is:

uB =
1

2µ0
B

2 =
1

2µ0

✓
2
3
µ0R!

e

4⇡R2

◆2

=
µ0!

2
e
2

72⇡2R2
, so WBin =

µ0!
2
e
2

72⇡2R2

4
3
⇡R

3 =
µ0e

2
!

2
R

54⇡
.

The energy density in the external magnetic field is:

uB =
1

2µ0

µ
2
0

16⇡2

m
2

r6

�
4 cos2 ✓ + sin2

✓
�

=
e
2
!

2
R

4
µ0

18(16⇡2)
1
r6

�
3 cos2 ✓ + 1

�
, so

WBout =
µ0e

2
!

2
R

4

(18)(16)⇡2

1Z

R

1
r6

r
2
dr

⇡Z

0

�
3 cos2 ✓ + 1

�
sin ✓ d✓

2⇡Z

0

d� =
µ0e

2
!

2
R

4

(18)(16)⇡2

✓
1

3R3

◆
(4)(2⇡) =

µ0e
2
!

2
R

108⇡
.

WB = WBin + Wbout =
µ0e

2
!

2
R

108⇡
(2 + 1) =

µ0e
2
!

2
R

36⇡
; W = WE + WB =

1
8⇡✏0

e
2

R
+

µ0e
2
!

2
R

36⇡
.

(b) Same as Prob. 8.10(a), with Q! e and m! 1
3
e!R

2: L =
µ0e

2
!R

18⇡
ẑ.

(c)
µ0e

2

18⇡
!R =

~
2
) !R =

9⇡~
µ0e

2
=

(9)(⇡)(1.05⇥ 10�34)
(4⇡ ⇥ 10�7)(1.60⇥ 10�19)2

= 9.23⇥ 1010 m/s.

1
8⇡✏0

e
2

R

"
1 +

2
9

✓
!R

c

◆2
#

= mc
2;

"
1 +

2
9

✓
!R

c

◆2
#

= 1 +
2
9

✓
9.23⇥ 1010

3⇥ 108

◆2

= 2.10⇥ 104;

R =
(2.10⇥ 104)(1.6⇥ 10�19)2

8⇡(8.85⇥ 10�12)(9.11⇥ 10�31)(3⇥ 108)2
= 2.95⇥ 10�11 m; ! =

9.23⇥ 10�10

2.95⇥ 10�11
= 3.13⇥ 1021 rad/s.

Since !R, the speed of a point on the equator, is 300 times the speed of light, this “classical” model is clearly
unrealistic.
Problem 8.18

Maxwell’s equations with magnetic charge (Eq. 7.44):

(i) r ·E =
1
✏0
⇢e, (iii) r⇥E = �µ0Jm �

@B

@t
,

(ii) r ·B = µ0⇢m, (iv) r⇥B = µ0Je + µ0✏0
@E

@t
.
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The Lorentz force law becomes (Eq. 8.44)

F = qe (E + v ⇥B) + qm

✓
B� 1

c2
v ⇥E

◆
.

Following the argument in Section 8.1.2:

F · dl =

qe (E + v ⇥B) + qm

✓
B� 1

c2
v ⇥E

◆�
· v dt = (qeE + qmB) · v dt,

dW

dt
=
Z

(E · Je + B · Jm) d⌧

(which generalizes Eq. 8.6). Use (iii) and (iv) to eliminate Je and Jm:

(E · Je + B · Jm) =
1
µ0

E · (r⇥B)� ✏0E · @E
@t
� 1

µ0
B · (r⇥E)� 1

µ0
B · @B

@t
,

but r · (E⇥B) = B · (r⇥E)�E · (r⇥B), so

(E · Je + B · Jm) = � 1
µ0
r · (E⇥B)� 1

2
@

@t

✓
✏0E

2 +
1
µ0

B
2

◆

(generalizing Eq. 8.8). Thus

dW

dt
= � d

dt

Z
1
2

✓
✏0E

2 +
1
µ0

B
2

◆
d⌧ � 1

µ0

I
(E⇥B) · da,

which is identical to Eq. 8.9. Evidently Poynting’s theorem is unchanged(!), and

u =
1
2

✓
✏0E

2 +
1
µ0

B
2

◆
, S =

1
µ0

(E⇥B),

the same as before.
To construct the stress tensor we begin with the generalization of Eq. 8.13:

F =
Z 

(E + v ⇥B) ⇢e +
✓
B� 1

c2
v ⇥E

◆
⇢m

�
d⌧.

The force per unit volume (Eq. 8.14) becomes

f = (⇢eE + Je ⇥B) +
✓
⇢mB� 1

c2
Jm ⇥E

◆

= ✏0(r ·E)E +
✓

1
µ0

r⇥B� ✏0
@E

@t

◆
⇥B +

1
µ0

(r ·B)B� µ0✏0

✓
� 1

µ0
r⇥E� 1

µ0

@B

@t

◆
⇥E

= ✏0[(r ·E)E�E⇥ (r⇥E)] +
1
µ0

[(r ·B)B�B⇥ (r⇥B)]� ✏0
@

@t
(E⇥B)

= ✏0


(r ·E)E� 1

2
r(E2) + (E ·r)E

�
+

1
µ0


(r ·B)B� 1

2
r(B2) + (B ·r)B

�
� ✏0

@

@t
(E⇥B).
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This is identical to Eq. 8.16, so the stress tensor is the same as before:

Tij ⌘ ✏0
✓

EiEj �
1
2
�ijE

2

◆
+

1
µ0

✓
BiBj �

1
2
�ijB

2

◆
.

Likewise, Eq. 8.20 is still valid. In fact, this argument is more straightforward when you include magnetic
charge, since you don’t need artificially to insert the (r ·B)B term (after Eq. 8.15).

The electromagnetic momentum density (Eq. 8.29) also stays the same, since the argument in Section 8.2.3
is formulated entirely in terms of the fields:

g = ✏0(E⇥B).

Problem 8.19

E =
qe

4⇡✏0
r

r3
;

B =
µ0qm

4⇡
r
0

r03
=

µ0qm

4⇡
(r� d ẑ)

(r2 + d2 � 2rd cos ✓)3/2
.

1

✲ x

✻z

❂y

a

a

r

✇
✼

+q

−q

θ

✻
z

Rθ

✲ x

✻
z

qe

qm

d

✸

r

✶
r
′

θ
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Momentum density (Eq. 8.32):

g = ✏0(E⇥B) =
µ0qeqm

(4⇡)2
(�d)(r⇥ ẑ)

r3 (r2 + d2 � 2rd cos ✓)3/2
.

Angular momentum density (Eq. 8.33):

` = (r⇥ g) = �µ0qeqmd

(4⇡)2
r⇥ (r⇥ ẑ)

r3 (r2 + d2 � 2rd cos ✓)3/2
. But r⇥ (r⇥ ẑ) = r(r · ẑ)� r

2
ẑ = r

2 cos ✓ r̂� r
2
ẑ.

The x and y components will integrate to zero; using (r̂)z = cos ✓, we have:

L = �µ0qeqmd

(4⇡)2
ẑ

Z
r
2(cos2 ✓ � 1)

r3 (r2 + d2 � 2rd cos ✓)3/2
r
2 sin ✓ dr d✓ d�. Let u ⌘ cos ✓ :

=
µ0qeqmd

(4⇡)2
ẑ (2⇡)

1Z

�1

1Z

0

r
�
1� u

2
�

(r2 + d2 � 2rdu)3/2
du dr.

Do the r integral first:

1Z

0

r dr

(r2 + d2 � 2rdu)3/2
=

(ru� d)
d(1� u2)

p
r2 + d2 � 2rdu

����
1

0

=
u

d (1� u2)
+

d

d (1� u2) d
=

u + 1
d (1� u2)

=
1

d(1� u)
.

Then

L =
µ0qeqmd

8⇡
ẑ

1
d

1Z

�1

(1� u
2)

(1� u)
du =

µ0qeqm

8⇡
ẑ

1Z

�1

(1 + u)du =
µ0qeqm

8⇡
ẑ

✓
u +

u
2

2

◆����
1

�1

=
µ0qeqm

4⇡
ẑ.
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Problem 8.20

p = ✏0

Z

V
(E⇥B) d⌧ = �✏0

Z

V
(rV )⇥B d⌧ = �✏0

Z

V
[r⇥ (V B)� V r⇥B] d⌧

= ✏0

I

S
V B⇥ da + ✏0µ0

Z

V
V J d⌧ =

1
c2

Z

V
V J d⌧.

(I used Problem 1.61(b) in the penultimate step. Here V is all of space, and S is its surface at infinity, where
B = 0, so the surface integral vanishes.) Using V (r) ⇡ V (0) + (rV ) · r = V (0)�E(0) · r,

p =
1
c2

V (0)
Z

J d⌧ � 1
c2

Z
[E(0) · r]J d⌧.

For a current loop,
R

J d⌧ !
R

I dl = I
R

dl = 0, and (Eq. 1.108):
Z

[E(0) · r]J d⌧ !
Z

[E(0) · r]I dl = I

Z
[E(0) · r] dl = Ia⇥E(0) = m⇥E.

So
p = � 1

c2
(m⇥E). X

Problem 8.21

(a) The rotating shell at radius b produces a solenoidal magnetic field:

B = µ0K ẑ, where K = �b!bb, and �b = � Q

2⇡bl
. So B = �µ0!bQ

2⇡l
ẑ (a < s < b).

(Note that if angular velocity is defined with respect to the z axis, then !b is a negative number.) The shell at
a also produces a magnetic field (µ0!aQ/2⇡l) ẑ, in the region s < a, so the total field inside the inner shell is

B =
µ0Q

2⇡l
(!a � !b) ẑ, (s < a).

Meanwhile, the electric field is

E =
1

2⇡✏0
�

s
ŝ =

Q

2⇡✏0ls
ŝ, (a < s < b).

g = ✏0(E⇥B) = ✏0

✓
Q

2⇡✏0ls

◆✓
�µ0!bQ

2⇡l

◆
(̂s⇥ ẑ) =

µ0!bQ
2

4⇡2l2s
�̂; ` = r⇥ g =

µ0!bQ
2

4⇡2l2s
(r⇥ �̂).

Now r⇥ �̂ = (s ŝ + z ẑ)⇥ �̂ = s ẑ� z ŝ, and the ŝ term integrates to zero, so

L =
µ0!bQ

2

4⇡2l2
ẑ

Z
d⌧ =

µ0!bQ
2

4⇡2l2
⇡(b2 � a

2)l ẑ =
µ0!bQ

2(b2 � a
2)

4⇡l
ẑ.

(b) The extra electric field induced by the changing magnetic field due to the rotating shells is given by

E 2⇡s = �d�
dt
) E = � 1

2⇡s

d�
dt

�̂, and in the region a < s < b

� =
µ0Q

2⇡l
(!a � !b)⇡a

2 � µ0Q!b

2⇡l
⇡
�
s
2 � a

2
�

=
µ0Q

2l

�
!aa

2 � !bs
2
�
; E(s) = � 1

2⇡s

µ0Q

2l

✓
a
2 d!a

dt
� s

2 d!b

dt

◆
�̂.
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In particular,

E(a) = �µ0Qa

4⇡l

✓
d!a

dt
� d!b

dt

◆
�̂, and E(b) = �µ0Q

4⇡lb

✓
a
2 d!a

dt
� b

2 d!b

dt

◆
�̂.

The torque on a shell is N = r⇥ qE = qsE ẑ, so

Na = Qa

✓
�µ0Qa

4⇡l

◆✓
d!a

dt
� d!b

dt

◆
ẑ; La =

Z 1

0
Na dt = �µ0Q

2
a
2

4⇡l
(!a � !b) ẑ.

Nb = �Qb

✓
�µ0Q

4⇡lb

◆✓
a
2 d!a

dt
� b

2 d!b

dt

◆
ẑ; Lb =

Z 1

0
Nb dt =

µ0Q
2

4⇡l

�
a
2
!a � b

2
!b

�
ẑ.

Ltot = La + Lb =
µ0Q

2

4⇡l

�
a
2
!a � b

2
!b � a

2
!a + a

2
!b

�
ẑ = �µ0Q

2
!b

4⇡l
(b2 � a

2) ẑ.

Thus the reduction in the final mechanical angular momentum (b) is equal to the residual angular momentum
in the fields (a). X
Problem 8.22

B = µ0nI ẑ, (s < R); E =
q

4⇡✏0
r
r 3 , where r = (x� a, y, z).

g = ✏0(E⇥B) = ✏0(µ0nI)
✓

q

4⇡✏0

◆
1

r 3 (r ⇥ ẑ) =
µ0qnI

4⇡ r 3 [y x̂� (x� a) ŷ].

Linear Momentum.

p =
Z

g d⌧ =
µ0qnI

4⇡

Z
y x̂� (x� a) ŷ

[(x� a)2 + y2 + z2]3/2
dx dy dz. The x̂ term is odd in y; it integrates to zero.

= �µ0qnI

4⇡
ŷ

Z
(x� a)

[(x� a)2 + y2 + z2]3/2
dx dy dz. Do the z integral first :

z

[(x� a)2 + y2]
p

(x� a)2 + y2 + z2

����
1

�1
=

2
[(x� a)2 + y2]

.

= �µ0qnI

2⇡
ŷ

Z
(x� a)

[(x� a)2 + y2]
dx dy. Switch to polar coordinates :

x = s cos�, y = s sin�, dx dy ) s ds d�; [(x� a)2 + y
2] = s

2 + a
2 � 2sa cos�.

= �µ0qnI

2⇡
ŷ

Z
(s cos�� a)

(s2 + a2 � 2sa cos�)
s ds d�

Now
Z 2⇡

0

cos� d�

(A + B cos�)
=

2⇡
B

✓
1� Ap

A2 �B2

◆
;
Z 2⇡

0

d�

(A + B cos�)
=

2⇡p
A2 �B2

.

Here A
2 �B

2 = (s2 + a
2)2 � 4s

2
a
2 = s

4 + 2s
2
a
2 + a

4 � 4s
2
a
2 = (s2 � a

2)2;
p

A2 �B2 = a
2 � s

2
.

=
µ0qnI

2a
ŷ

Z 
1�

✓
a
2 + s

2

a2 � s2

◆
+

2a
2

(a2 � s2)

�
s ds =

µ0qnI

a
ŷ

Z R

0
s ds =

µ0qnIR
2

2a
ŷ.
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Angular Momentum.

` = r⇥ g =
µ0qnI

4⇡ r 3 r⇥ [y x̂� (x� a) ŷ] =
µ0qnI

4⇡ r 3

�
z(x� a) x̂ + zy ŷ � [x(x� a) + y

2] ẑ
 

.

The x̂ and ŷ terms are odd in z, and integrate to zero, so

L = �µ0qnI

4⇡
ẑ

Z
x

2 + y
2 � xa

[(x� a)2 + y2 + z2]3/2
dx dy dz. The z integral is the same as before.

= �µ0qnI

2⇡
ẑ

Z
x

2 + y
2 � xa

[(x� a)2 + y2]
dx dy = �µ0qnI

2⇡
ẑ

Z
s� a cos�

(s2 + a2 � 2sa cos�)
s
2
ds d�

= �µ0qnI ẑ

Z 
s
2

a2 � s2
+
✓

1� a
2 + s

2

a2 � s2

◆�
s ds = �µ0qnI ẑ

Z R

0

s
2 � s

2

a2 � s2
s ds = zero.

Problem 8.23

(a) If we’re only interested in the work done on free charges and currents, Eq. 8.6 becomes
dW

dt
=
Z

V
(E · Jf ) d⌧ . But Jf = r ⇥H � @D

@t
(Eq. 7.56), so E · Jf = E · (r ⇥H) � E · @D

@t
. From product

rule #6, r · (E⇥H) = H · (r⇥E)�E · (r⇥H), while r⇥E = �@B
@t

, so

E · (r⇥H) = �H · @B
@t
�r · (E⇥H). Therefore E · Jf = �H · @B

@t
�E · @D

@t
�r · (E⇥H), and hence

dW

dt
= �

Z

V

✓
E · @D

@t
+ H · @B

@t

◆
d⌧ �

I

S
(E⇥H) · da.

This is Poynting’s theorem for the fields in matter. Evidently the Poynting vector, representing the power per
unit area transported by the fields, is S = E⇥H, and the rate of change of the electromagnetic energy density

is
@uem

@t
= E · @D

@t
+ H · @B

@t
.

For linear media, D = ✏E and H =
1
µ
B, with ✏ and µ constant (in time); then

@uem

@t
= ✏E · @E

@t
+

1
µ
B · @B

@t
=

1
2
✏
@

@t
(E ·E) +

1
2µ

@

@t
(B ·B) =

1
2
@

@t
(E ·D + B ·H) ,

so uem = 1
2 (E ·D + B ·H). qed

(b) If we’re only interested in the force on free charges and currents, Eq. 8.13 becomes f = ⇢fE + Jf ⇥B.

But ⇢f = r ·D, and Jf = r⇥H� @D

@t
, so f = E(r ·D) + (r⇥H)⇥B�

✓
@D

@t

◆
⇥B. Now

@

@t
(D ⇥ B) =

@D

@t
⇥ B + D ⇥

✓
@B

@t

◆
, and

@B

@t
= �r ⇥ E, so

@D

@t
⇥ B =

@

@t
(D ⇥ B) + D ⇥ (r ⇥ E), and

hence f = E(r ·D)�D⇥ (r⇥ E)�B⇥ (r⇥H)� @

@t
(D⇥B). As before, we can with impunity add the

term H(r ·B), so

f = {[E(r ·D)�D⇥ (r⇥E)] + [H(r ·B)�B⇥ (r⇥H)]}� @

@t
(D⇥B).

The term in curly brackets can be written as the divergence of a stress tensor (as in Eq. 8.19), and the last
term is (minus) the rate of change of the momentum density, g = D⇥B.
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Problem 8.24

(a) Initially, the disk will rise like a helicopter. The force on one charge (velocity v = !R �̂ + vz ẑ) is

Fi = q(v ⇥B) = qk

������

ŝ �̂ ẑ

0 !R vz

�R 0 2z

������
= qk

⇣
2!Rz ŝ�Rvz �̂ + !R

2
ẑ

⌘
.

The net force on all the charges is

F =
nX

i=1

Fi = nqkR
2
! ẑ = M

d
2
z

dt2
ẑ;

d
2
z

dt2
=
✓

nqkR
2

M

◆
!. [1]

The net torque on the disk is

N =
nX

i=1

(ri ⇥ Fi) = n(R ŝ)⇥ (�qkRvz �̂) = �nqkR
2
vz ẑ = I

d!

dt
ẑ

where I is the moment of inertia of the disk. So

d!

dt
= �

✓
nqkR

2

I

◆
dz

dt
. [2]

Di↵erentiate [2], and combine with [1]:

d
2
z

dt2
= �

✓
I

nqkR2

◆
d
2
!

dt2
=
✓

nqkR
2

M

◆
! ) d

2
!

dt2
= ↵!, where ↵ ⌘ nqkR

2

p
MI

.

The solution (with initial angular velocity !0 and initial angular acceleration 0) is

!(t) = !0 cos↵t.

Meanwhile,
dz

dt
= �

✓
I

nqkR2

◆
d!

dt
=
✓

I

nqkR2

◆
!0↵ sin↵t = !0

r
I

M
sin↵t.

z(t) = !0

r
I

M

Z t

0
sin↵t dt =

!0

↵

r
I

M
(1� cos↵t) .

[The problem is a little cleaner if you make the disk massless, and assign a mass m to each of the charges.
Then M ! nm and I ! nmR

2, so ↵ = qkR/m and z(t)! (!0R/↵)(1� cos↵t).]
(b) The disk rises and falls harmonically, as its rotation slows down and speeds up. The total energy is

E =
1
2
Mv

2
z +

1
2
I!

2 =
1
2
M!

2
0

I

M
sin2

↵t +
1
2
I!

2
0 cos2 ↵t =

1
2
I!

2
0(sin2

↵t + cos2 ↵t) =
1
2
I!

2
0 ,

which is constant (and equal to the initial energy). [Of course, if you didn’t notice that the rotation rate is
changing, you might think the magnetic force is doing work, as the disk oscillates up and down.]
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Chapter 9

Electromagnetic Waves

Problem 9.1

@f1

@z
= �2Ab(z � vt)e�b(z�vt)2 ;

@
2
f1

@z2
= �2Ab

h
e
�b(z�vt)2 � 2b(z � vt)2e�b(z�vt)2

i
;

@f1

@t
= 2Abv(z � vt)e�b(z�vt)2 ;

@
2
f1

@t2
= 2Abv

h
�ve

�b(z�vt)2 + 2bv(z � vt)2e�b(z�vt)2
i

= v
2 @

2
f1

@z2
. X

@f2

@z
= Ab cos[b(z � vt)];

@
2
f2

@z2
= �Ab

2 sin[b(z � vt)];

@f2

@t
= �Abv cos[b(z � vt)];

@
2
f2

@t2
= �Ab

2
v
2 sin[b(z � vt)] = v

2 @
2
f2

@z2
. X

@f3

@z
=
�2Ab(z � vt)

[b(z � vt)2 + 1]2
;
@

2
f3

@z2
=

�2Ab

[b(z � vt)2 + 1]2
+

8Ab
2(z � vt)2

[b(z � vt)2 + 1]3
;

@f3

@t
=

2Abv(z � vt)
[b(z � vt)2 + 1]2

;
@

2
f3

@t2
=

�2Abv
2

[b(z � vt)2 + 1]2
+

8Ab
2
v
2(z � vt)2

[b(z � vt)2 + 1]3
= v

2 @
2
f3

@z2
. X

@f4

@z
= �2Ab

2
ze
�b(bz2+vt);

@
2
f4

@z2
= �2Ab

2
h
e
�b(bz2+vt) � 2b

2
z
2
e
�b(bz2+vt)

i
;

@f4

@t
= �Abve

�b(bz2+vt);
@

2
f4

@t2
= Ab

2
v
2
e
�b(bz2+vt) 6= v

2 @
2
f4

@z2
.

@f5

@z
= Ab cos(bz) cos(bvt)3;

@
2
f5

@z2
= �Ab

2 sin(bz) cos(bvt)3;
@f5

@t
= �3Ab

3
v
3
t
2 sin(bz) sin(bvt)3;

@
2
f5

@t2
= �6Ab

3
v
3
t sin(bz) sin(bvt)3 � 9Ab

6
v
6
t
4 sin(bz) cos(bvt)3 6= v

2 @
2
f5

@z2
.

Problem 9.2

@f

@z
= Ak cos(kz) cos(kvt);

@
2
f

@z2
= �Ak

2 sin(kz) cos(kvt);

@f

@t
= �Akv sin(kz) sin(kvt);

@
2
f

@t2
= �Ak

2
v
2 sin(kz) cos(kvt) = v

2 @
2
f

@z2
. X

Use the trig identity sin↵ cos� = 1
2 [sin(↵+ �) + sin(↵� �)] to write

f =
A

2
{sin[k(z + vt)] + sin[k(z � vt)]} ,
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186 CHAPTER 9. ELECTROMAGNETIC WAVES

which is of the form 9.6, with g = (A/2) sin[k(z � vt)] and h = (A/2) sin[k(z + vt)].
Problem 9.3

(A3)2 =
�
A3e

i�3
� �

A3e
�i�3

�
=
�
A1e

i�1 + A2e
i�2
� �

A1e
�i�1 + A2e

�i�2
�

= (A1)2 + (A2)2 + A1A2

�
e
i�1e

�i�2 + e
�i�1e

i�2
�

= (A1)2 + (A2)2 + A1A22 cos(�1 � �2);

A3 =
p

(A1)2 + (A2)2 + 2A1A2 cos(�1 � �2).

A3e
i�3 = A3(cos �3 + i sin �3) = A1(cos �1 + i sin �1) + A2(cos �2 + i sin �2)

= (A1 cos �1 + A2 cos �2) + i(A1 sin �1 + A2 sin �2). tan �3 =
A3 sin �3
A3 cos �3

=
A1 sin �1 + A2 sin �2
A1 cos �1 + A2 cos �2

;

�3 = tan�1

✓
A1 sin �1 + A2 sin �2
A1 cos �1 + A2 cos �2

◆
.

Problem 9.4

The wave equation (Eq. 9.2) says
@

2
f

@z2
=

1
v2

@
2
f

@t2
. Look for solutions of the form f(z, t) = Z(z)T (t). Plug

this in: T
d
2
Z

dz2
=

1
v2

Z
d
2
T

dt2
. Divide by ZT :

1
Z

d
2
Z

dz2
=

1
v2T

d
2
T

dt2
. The left side depends only on z, and the

right side only on t, so both must be constant. Call the constant �k
2.8

>>><

>>>:

d
2
Z

dz2
= �k

2
Z ) Z(z) = Ae

ikz + Be
�ikz

,

d
2
T

dt2
= �(kv)2T ) T (t) = Ce

ikvt + De
�ikvt

.

9
>>>=

>>>;

(Note that k must be real, else Z and T blow up; with no loss of generality we can assume k is positive.)
f(z, t) =

�
Ae

ikz + Be
�ikz

� �
Ce

ikvt + De
�ikvt

�
= A1e

i(kz+kvt) + A2e
i(kz�kvt) + A3e

i(�kz+kvt) + A4e
i(�kz�kvt).

The general linear combination of separable solutions is therefore

f(z, t) =
Z 1

0

h
A1(k)ei(kz+!t) + A2(k)ei(kz�!t) + A3(k)ei(�kz+!t) + A4(k)ei(�kz�!t)

i
dk,

where ! ⌘ kv. But we can combine the third term with the first, by allowing k to run negative (! = |k|v
remains positive); likewise the second and the fourth:

f(z, t) =
Z 1

�1

h
A1(k)ei(kz+!t) + A2(k)ei(kz�!t)

i
dk.

Because (in the end) we shall only want the the real part of f , it su�ces to keep only one of these terms (since
k goes negative, both terms include waves traveling in both directions); the second is traditional (though either
would do). Specifically,

Re(f) =
Z 1

�1
[Re(A1) cos(kz + !t)� Im(A1) sin(kz + !t) + Re(A2) cos(kz � !t)� Im(A2) sin(kz � !t)] dk.

The first term, cos(kz + !t) = cos(�kz � !t), combines with the third, cos(kz � !t), since the negative k is
picked up in the other half of the range of integration, and the second, sin(kz+!t) = � sin(�kz�!t), combines
with the fourth for the same reason. So the general solution, for our purposes, can be written in the form

f̃(z, t) =
Z 1

�1
Ã(k)ei(kz�!t)

dk qed (the tilde0s remind us that we want the real part).
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Problem 9.5

Equation 9.26 ) gI(�v1t) + hR(v1t) = gT (�v2t). Now
@gI

@z
= � 1

v1

@gI

@t
;
@hR

@z
=

1
v1

@hR

@t
;
@gT

@z
= � 1

v2

@gT

@t
.

Equation 9.27 ) � 1
v1

@gI(�v1t)
@t

+
1
v1

@hR(v1t)
@t

= � 1
v2

@gT (�v2t)
@t

) gI(�v1t) � hR(v1t) =
v1

v2
gT (�v2t) + 

(where  is a constant).

Adding these equations, we get 2gI(�v1t) =
✓

1 +
v1

v2

◆
gT (�v2t)+, or gT (�v2t) =

✓
2v2

v1 + v2

◆
gI(�v1t)+0

(where 0 ⌘ � v2

v1 + v2
). Now gI(z, t), gT (z, t), and hR(z, t) are each functions of a single variable u (in the

first case u = z � v1t, in the second u = z � v2t, and in the third u = z + v1t). Thus

gT (u) =
✓

2v2

v1 + v2

◆
gI(v1u/v2) + 

0
.

Multiplying the first equation by v1/v2 and subtracting,
✓

1� v1

v2

◆
gI(�v1t) �

✓
1 +

v1

v2

◆
hR(v1t) =  )

hR(v1t) =
✓

v2 � v1

v1 + v2

◆
gI(�v1t)� 

✓
v2

v1 + v2

◆
, or hR(u) =

✓
v2 � v1

v1 + v2

◆
gI(�u) + 

0
.

[The notation is tricky, so here’s an example: for a sinusoidal wave,8
<

:

gI = AI cos(k1z � !t) = AI cos[k1(z � v1t)] ) gI(u) = AI cos(k1u).
gT = AT cos(k2z � !t) = AT cos[k2(z � v2t)] ) gT (u) = AT cos(k2u).
hR = AR cos(�k1z � !t) = AR cos[�k1(z + v1t)] ) hR(u) = AR cos(�k1u).

Here 0 = 0, and the boundary conditions say
AT

AI
=

2v2

v1 + v2
,

AR

AI
=

v2 � v1

v1 + v2
(same as Eq. 9.32), and

v1

v2
k1 = k2

(consistent with Eq. 9.24).]

Problem 9.6

(a) T sin ✓+ � T sin ✓� = ma) T

✓
@f

@z

����
0+

� @f

@z

����
0�

◆
= m

@
2
f

@t2

����
0

.

(b) ÃI + ÃR = ÃT ; T [ik2ÃT � ik1(ÃI � ÃR)] = m(�!2
ÃT ), or k1(ÃI � ÃR) =

✓
k2 �

im!
2

T

◆
ÃT .

Multiply first equation by k1 and add: 2k1ÃI =
✓

k1 + k2 � i
m!

2

T

◆
ÃT , or ÃT =

✓
2k1

k1 + k2 � im!2/T

◆
ÃI .

ÃR = ÃT � ÃI =
2k1 � (k1 + k2 � im!

2
/T )

k1 + k2 � im!2/T
ÃI =

✓
k1 � k2 + im!

2
/T

k1 + k2 � im!2/T

◆
ÃI .

If the second string is massless, so v2 =
p

T/µ2 =1, then k2/k1 = 0, and we have ÃT =
✓

2
1� i�

◆
ÃI ,

ÃR =
✓

1 + i�

1� i�

◆
ÃI , where � ⌘ m!

2

k1T
=

m(k1v1)2

k1T
=

mk1

T

T

µ1
, or � = m

k1

µ1
. Now

✓
1 + i�

1� i�

◆
= Ae

i�
, with

A
2 =

✓
1 + i�

1� i�

◆✓
1� i�

1 + i�

◆
= 1) A = 1, and e

i� =
(1 + i�)2

(1� i�)(1 + i�)
=

1 + 2i� � �2

1 + �2
)

tan� =
2�

1� �2
. Thus ARe

i�R = e
i�

AIe
i�I ) AR = AI , �R = �I + tan�1

✓
2�

1� �2

◆
.

Similarly,
✓

2
1� i�

◆
= Ae

i� ) A
2 =

✓
2

1� i�

◆✓
2

1 + i�

◆
=

4
1 + �2

) A =
2p

1 + �2
.
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Ae
i� =

2(1 + i�)
(1� i�)(1 + i�)

=
2(1 + i�)
(1 + �2)

) tan� = �. So AT e
i�T =

2p
1 + �2

e
i�

AIe
i�I ;

AT =
2p

1 + �2
AI ; �T = �I + tan�1

�.

Problem 9.7

(a) F = T
@

2
f

@z2
�z � � @f

@t
�z = µ�z

@
2
f

@t2
, or T

@
2
f

@z2
= µ

@
2
f

@t2
+ �

@f

@t
.

(b) Let f̃(z, t) = F̃ (z)e�i!t; then Te
�i!t d

2
F̃

dz2
= µ(�!2)F̃ e

�i!t + �(�i!)F̃ e
�i!t )

T
d
2
F̃

dz2
= �!(µ! + i�)F̃ ,

d
2
F̃

dz2
= �k̃

2
F̃ , where k̃

2 ⌘ !

T
(µ! + i�). Solution : F̃ (z) = Ãe

ik̃z + B̃e
�ik̃z.

Resolve k̃ into its real and imaginary parts: k̃ = k + i) k̃
2 = k

2 � 2 + 2ik =
!

T
(µ! + i�).

2k =
!�

T
)  =

!�

2kT
; k

2 � 2 = k
2 �

⇣
!�

2T

⌘2 1
k2

=
µ!

2

T
; or k

4 � k
2(µ!2

/T )� (!�/2T )2 = 0)

k
2 =

1
2

h
(µ!2

/T )±
p

(µ!2/T )2 + 4(!�/2T )2
i

=
µ!

2

2T

h
1±

p
1 + (�/µ!)2

i
. But k is real, so k

2 is positive, so

we need the plus sign: k = !

r
µ

2T

q
1 +

p
1 + (�/µ!)2.  =

!�

2kT
=

�p
2Tµ

h
1 +

p
1 + (�/µ!)2

i�1/2
.

Plugging this in, F̃ = Ae
i(k+i)z + Be

�i(k+i)z = Ae
�z

e
ikz + Be

z
e
�ikz. But the B term gives an expo-

nentially increasing function, which we don’t want (I assume the waves are propagating in the +z direction),

so B = 0, and the solution is f̃(z, t) = Ãe
�z

e
i(kz�!t)

. (The actual displacement of the string is the real part
of this, of course.)

(c) The wave is attenuated by the factor e
�z, which becomes 1/e when

z =
1


=
p

2Tµ

�

q
1 +

p
1 + (�/µ!)2; this is the characteristic penetration depth.

(d) This is the same as before, except that k2 ! k + i. From Eq. 9.29, ÃR =
✓

k1 � k � i

k1 + k + i

◆
ÃI ;

✓
AR

AI

◆2

=
✓

k1 � k � i

k1 + k + i

◆✓
k1 � k + i

k1 + k � i

◆
=

(k1 � k)2 + 
2

(k1 + k)2 + 2
. AR =

s
(k1 � k)2 + 2

(k1 + k)2 + 2
AI

(where k1 = !/v1 = !

p
µ1/T , while k and  are defined in part b). Meanwhile

✓
k1 � k � i

k1 + k + i

◆
=

(k1 � k � i)(k1 + k + i)
(k1 + k)2 + 2

=
(k1)2 � k

2 � 2 � 2ik1

(k1 + k)2 + 2
) �R = tan�1

✓
�2k1

(k1)2 � k2 � 2

◆
.

Problem 9.8

(a) fv(z, t) = A cos(kz � !t) x̂; fh(z, t) = A cos(kz � !t + 90�) ŷ =
�A sin(kz�!t) ŷ. Since f

2
v +f

2
h = A

2, the vector sum f = fv+fh lies
on a circle of radius A. At time t = 0, f = A cos(kz) x̂�A sin(kz) ŷ.
At time t = ⇡/2!, f = A cos(kz � 90�) x̂ � A sin(kz � 90�) ŷ =
A sin(kz) x̂ + A cos(kz) ŷ. Evidently it circles counterclockwise .
To make a wave circling the other way, use �h = �90�.

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



CHAPTER 9. ELECTROMAGNETIC WAVES 189

(b)

(c) Shake it around in a circle, instead of up and down.
Problem 9.9

(a) k = �!
c

x̂; n̂ = ẑ. k · r =
⇣
�!

c
x̂

⌘
· (x x̂ + y ŷ + z ẑ) = �!

c
x; k⇥ n̂ = �x̂⇥ ẑ = ŷ.

E(x, t) = E0 cos
⇣
!

c
x + !t

⌘
ẑ; B(x, t) =

E0

c
cos
⇣
!

c
x + !t

⌘
ŷ.

(b) k =
!

c

✓
x̂ + ŷ + ẑp

3

◆
; n̂ =

x̂� ẑp
2

. (Since n̂ is parallel to the x z plane, it must have the form ↵ x̂+� ẑ;

since n̂ · k = 0,� = �↵; and since it is a unit vector, ↵ = 1/
p

2.)

k · r =
!p
3c

(x̂ + ŷ + ẑ) · (x x̂ + y ŷ + z ẑ) =
!p
3c

(x + y + z); k̂⇥ n̂ =
1p
6

������

x̂ ŷ ẑ

1 1 1
1 0 �1

������
=

1p
6
(�x̂ + 2 ŷ � ẑ).

E(x, y, z, t) = E0 cos

!p
3c

(x + y + z)� !t

�✓
x̂� ẑp

2

◆
;

B(x, y, z, t) =
E0

c
cos

!p
3c

(x + y + z)� !t

�✓
�x̂ + 2ŷ � ẑp

6

◆
.

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



190 CHAPTER 9. ELECTROMAGNETIC WAVES

Problem 9.10

P =
I

c
=

1.3⇥ 103

3.0⇥ 108
= 4.3⇥ 10�6 N/m2. For a perfect reflector the pressure is twice as great:

8.6⇥ 10�6 N/m2. Atmospheric pressure is 1.03⇥ 105 N/m2, so the pressure of light on a reflector is

(8.6⇥ 10�6)/(1.03⇥ 105) = 8.3⇥ 10�11 atmospheres.

Problem 9.11 The fields are E(z, t) = E0 cos(kz � !t) x̂, B(z, t) =
1
c
E0 cos(kz � !t) ŷ, with ! = ck.

(a) The electric force is Fe = qE = qE0 cos(kz � !t) x̂ = ma = m
dv

dt
, so

v =
qE0

m
x̂

Z
cos(kz � !t) dt = �qE0

m!
sin(kz � !t) x̂ + C.

But vave = C = 0, so v = �qE0

m!
sin(kz � !t) x̂.

(b) The magnetic force is

Fm = q(v ⇥B) = q

✓
�qE0

m!

◆✓
E0

c

◆
sin(kz � !t) cos(kz � !t)(x̂⇥ ŷ) = �q

2
E

2
0

m!c
sin(kz � !t) cos(kz � !t) ẑ.

(c) The (time) average force is (Fm)ave = �q
2
E

2
0

m!c
ẑ

Z T

0
sin(kz � !t) cos(kz � !t) dt, where T = 2⇡/! is the

period. The integral is � 1
2!

sin2(kz � !t)
���
T

0
= � 1

2!
⇥
sin2(kz � 2⇡)� sin2(kz)

⇤
= 0, so (Fm)ave = 0.

(d) Adding in the damping term,

F = qE� �mv = qE0 cos(kz � !t)x̂� �mv = m
dv

dt
) dv

dt
+ �v =

qE0

m
cos(kz � !t) x̂.

The steady state solution has the form v = A cos(kz � !t + ✓) x̂,
dv

dt
= A! sin(kz � !t + ✓) x̂. Putting this

in, and using the trig identity cos u = cos ✓ cos(u + ✓) + sin ✓ sin(u + ✓),

A! sin(kz � !t + ✓) + �A cos(kz � !t + ✓) =
qE0

m
[cos ✓ cos(kz � !t + ✓) + sin ✓ sin(kz � !t + ✓)] .

Equating like terms:

A! =
qE0

m
sin ✓, A� =

qE0

m
cos ✓ ) tan ✓ =

!

�
, A

2(!2 + �
2) =

✓
qE0

m

◆2

) A =
qE0

m

p
!2 + �2

.

So

v =
qE0

m

p
!2 + �2

cos(kz � !t + ✓)x̂, ✓ ⌘ tan�1(!/�);Fm =
q
2
E

2
0

mc

p
!2 + �2

cos(kz � !t + ✓) cos(kz � !t) ẑ.

To calculate the time average, write cos(kz � !t + ✓) = cos ✓ cos(kz � !t)� sin ✓ sin(kz � !t). We already
know that the average of cos(kz � !t) sin(kz � !t) is zero, so

(Fm)ave =
q
2
E

2
0

mc

p
!2 + �2

ẑ cos ✓
Z T

0
cos2(kz � !t) dt.
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The integral is T/2 = ⇡/!, and cos ✓ = �/

p
!2 + �2 (see figure), so (Fm)ave =

⇡�q
2
E

2
0

m!c(!2 + �2)
ẑ.

w
q

g

Problem 9.12

hfgi =
1
T

Z T

0
a cos(k · r� !t + �a)b cos(k · r� !t + �b) dt

=
ab

2T

Z T

0
[cos(2k · r� 2!t + �a + �b) + cos(�a � �b)] dt =

ab

2T
cos(�a � �b)T =

1
2
ab cos(�a � �b).

Meanwhile, in the complex notation: f̃ = ãe
ik·r�!t)

, g̃ = b̃e
ik·r�!t)

, where ã = ae
i�a , b̃ = be

i�b . So
1
2
f̃ g̃
⇤ =

1
2
ãe

i(k·r�!t)
b̃
⇤
e
�i(k·r�!t) =

1
2
ãb̃
⇤ =

1
2
abe

i(�a��b), Re
✓

1
2
f̃ g̃
⇤
◆

=
1
2
ab cos(�a � �b) = hfgi. qed

Problem 9.13

Tij = ✏0

✓
EiEj �

1
2
�ijE

2

◆
+

1
µ0

✓
BiBj �

1
2
�ijB

2

◆
.

With the fields in Eq. 9.48, E has only an x component, and B only a y component. So all the “o↵-diagonal”
(i 6= j) terms are zero. As for the “diagonal” elements:

Txx = ✏0

✓
ExEx �

1
2
E

2

◆
+

1
µ0

✓
�1

2
B

2

◆
=

1
2

✓
✏0E

2 � 1
µ0

B
2

◆
= 0.

Tyy = ✏0

✓
�1

2
E

2

◆
+

1
µ0

✓
ByBy �

1
2
B

2

◆
=

1
2

✓
�✏0E2 +

1
µ0

B
2

◆
= 0.

Tzz = ✏0

✓
�1

2
E

2

◆
+

1
µ0

✓
�1

2
B

2

◆
= �u.

So Tzz = �✏0E2
0 cos2(kz � !t + �) (all other elements zero).

The momentum of these fields is in the z direction, and it is
being transported in the z direction, so yes, it does make sense
that Tzz should be the only nonzero element in Tij . According
to Sect. 8.2.3, �$T ·da is the rate at which momentum crosses
an area da. Here we have no momentum crossing areas ori-
ented in the x or y direction; the momentum per unit time
per unit area flowing across a surface oriented in the z direc-
tion is �Tzz = u = gc (Eq. 9.59), so �p = gcA�t, and hence
�p/�t = gcA = momentum per unit time crossing area A.
Evidently momentum flux density = energy density. X

Problem 9.14

R =
✓

E0R

E0I

◆2

(Eq. 9.86) ) R =
✓

1� �
1 + �

◆2

(Eq. 9.82), where � ⌘ µ1v1

µ2v2
. T =

✏2v2

✏1v1

✓
E0T

E0I

◆2

(Eq. 9.87)
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) T = �

✓
2

1 + �

◆2

(Eq. 9.82). [Note that
✏2v2

✏1v1
=

µ1

µ2

✏2µ2

✏1µ1

v2

v1
=

µ1

µ2

✓
v1

v2

◆2
v2

v1
=

µ1v1

µ2v2
= �.]

T + R =
1

(1 + �)2
⇥
4� + (1� �)2

⇤
=

1
(1 + �)2

(4� + 1� 2� + �
2) =

1
(1 + �)2

(1 + 2� + �
2) = 1. X

Problem 9.15

Equation 9.78 is replaced by Ẽ0I x̂ + Ẽ0R n̂R = Ẽ0T n̂T , and Eq. 9.80 becomes Ẽ0I ŷ � Ẽ0R(ẑ ⇥ n̂R) =
�Ẽ0T (ẑ ⇥ n̂T ). The y component of the first equation is Ẽ0R sin ✓R = Ẽ0T sin ✓T ; the x component of the
second is Ẽ0R sin ✓R = ��Ẽ0T sin ✓T . Comparing these two, we conclude that sin ✓R = sin ✓T = 0, and hence
✓R = ✓T = 0. qed
Problem 9.16

Ae
iax + Be

ibx = Ce
icx for all x, so (using x = 0), A + B = C.

Di↵erentiate: iaAe
iax + ibBe

ibx = icCe
icx, so (using x = 0), aA + bB = cC.

Di↵erentiate again: �a
2
Ae

iax � b
2
Be

ibx = �c
2
Ce

icx, so (using x = 0), a
2
A + b

2
B = c

2
C.

a
2
A + b

2
B = c(cC) = c(aA + bB); (A + B)(a2

A + b
2
B) = (A + B)c(aA + bB) = cC(aA + bB);

a
2
A

2 + b
2
AB + a

2
AB + b

2
B

2 = (aA + bB)2 = a
2
A

2 + 2abAB + b
2
B

2
, or (a2 + b

2 � 2ab)AB = 0, or
(a� b)2AB = 0. But A and B are nonzero, so a = b. Therefore (A + B)eiax = Ce

icx.
a(A + B) = cC, or aC = cC, so (since C 6= 0) a = c. Conclusion: a = b = c. qed
Problem 9.178
<

:
ẼI = Ẽ0I e

i(kI ·r�!t)
ŷ,

B̃I =
1
v1

Ẽ0I e
i(kI ·r�!t)(� cos ✓1 x̂ + sin ✓1 ẑ);

9
=

;
8
<

:
ẼR = Ẽ0Re

i(kR·r�!t)
ŷ,

B̃R =
1
v1

Ẽ0Re
i(kR·r�!t)(cos ✓1 x̂ + sin ✓1 ẑ);

9
=

;
8
<

:
ẼT = Ẽ0T e

i(kT ·r�!t)
ŷ,

B̃T =
1
v2

Ẽ0T e
i(kT ·r�!t)(� cos ✓2 x̂ + sin ✓2 ẑ);

9
=

;

Boundary conditions:

8
><

>:

(i) ✏1E?1 = ✏2E
?
2 , (iii) E

k
1 = E

k
2,

(ii) B
?
1 = B

?
2 , (iv) 1

µ1
B
k
1 = 1

µ2
B
k
2.

Law of refraction:
sin ✓2
sin ✓1

=
v2

v1
. [Note: kI · r� !t = kR · r� !t = kT · r� !t, at z = 0, so we can drop all

exponential factors in applying the boundary conditions.]

Boundary condition (i): 0 = 0 (trivial). Boundary condition (iii): Ẽ0I + Ẽ0R = Ẽ0T .

Boundary condition (ii):
1
v1

Ẽ0I sin ✓1 +
1
v1

Ẽ0R sin ✓1 =
1
v2

Ẽ0T sin ✓2 ) Ẽ0I + Ẽ0R =
✓

v1 sin ✓2
v2 sin ✓1

◆
Ẽ0T .

But the term in parentheses is 1, by the law of refraction, so this is the same as (iii).

Boundary condition (iv):
1
µ1


1
v1

Ẽ0I (� cos ✓1) +
1
v1

Ẽ0R cos ✓1
�

=
1

µ2v2
Ẽ0T (� cos ✓2))

Ẽ0I � Ẽ0R =
✓

µ1v1 cos ✓2
µ2v2 cos ✓1

◆
Ẽ0T . Let ↵ ⌘ cos ✓2

cos ✓1
; � ⌘ µ1v1

µ2v2
. Then Ẽ0I � Ẽ0R = ↵�Ẽ0T .

Solving for Ẽ0R and Ẽ0T : 2Ẽ0I = (1 + ↵�)Ẽ0T ) Ẽ0T =
✓

2
1 + ↵�

◆
Ẽ0I ;
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Ẽ0R = Ẽ0T � Ẽ0I =
✓

2
1 + ↵�

� 1 + ↵�

1 + ↵�

◆
Ẽ0I ) Ẽ0R =

✓
1� ↵�
1 + ↵�

◆
Ẽ0I .

Since ↵ and � are positive, it follows that 2/(1+↵�) is positive, and hence the transmitted wave is in phase

with the incident wave, and the (real) amplitudes are related by E0T =
✓

2
1 + ↵�

◆
E0I . The reflected wave is

in phase if ↵� < 1 and 180� out of phase if ↵� > 1; the (real) amplitudes are related by E0R =
����
1� ↵�
1 + ↵�

����E0I .

These are the Fresnel equations for polarization perpendicular to the plane of incidence.

To construct the graphs, note that ↵� = �

q
1� sin2

✓/�2

cos ✓
=

p
�2 � sin2

✓

cos ✓
, where ✓ is the angle of incidence,

so, for � = 1.5, ↵� =

p
2.25� sin2

✓

cos ✓
. [In the figure, the minus signs on the vertical axis should be decimal

points.]

Is there a Brewster’s angle? Well, E0R = 0 would mean that ↵� = 1, and hence that

↵ =

q
1� (v2/v1)2 sin2

✓

cos ✓
=

1
�

=
µ2v2

µ1v1
, or 1�

✓
v2

v1

◆2

sin2
✓ =

✓
µ2v2

µ1v1

◆2

cos2 ✓, so

1 =
✓

v2

v1

◆2 ⇥
sin2

✓ + (µ2/µ1)2 cos2 ✓
⇤
. Since µ1 ⇡ µ2, this means 1 ⇡ (v2/v1)2, which is only true for optically

indistinguishable media, in which case there is of course no reflection—but that would be true at any angle,
not just at a special “Brewster’s angle”. [If µ2 were substantially di↵erent from µ1, and the relative velocities
were just right, it would be possible to get a Brewster’s angle for this case, at

✓
v1

v2

◆2

= 1� cos2 ✓ +
✓

µ2

µ1

◆2

cos2 ✓ ) cos2 ✓ =
(v1/v2)2 � 1
(µ2/µ1)2 � 1

=
(µ2✏2/µ1✏1)� 1
(µ2/µ1)2 � 1

=
(✏2/✏1)� (µ1/µ2)
(µ2/µ1)� (µ1/µ2)

.

But the media would be very peculiar.]
By the same token, �R is either always 0, or always ⇡, for a given interface—it does not switch over as you

change ✓, the way it does for polarization in the plane of incidence. In particular, if � = 3/2, then ↵� > 1, for

↵� =

p
2.25� sin2

✓

cos ✓
> 1 if 2.25� sin2

✓ > cos2 ✓, or 2.25 > sin2
✓ + cos2 ✓ = 1. X

In general, for � > 1, ↵� > 1, and hence �R = ⇡. For � < 1, ↵� < 1, and �R = 0.

At normal incidence, ↵ = 1, so Fresnel’s equations reduce to E0T =
✓

2
1 + �

◆
E0I ; E0R =

����
1� �
1 + �

����E0I ,

consistent with Eq. 9.82.
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Reflection and Transmission coe�cients: R =
✓

E0R

E0I

◆2

=
✓

1� ↵�
1 + ↵�

◆2

. Referring to Eq. 9.116,

T =
✏2v2

✏1v1
↵

✓
E0T

E0I

◆2

= ↵�

✓
2

1 + ↵�

◆2

.

R + T =
(1� ↵�)2 + 4↵�

(1 + ↵�)2
=

1� 2↵� + ↵
2
�

2 + 4↵�
(1 + ↵�)2

=
(1 + ↵�)2

(1 + ↵�)2
= 1. X

Problem 9.18

Equation 9.106 ) � = 2.42; Eq. 9.110 )

↵ =
p

1� (sin ✓/2.42)2

cos ✓
.

(a) ✓ = 0) ↵ = 1. Eq. 9.109 )
✓

E0R

E0I

◆
=
↵� �
↵+ �

=
1� 2.42
1 + 2.42

= �1.42
3.42

= �0.415;
✓

E0T

E0I

◆
=

2
↵+ �

=
2

3.42
= 0.585.

(b) Equation 9.112 ) ✓B = tan�1(2.42) = 67.5�.
(c) E0R = E0T ) ↵� � = 2) ↵ = � + 2 = 4.42;
(4.42)2 cos2 ✓ = 1� sin2

✓/(2.42)2;
(4.42)2(1� sin2

✓) = (4.42)2 � (4.42)2 sin2
✓

= 1� 0.171 sin2
✓; 19.5� 1 = (19.5� 0.17) sin2

✓;
18.5 = 19.3 sin2

✓; sin2
✓ = 18.5/19.3 = 0.959;

sin ✓ = 0.979; ✓ = 78.3�.

Problem 9.19

(a) Equation 9.120 ) ⌧ = ✏/�. Now ✏ = ✏0✏r (Eq. 4.34), ✏r ⇠= n
2 (Eq. 9.70), and for glass the index

of refraction is typically around 1.5, so ✏ ⇡ (1.5)2 ⇥ 8.85 ⇥ 10�12 = 2 ⇥ 10�11 C2/N m2, while � = 1/⇢ ⇡
10�12 (⌦ m)�1 (Table 7.1). Then ⌧ = (2⇥10�11)/10�12 = 20 s. (But the resistivity of glass varies enormously
from one type to another, so this answer could be o↵ by a factor of 100 in either direction.)

(b) For silver, ⇢ = 1.59⇥ 10�8 (Table 7.1), and ✏ ⇡ ✏0, so !✏ = 2⇡ ⇥ 1010 ⇥ 8.85⇥ 10�12 = 0.56.
Since � = 1/⇢ = 6.25⇥ 107 � !✏, the skin depth (Eq. 9.128) is

d =
1


⇠=
r

2
!�µ

=
r

2
2⇡ ⇥ 1010 ⇥ 6.25⇥ 107 ⇥ 4⇡ ⇥ 10�7

= 6.4⇥ 10�7 m = 6.4⇥ 10�4 mm.

I’d plate silver to a depth of about 0.001mm; there’s no point in making it any thicker, since the fields don’t
penetrate much beyond this anyway.

(c) For copper, Table 7.1 gives � = 1/(1.68⇥10�8) = 6⇥107
, !✏0 = (2⇡⇥106)⇥ (8.85⇥10�12) = 6⇥10�5.

Since � � !✏, Eq. 9.126 ) k ⇡
r
!�µ

2
, so (Eq. 9.129)

� = 2⇡
r

2
!�µ0

= 2⇡
r

2
2⇡ ⇥ 106 ⇥ 6⇥ 107 ⇥ 4⇡ ⇥ 10�7

= 4⇥ 10�4 m = 0.4mm.
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From Eq. 9.129, the propagation speed is v =
!

k
=

!

2⇡
� = �⌫ = (4 ⇥ 10�4) ⇥ 106 = 400 m/s. In vacuum,

� =
c

⌫
=

3⇥ 108

106
= 300 m; v = c = 3⇥ 108 m/s. (But really, in a good conductor the skin depth is so small,

compared to the wavelength, that the notions of “wavelength” and “propagation speed” lose their meaning.)
Problem 9.20

(a) Use the binomial expansion for the square root in Eq. 9.126:

 ⇠= !

r
✏µ

2


1 +

1
2

⇣
�

✏!

⌘2
� 1
�1/2

= !

r
✏µ

2
1p
2
�

✏!
=
�

2

r
µ

✏
.

So (Eq. 9.128) d =
1


⇠=
2
�

r
✏

µ
. qed

For pure water,

8
<

:

✏ = ✏r✏0 = 80.1 ✏0 (Table 4.2),
µ = µ0(1 + �m) = µ0(1� 9.0⇥ 10�6) ⇠= µ0 (Table 6.1),
� = 1/(2.5⇥ 105) (Table 7.1).

So d = (2)(2.5⇥ 105)
r

(80.1)(8.85⇥ 10�12)
4⇡ ⇥ 10�7

= 1.19⇥ 104 m.

(b) In this case (�/✏!)2 dominates, so (Eq. 9.126) k ⇠= , and hence (Eqs. 9.128 and 9.129)

� =
2⇡
k

⇠=
2⇡


= 2⇡d, or d =
�

2⇡
. qed

Meanwhile  ⇠= !

r
✏µ

2

r
�

✏!
=
r
!µ�

2
=

r
(1015)(4⇡ ⇥ 10�7)(107)

2
= 8 ⇥ 107; d =

1


=
1

8⇥ 107
=

1.3⇥ 10�8 = 13 nm. So the fields do not penetrate far into a metal—which is what accounts for their opacity.

(c) Since k ⇠= , as we found in (b), Eq. 9.134 says � = tan�1(1) = 45�. qed

Meanwhile, Eq. 9.137 says
B0

E0

⇠=
r
✏µ

�

✏!
=
r
�µ

!
. For a typical metal, then,

B0

E0
=

r
(107)(4⇡ ⇥ 10�7)

1015
=

10�7 s/m. (In vacuum, the ratio is 1/c = 1/(3⇥ 108) = 3⇥ 10�9 s/m, so the magnetic field is comparatively
about 100 times larger in a metal.)
Problem 9.21

(a) u =
1
2

✓
✏E

2 +
1
µ

B
2

◆
=

1
2
e
�2z


✏E

2
0 cos2(kz � !t + �E) +

1
µ

B
2
0 cos2(kz � !t + �E + �)

�
. Averaging

over a full cycle, using hcos2i = 1
2 and Eq. 9.137:

hui =
1
2
e
�2z


✏

2
E

2
0 +

1
2µ

B
2
0

�
=

1
4
e
�2z

"
✏E

2
0 +

1
µ

E
2
0✏µ

r
1 +

⇣
�

✏!

⌘2
#

=
1
4
e
�2z

✏E
2
0

"
1 +

r
1 +

⇣
�

✏!

⌘2
#

.

But Eq. 9.126 ) 1 +
r

1 +
⇣
�

✏!

⌘2
=

2
✏µ

k
2

!2
, so hui =

1
4
e
�2z

✏E
2
0

2
✏µ

k
2

!2
=

k
2

2µ!2
E

2
0e
�2z

. So the ratio of the

magnetic contribution to the electric contribution is

humagi
hueleci

=
B

2
0/µ

E
2
0✏

=
1
µ✏

µ✏

r
1 +

⇣
�

✏!

⌘2
=
r

1 +
⇣
�

✏!

⌘2
> 1. qed
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(b) S =
1
µ

(E⇥B) =
1
µ

E0B0e
�2z cos(kz�!t+�E) cos(kz�!t+�E+�) ẑ; hSi =

1
2µ

E0B0e
�2z cos� ẑ. [The

average of the product of the cosines is (1/2⇡)
R 2⇡
0 cos ✓ cos(✓+�) d✓ = (1/2) cos�.] So I =

1
2µ

E0B0e
�2z cos� =

1
2µ

E
2
0e
�2z

✓
K

!
cos�

◆
, while, from Eqs. 9.133 and 9.134, K cos� = k, so I =

k

2µ!
E

2
0e
�2z

. qed

Problem 9.22

According to Eq. 9.147, R =

�����
Ẽ0R

Ẽ0I

�����

2

=

�����
1� �̃
1 + �̃

�����

2

=

 
1� �̃
1 + �̃

! 
1� �̃⇤

1 + �̃⇤

!
, where �̃ =

µ1v1

µ2!
k̃2

=
µ1v1

µ2!
(k2 + i2) (Eqs. 9.125 and 9.146). Since silver is a good conductor (� � ✏!), Eq. 9.126 reduces to

2
⇠= k2

⇠= !

r
✏2µ2

2

r
�

✏2!
=
r
�!µ2

2
, so �̃ =

µ1v1

µ2!

r
�!µ2

2
(1 + i) = µ1v1

r
�

2µ2!
(1 + i).

Let � ⌘ µ1v1

r
�

2µ2!
= µ0c

r
�

2µ0!
= c

r
�µ0

2!
= (3⇥ 108)

s
(6⇥ 107)(4⇡ ⇥ 10�7)

(2)(4⇥ 1015)
= 29. Then

R =
✓

1� � � i�

1 + � + i�

◆✓
1� � + i�

1 + � � i�

◆
=

(1� �)2 + �
2

(1 + �)2 + �2
= 0.93. Evidently 93% of the light is reflected.

Problem 9.23

(a) We are told that v = ↵
p
�, where ↵ is a constant. But � = 2⇡/k and v = !/k, so

! = ↵k

p
2⇡/k = ↵

p
2⇡k. From Eq. 9.150, vg =

d!

dk
= ↵

p
2⇡

1
2
p

k
=

1
2
↵

r
2⇡
k

=
1
2
↵

p
� =

1
2
v, or v = 2vg.

(b)
i(px� Et)

~ = i(kx� !t)) k =
p

~ , ! =
E

~ =
p
2

2m~ =
~k

2

2m
. Therefore v =

!

k
=

E

p
=

p

2m
=

~k

2m
;

vg =
d!

dk
=

2~k

2m
=

~k

m
=

p

m
. So v =

1
2
vg. Since p = mvc (where vc is the classical speed of the particle), it

follows that vg (not v) corresponds to the classical veloctity.

Problem 9.24

E =
1

4⇡✏0
qd

a3
) F = �qE = �

✓
1

4⇡✏0
q
2

a3

◆
x = �kspringx = �m!

2
0x (Eq. 9.151). So !0 =

s
q2

4⇡✏0ma3
.

⌫0 =
!0

2⇡
=

1
2⇡

s
(1.6⇥ 10�19)2

4⇡(8.85⇥ 10�12)(9.11⇥ 10�31)(0.5⇥ 10�10)3
= 7.16⇥ 1015 Hz. This is ultraviolet.

From Eqs. 9.173 and 9.174,

A =
nq

2

2m✏0

f

!
2
0

,

⇢
N = # of molecules per unit volume = Avogadro0s #

22.4 liters = 6.02⇥1023

22.4⇥10�3 = 2.69⇥ 1025
,

f = # of electrons per molecule = 2 (for H2).

=
(2.69⇥ 1025)(1.6⇥ 10�19)2

(9.11⇥ 10�31)(8.85⇥ 10�12)(4.5⇥ 1016)2
= 4.2⇥ 10�5 (which is about 1/3 the actual value);

B =
✓

2⇡c

!0

◆2

=
✓

2⇡ ⇥ 3⇥ 108

4.5⇥ 1016

◆2

= 1.8⇥ 10�15 m2 (which is about 1/4 the actual value).

So even this extremely crude model is in the right ball park.
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Problem 9.25

Equation 9.170 ) n = 1 +
Nq

2

2m✏0

(!2
0 � !2)

[(!2
0 � !2)2 + �2!2]

. Let the denominator ⌘ D. Then

dn

d!
=

Nq
2

2m✏0

⇢
�2!
D
� (!2

0 � !2)
D2

⇥
2(!2

0 � !2)(�2!) + �
22!

⇤�
= 0) 2!D = (!2

0 � !2)
⇥
2(!2

0 � !2)� �2
⇤
2!;

(!2
0�!2)2 +�

2
!

2 = 2(!2
0�!2)2��2(!2

0�!2), or (!2
0�!2)2 = �

2(!2 +!
2
0�!2) = �

2
!

2
0 ) (!2

0�!2) = ±!0�;
!

2 = !
2
0 ⌥ !0�, ! = !0

p
1⌥ �/!0

⇠= !0 (1⌥ �/2!0) = !0 ⌥ �/2. So !2 = !0 + �/2, !1 = !0 � �/2, and the
width of the anomalous region is �! = !2 � !1 = �.

From Eq. 9.171, ↵ =
Nq

2
!

2

m✏0c

�

(!2
0 � !2)2 + �2!2

, so at the maximum (! = !0), ↵max =
Nq

2

m✏0c�
.

At !1 and !2, !2 = !
2
0 ⌥ !0�, so ↵ =

Nq
2
!

2

m✏0c

�

�2!2
0 + �2!2

= ↵max

✓
!

2

!2 + !
2
0

◆
. But

!
2

!2 + !
2
0

=
!

2
0 ⌥ !0�

2!2
0 ⌥ !0�

=
1
2

(1⌥ �/!0)
(1⌥ �/2!0)

⇠=
1
2

✓
1⌥ �

!0

◆✓
1± �

2!0

◆
⇠=

1
2

✓
1⌥ �

2!0

◆
⇠=

1
2
.

So ↵ ⇠= 1
2↵max at !1 and !2. qed

Problem 9.26

Equation 9.170 for a single resonance:

ck

!
= 1 +

✓
Nq

2

2m✏0

◆
(!2

0 � !2)
(!2

0 � !2)2 + �2!2
) ck = !


1 +

a!
2
0(!2

0 � !2)
(!2

0 � !2)2 + �2!2

�
where a ⌘ Nq

2

2m✏0!
2
0

.

From Eq. 9.150, the group velocity is vg = d!/dk, so

c

vg
= c

dk

d!

=

1 +

a!
2
0(!2

0 � !2)
(!2

0 � !2)2 + �2!2

�
+ !a!

2
0
[(!2

0 � !2)2 + �
2
!

2](�2!)� (!2
0 � !2)[2(!2

0 � !2)(�2!) + �
2(2!)]

[(!2
0 � !2)2 + �2!2]2

= 1 + a!
2
0
(!2

0 � !2)[(!2
0 � !2)2 + �

2
!

2]� 2!2[(!2
0 � !2)2 + �

2
!

2] + 4!2(!2
0 � !2)2 � 2�2

!
2(!2

0 � !2)
[(!2

0 � !2)2 + �2!2]2

= 1 + a!
2
0
(!2

0 � !2)3 + 2!2(!2
0 � !2)2 � �2

!
2(!2

0 � !2)� 2�2
!

4

[(!2
0 � !2)2 + �2!2]2

= 1 + a!
2
0(!2

0 + !
2)

(!2
0 � !2)2 � �2

!
2

[(!2
0 � !2)2 + �2!2]2

.

vg = c

⇢
1 + a!

2
0(!2

0 + !
2)

(!2
0 � !2)2 � �2

!
2

[(!2
0 � !2)2 + �2!2]2

��1

.

(a) For � = 0 and a = 0.003:

vg

c
=

1 + a!

2
0

(!2
0 + !

2)
(!2

0 � !2)2

��1

) y =

1 + 0.003

1 + x

(1� x)2

��1

.
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0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

(b) For � = (0.1)!0 and a = 0.003:

y =
⇢

1 + 0.003(1 + x)
(1� x)2 � 0.01x

[(1� x)2 + 0.01x]2

��1

.

0.0 0.5 1.0 1.5 2.0

1.0

1.5

2.0

2.5

Problem 9.27

(a) From Eqs. 9.176 and 9.177, r⇥ Ẽ = �@B̃
@t

= i!B̃0e
i(kz�!t); r⇥ B̃ =

1
c2

@Ẽ

@t
= � i!

c2
Ẽ0e

i(kz�!t).
In the terminology of Eq. 9.178:

(r⇥ Ẽ)x =
@Ẽz

@y
� @Ẽy

@z
=

 
@Ẽ0z

@y
� ikẼ0y

!
e
i(kz�!t). So (ii)

@Ez

@y
� ikEy = i!Bx.

(r⇥ Ẽ)y =
@Ẽx

@z
� @Ẽz

@x
=

 
ikẼ0x �

@Ẽ0z

@x

!
e
i(kz�!t). So (iii) ikEx �

@Ez

@x
= i!By.

(r⇥ Ẽ)z =
@Ẽy

@x
� @Ẽx

@y
=

 
@Ẽ0y

@x
� @Ẽ0x

@y

!
e
i(kz�!t). So (i)

@Ey

@x
� @Ex

@y
= i!Bz.

(r⇥ B̃)x =
@B̃z

@y
� @B̃y

@z
=

 
@B̃0z

@y
� ikB̃0y

!
e
i(kz�!t). So (v)

@Bz

@y
� ikBy = � i!

c2
Ex.

(r⇥ B̃)y =
@B̃x

@z
� @B̃z

@x
=

 
ikB̃0x �

@B̃0z

@x

!
e
i(kz�!t). So (vi) ikBx �

@Bz

@x
= � i!

c2
Ey.

(r⇥ B̃)z =
@B̃y

@x
� @B̃x

@y
=

 
@B̃0y

@x
� @B̃0x

@y

!
e
i(kz�!t). So (iv)

@By

@x
� @Bx

@y
= � i!

c2
Ez.

This confirms Eq. 9.179. Now multiply (iii) by k, (v) by !, and subtract: ik
2
Ex�k

@Ez

@x
�!@Bz

@y
+ i!kBy =

ik!By +
i!

2

c2
Ex ) i

✓
k

2 � !
2

c2

◆
Ex = k

@Ez

@x
+ !

@Bz

@y
, or (i) Ex =

i

(!/c)2 � k2

✓
k
@Ez

@x
+ !

@Bz

@y

◆
.

Multiply (ii) by k, (vi) by !, and add: k
@Ez

@y
�ik

2
Ey+i!kBx�!

@Bz

@x
= i!kBx�

i!
2

c2
Ey ) i

✓
!

2

c2
� k

2

◆
Ey =
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�k
@Ez

@y
+ !

@Bz

@x
, or (ii) Ey =

i

(!/c)2 � k2

✓
k
@Ez

@y
� !@Bz

@x

◆
.

Multiply (ii) by !/c
2, (vi) by k, and add:

!

c2

@Ez

@y
� i

!k

c2
Ey + ik

2
Bx � k

@Bz

@x
= i

!
2

c2
Bx � i

!k

c2
Ey )

i

✓
k

2 � !
2

c2

◆
Bx = k

@Bz

@x
� !

c2

@Ez

@y
, or (iii) Bx =

i

(!/c)2 � k2

✓
k
@Bz

@x
� !

c2

@Ez

@y

◆
.

Multiply (iii) by !/c
2, (v) by k, and subtract: i

!k

c2
Ex �

!

c2

@Ez

@x
� k

@Bz

@y
+ ik

2
By = i

!
2

c2
By +

i!k

c2
Ex )

i

✓
k

2 � !
2

c2

◆
By =

!

c2

@Ez

@x
+ k

@Bz

@y
, or (iv) By =

i

(!/c)2 � k2

✓
k
@Bz

@y
+
!

c2

@Ez

@x

◆
.

This completes the confirmation of Eq. 9.180.

(b) r · Ẽ =
@Ẽx

@x
+
@Ẽy

@y
+
@Ẽz

@z
=

 
@Ẽ0x

@x
+
@Ẽ0y

@y
+ ikẼ0z

!
e
i(kz�!t) = 0) @Ex

@x
+
@Ey

@y
+ ikEz = 0.

Using Eq. 9.180,
i

(!/c)2 � k2

✓
k
@

2
Ez

@x2
+ !

@
2
Bz

@x@y

◆
+

i

(!/c)2 � k2

✓
k
@

2
Ez

@2y
� !@

2
Bz

@x@y

◆
+ ikEz = 0,

or
@

2
Ez

@x2
+
@

2
Ez

@2y
+
⇥
(!/c)2 � k

2
⇤
Ez = 0.

Likewise, r · B̃ = 0) @Bx

@x
+
@By

@y
+ ikBz = 0)

i

(!/c)2 � k2

✓
k
@

2
Bz

@x2
� !

c2

@
2
Ez

@x@y

◆
+

i

(!/c)2 � k2

✓
k
@

2
Bz

@y2
+
!

c2

@Ez

@x@y

◆
+ ikBz = 0)

@
2
Bz

@x2
+
@

2
Bz

@2y
+
⇥
(!/c)2 � k

2
⇤
Bz = 0.

This confirms Eqs. 9.181. [You can also do it by putting Eq. 9.180 into Eq. 9.179 (i) and (iv).]
Problem 9.28

Here Ez = 0 (TE) and !/c = k (n = m = 0), so Eq. 9.179(ii) ) Ey = �cBx, Eq. 9.179(iii) ) Ex = cBy,

Eq. 9.179(v) ) @Bz

@y
= i

⇣
kBy �

!

c2
Ex

⌘
= i

⇣
kBy �

!

c
By

⌘
= 0, Eq. 9.179(vi) ) @Bz

@x
= i

⇣
kBx +

!

c2
Ey

⌘
=

i

⇣
kBx �

!

c
Bx

⌘
= 0. So

@Bz

@x
=
@Bz

@y
= 0, and since Bz is a function only of x and y, this says Bz is in fact

a constant (as Eq. 9.186 also suggests). Now Faraday’s law (in integral form) says
I

E · dl = �
Z
@B

@t
· da,

and Eq. 9.176 ) @B

@t
= �i!B, so

H
E · dl = i!

R
B · da. Applied to a cross-section of the waveguide this gives

I
E · dl = i!e

i(kz�!t)

Z
Bz da = i!Bze

i(kz�!t)(ab) (since Bz is constant, it comes outside the integral). But

if the boundary is just inside the metal, where E = 0, it follows that Bz = 0. So this would be a TEM mode,
which we already know cannot exist for this guide.
Problem 9.29

Here a = 2.28 cm and b = 1.01 cm, so ⌫10 =
1
2⇡
!10 =

c

2a
= 0.66 ⇥ 1010 Hz; ⌫20 = 2

c

2a
= 1.32 ⇥ 1010 Hz;

⌫30 = 3
c

2a
= 1.97 ⇥ 1010 Hz; ⌫01 =

c

2b
= 1.49 ⇥ 1010 Hz; ⌫02 = 2

c

2b
= 2.97 ⇥ 1010 Hz; ⌫11 =

c

2

r
1
a2

+
1
b2

=

1.62⇥ 1010 Hz. Evidently just four modes occur: 10, 20, 01, and 11.
To get only one mode you must drive the waveguide at a frequency between ⌫10 and ⌫20:

0.66⇥ 1010
< ⌫ < 1.32⇥ 1010 Hz. � =

c

⌫
, so �10 = 2a; �20 = a. 2.28 cm < � < 4.56 cm.
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Problem 9.30

From Prob. 9.11, hSi =
1

2µ0
Re(Ẽ ⇥ B̃

⇤). Here (Eq. 9.176) Ẽ = Ẽ0e
i(kz�!t)

, B̃
⇤ = B̃

⇤
0e
�i(kz�!t), and, for

the TEmn mode (Eqs. 9.180 and 9.186)

B
⇤
x =

�ik

(!/c)2 � k2

✓
�m⇡

a

◆
B0 sin

⇣
m⇡x

a

⌘
cos
⇣

n⇡y

b

⌘
;

B
⇤
y =

�ik

(!/c)2 � k2

✓
�n⇡

b

◆
B0 cos

⇣
m⇡x

a

⌘
sin
⇣

n⇡y

b

⌘
;

B
⇤
z = B0 cos

⇣
m⇡x

a

⌘
cos
⇣

n⇡y

b

⌘
;

Ex =
i!

(!/c)2 � k2

✓
�n⇡

b

◆
B0 cos

⇣
m⇡x

a

⌘
sin
⇣

n⇡y

b

⌘
;

Ey =
�i!

(!/c)2 � k2

✓
�m⇡

a

◆
B0 sin

⇣
m⇡x

a

⌘
cos
⇣

n⇡y

b

⌘
;

Ez = 0.

So

hSi =
!k⇡

2
B

2
0

[(!/c)2 � k2]2

⇣
n

b

⌘2
cos2

⇣
m⇡x

a

⌘
sin2

⇣
n⇡y

b

⌘
+
⇣

m

a

⌘2
sin2

⇣
m⇡x

a

⌘
cos2

⇣
n⇡y

b

⌘�
ẑ

o
.

Z
hSi · da =

1
8µ0

!k⇡
2
B

2
0

[(!/c)2 � k2]2
ab

⇣
m

a

⌘2
+
⇣

n

b

⌘2
�

. [In the last step I used

R a
0 sin2(m⇡x/a) dx =

R a
0 cos2(m⇡x/a) dx = a/2;

R b
0 sin2(n⇡y/b) dy =

R b
0 cos2(n⇡y/b) dy = b/2.]

Similarly,

hui =
1
4

✓
✏0Ẽ · Ẽ⇤ +

1
µ0

B̃ · B̃⇤
◆

=
✏0

4
!

2
⇡

2
B

2
0

[(!/c)2 � k2]2

⇣
n

b

⌘2
cos2

⇣
m⇡x

a

⌘
sin2

⇣
n⇡y

b

⌘
+
⇣

m

a

⌘2
sin2

⇣
m⇡x

a

⌘
cos2

⇣
n⇡y

b

⌘�

+
1

4µ0

⇢
B

2
0 cos2

⇣
m⇡x

a

⌘
cos2

⇣
n⇡y

b

⌘

+
k

2
⇡

2
B

2
0

[(!/c)2 � k2]2

⇣
n

b

⌘2
cos2

⇣
m⇡x

a

⌘
sin2

⇣
n⇡y

b

⌘
+
⇣

m

a

⌘2
sin2

⇣
m⇡x

a

⌘
cos2

⇣
n⇡y

b

⌘��
.

Z
hui da =

ab

4

(
✏0

4
!

2
⇡

2
B

2
0

[(!/c)2 � k2]2

⇣
n

b

⌘2
+
⇣

m

a

⌘2
�

+
B

2
0

4µ0
+

1
4µ0

k
2
⇡

2
B

2
0

[(!/c)2 � k2]2

⇣
n

b

⌘2
+
⇣

m

a

⌘2
�)

.

These results can be simplified, using Eq. 9.190 to write
⇥
(!/c)2 � k

2
⇤

= (!mn/c)2, ✏0µ0 = 1/c
2 to eliminate ✏0,

and Eq. 9.188 to write
⇥
(m/a)2 + (n/b)2

⇤
= (!mn/⇡c)2:

Z
hSi · da =

!kabc
2

8µ0!
2
mn

B
2
0 ;

Z
hui da =

!
2
ab

8µ0!
2
mn

B
2
0 .
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Evidently

energy per unit time
energy per unit length

=
R
hSi · daR
hui da

=
kc

2

!
=

c

!

p
!2 � !2

mn = vg (Eq. 9.192). qed

Problem 9.31

Following Sect. 9.5.2, the problem is to solve Eq. 9.181 with Ez 6= 0, Bz = 0, subject to the boundary
conditions 9.175. Let Ez(x, y) = X(x)Y (y); as before, we obtain X(x) = A sin(kxx) + B cos(kxx). But the
boundary condition requires Ez = 0 (and hence X = 0) when x = 0 and x = a, so B = 0 and kx = m⇡/a.
But this time m = 1, 2, 3, . . . , but not zero, since m = 0 would kill X entirely. The same goes for Y (y). Thus

Ez = E0 sin
⇣

m⇡x

a

⌘
sin
⇣

n⇡y

b

⌘
with n, m = 1, 2, 3, . . . .

The rest is the same as for TE waves: !mn = c⇡

p
(m/a)2 + (n/b)2 is the cuto↵ frequency, the wave

velocity is v = c/

p
1� (!mn/!)2, and the group velocity is vg = c

p
1� (!mn/!)2. The lowest TM mode is

11, with cuto↵ frequency !11 = c⇡

p
(1/a)2 + (1/b)2. So the ratio of the lowest TM frequency to the lowest

TE frequency is
c⇡

p
(1/a)2 + (1/b)2

(c⇡/a)
=
p

1 + (a/b)2.

Problem 9.32

(a) r·E =
1
s

@

@s
(sEs) = 0 X;r·B =

1
s

@

@�
(B�) = 0 X;r⇥E =

@Es

@z
�̂� 1

s

@Es

@�
ẑ = �E0k sin(kz � !t)

s
�̂

?=

�@B
@t

= �E0!

c

sin(kz � !t)
s

�̂ X (since k = !/c);r⇥B = �@B�

@z
ŝ +

1
s

@

@s
(sB�) ẑ =

E0k

c

sin(kz � !t)
s

ŝ
?=

1
c2

@E

@t
=

E0!

c2

sin(kz � !t)
s

ŝ X. Boundary conditions: E
k = Ez = 0 X;B? = Bs = 0 X.

(b) To determine �, use Gauss’s law for a cylinder of radius s and length dz:I
E · da = E0

cos(kz � !t)
s

(2⇡s) dz =
1
✏0

Qenc =
1
✏0
� dz ) � = 2⇡✏0E0 cos(kz � !t).

To determine I, use Ampére’s law for a circle of radius s (note that the displacement current through this

loop is zero, since E is in the ŝ direction):
I

B·dl =
E0

c

cos(kz � !t)
s

(2⇡s) = µ0Ienc ) I =
2⇡E0

µ0c
cos(kz � !t).

The charge and current on the outer conductor are precisely the opposite of these, since E = B = 0 inside

the metal, and hence the total enclosed charge and current must be zero.
Problem 9.33

f̃(z, 0) =
Z 1

�1
Ã(k)eikz

dk ) f̃(z, 0)⇤ =
Z 1

�1
Ã(k)⇤e�ikz

dk. Let l ⌘ �k; then f̃(z, 0)⇤ =
Z �1

1
Ã(�l)⇤eilz(�dl) =

Z 1

�1
Ã(�l)⇤eilz

dl =
Z 1

�1
Ã(�k)⇤eikz

dk (renaming the dummy variable l! k).

f(z, 0) = Re
h
f̃(z, 0)

i
=

1
2

h
f̃(z, 0) + f̃(z, 0)⇤

i
=
Z 1

�1

1
2

h
Ã(k) + Ã(�k)⇤

i
e
ikz

dk. Therefore

1
2

h
Ã(k) + Ã(�k)⇤

i
=

1
2⇡

Z 1

�1
f(z, 0)e�ikz

dz.

Meanwhile, ˙̃
f(z, t) =

Z 1

�1
Ã(k)(�i!)ei(kz�!t)

dk ) ˙̃
f(z, 0) =

Z 1

�1
[�i!Ã(k)]eikz

dk.
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(Note that ! = |k|v, here, so it does not come outside the integral.)

˙̃
f(z, 0)⇤ =

Z 1

�1
[i!Ã(k)⇤]e�ikz

dk =
Z 1

�1
[i|k|vÃ(k)⇤]e�ikz

dk =
Z �1

1
[i|l|vÃ(�l)⇤]eilz(�dl)

=
Z 1

�1
[i|k|vÃ(�k)⇤]eikz

dk =
Z 1

�1
[i!Ã(�k)⇤]eikz

dk.

ḟ(z, 0) = Re
h ˙̃
f(z, 0)

i
=

1
2

h ˙̃
f(z, 0) + ˙̃

f(z, 0)⇤
i

=
Z 1

�1

1
2
[�i!Ã(k) + i!Ã(�k)⇤]eikz

dk.

�i!

2

h
Ã(k)� Ã(�k)⇤

i
=

1
2⇡

Z 1

�1
ḟ(z, 0)e�ikz

dz, or
1
2

h
Ã(k)� Ã(�k)⇤

i
=

1
2⇡

Z 1

�1


i

!
ḟ(z, 0)

�
e
�ikz

dz.

Adding these two results, we get Ã(k) =
1
2⇡

Z 1

�1


f(z, 0) +

i

!
ḟ(z, 0)

�
e
�ikz

dz. qed

Problem 9.34

(a) Since (E⇥B) points in the direction of propagation, B =
E0

c
[cos(kz � !t) + cos(kz + !t)] ŷ.

(b) From Eq. 7.63, K⇥ (�ẑ) =
1
µ0

B =
E0

µ0c
[2 cos(!t)] ŷ, K =

2E0

µ0c
cos(!t) x̂.

(c) The force per unit area is f = K⇥Bave =
2E

2
0

µ0c
2
[cos(!t) x̂]⇥ [cos(!t) ŷ] = 2✏0E2

0 cos2(!t) ẑ. The time

average of cos2(!t) is 1/2, so

fave = ✏0E
2
0 .

This is twice the pressure in Eq. 9.64, but that was for a perfect absorber, whereas this is a perfect reflector.

Problem 9.35

(a) (i) Gauss’s law: r ·E =
1

r sin ✓
@E�

@�
= 0. X

(ii) Faraday’s law:

�@B
@t

= r⇥E =
1

r sin ✓
@

@✓
(sin ✓E�) r̂� 1

r

@

@r
(rE�) ✓̂

=
1

r sin ✓
@

@✓


E0

sin2
✓

r

✓
cos u� 1

kr
sinu

◆�
r̂� 1

r

@

@r


E0 sin ✓

✓
cos u� 1

kr
sinu

◆�
✓̂.

But
@

@r
cos u = �k sinu;

@

@r
sinu = k cos u.

=
1

r sin ✓
E0

r
2 sin ✓ cos ✓

✓
cos u� 1

kr
sinu

◆
r̂� 1

r
E0 sin ✓

✓
�k sinu +

1
kr2

sinu� 1
r

cos u

◆
✓̂.

Integrating with respect to t, and noting that
Z

cos u dt = � 1
!

sinu and
Z

sinu dt =
1
!

cos u, we obtain

B =
2E0 cos ✓
!r2

✓
sinu +

1
kr

cos u

◆
r̂ +

E0 sin ✓
!r

✓
�k cos u +

1
kr2

cos u +
1
r

sinu

◆
✓̂.
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(iii) Divergence of B:

r ·B =
1
r2

@

@r

�
r
2
Br

�
+

1
r sin ✓

@

@✓
(sin ✓B✓)

=
1
r2

@

@r


2E0 cos ✓

!

✓
sinu +

1
kr

cos u

◆�
+

1
r sin ✓

@

@✓


E0 sin2

✓

!r

✓
�k cos u +

1
kr2

cos u +
1
r

sinu

◆�

=
1
r2

2E0 cos ✓
!

✓
k cos u� 1

kr2
cos u� 1

r
sinu

◆

+
1

r sin ✓
2E0 sin ✓ cos ✓

!r

✓
�k cos u +

1
kr2

cos u +
1
r

sinu

◆

=
2E0 cos ✓
!r2

✓
k cos u� 1

kr2
cos u� 1

r
sinu� k cos u +

1
kr2

cos u +
1
r

sinu

◆
= 0. X

(iv) Ampére/Maxwell:

r⇥B =
1
r


@

@r
(rB✓)�

@Br

@✓

�
�̂

=
1
r

⇢
@

@r


E0 sin ✓
!

✓
�k cos u +

1
kr2

cos u +
1
r

sinu

◆�
� @

@✓


2E0 cos ✓
!r2

✓
sinu +

1
kr

cos u

◆��
�̂

=
E0 sin ✓
!r

✓
k

2 sinu� 2
kr3

cos u� 1
r2

sinu� 1
r2

sinu +
k

r
cos u +

2
r2

sinu +
2

kr3
cos u

◆
�̂

=
k

!

E0 sin ✓
r

✓
k sinu +

1
r

cos u

◆
�̂ =

1
c

E0 sin ✓
r

✓
k sinu +

1
r

cos u

◆
�̂.

1
c2

@E

@t
=

1
c2

E0 sin ✓
r

⇣
! sinu +

!

kr
cos u

⌘
�̂ =

1
c2

!

k

E0 sin ✓
r

✓
k sinu +

1
r

cos u

◆
�̂

=
1
c

E0 sin ✓
r

✓
k sinu +

1
r

cos u

◆
�̂ = r⇥B. X

(b) Poynting Vector:

S =
1
µ0

(E⇥B) =
E0 sin ✓

µ0r

✓
cos u� 1

kr
sinu

◆
2E0 cos ✓
!r2

✓
sinu +

1
kr

cos u

◆
✓̂

+
E0 sin ✓
!r

✓
�k cos u +

1
kr2

cos u +
1
r

sinu

◆
(�r̂)

�

=
E

2
0 sin ✓

µ0!r2

⇢
2 cos ✓

r


sinu cos u +

1
kr

(cos2 u� sin2
u)� 1

k2r2
sinu cos u

�
✓̂

� sin ✓
✓
�k cos2 u +

1
kr2

cos2 u +
1
r

sinu cos u +
1
r

sinu cos u� 1
k2r3

sinu cos u� 1
kr2

sin2
u

◆
r̂

�

=

E
2
0 sin ✓

µ0!r2

⇢
2 cos ✓

r

✓
1� 1

k2r2

◆
sinu cos u +

1
kr

(cos2 u� sin2
u)
�

✓̂

+ sin ✓
✓
�2

r
+

1
k2r3

◆
sinu cos u + k cos2 u +

1
kr2

(sin2
u� cos2 u)

�
r̂

�
.
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Averaging over a full cycle, using hsinu cos ui = 0, hsin2
ui = hcos2 ui = 1

2 , we get the intensity:

I = hSi =
E

2
0 sin ✓

µ0!r2

✓
k

2
sin ✓

◆
r̂ =

E
2
0 sin2

✓

2µ0cr
2

r̂.

It points in the r̂ direction, and falls o↵ as 1/r
2, as we would expect for a spherical wave.

(c) P =
Z

I · da =
E

2
0

2µ0c

Z
sin2

✓

r2
r
2 sin ✓ d✓ d� =

E
2
0

2µ0c
2⇡
Z ⇡

0
sin3

✓ d✓ =
4⇡
3

E
2
0

µ0c
.

Problem 9.36

z < 0 :

(
ẼI(z, t) = ẼIe

i(k1z�!t)
x̂, B̃I(z, t) = 1

v1
ẼIe

i(k1z�!t)
ŷ

ẼR(z, t) = ẼRe
i(�k1z�!t)

x̂, B̃R(z, t) = � 1
v1

ẼRe
i(�k1z�!t)

ŷ.

0 < z < d :

(
Ẽr(z, t) = Ẽre

i(k2z�!t)
x̂, B̃r(z, t) = 1

v2
Ẽre

i(k2z�!t)
ŷ

Ẽl(z, t) = Ẽle
i(�k2z�!t)

x̂, B̃l(z, t) = � 1
v2

Ẽle
i(�k2z�!t)

ŷ.

z > d :
n

ẼT (z, t) = ẼT e
i(k3z�!t)

x̂, B̃T (z, t) = 1
v3

ẼT e
i(k3z�!t)

ŷ.

Boundary conditions: E
k
1 = E

k
2, B

k
1 = B

k
2, at each boundary (assuming µ1 = µ2 = µ3 = µ0):

z = 0 :

8
><

>:

ẼI + ẼR = Ẽr + Ẽl;

1
v1

ẼI �
1
v1

ẼR =
1
v2

Ẽr �
1
v2

Ẽl ) ẼI � ẼR = �(Ẽr � Ẽl), where � ⌘ v1/v2.

z = d :

8
><

>:

Ẽre
ik2d + Ẽle

�ik2d = ẼT e
ik3d;

1
v2

Ẽre
ik2d � 1

v2
Ẽle

�ik2d =
1
v3

ẼT e
ik3d ) Ẽre

ik2d � Ẽle
�ik2d = ↵ẼT e

ik3d
, where ↵ ⌘ v2/v3.

We have here four equations; the problem is to eliminate ẼR, Ẽr, and Ẽl, to obtain a single equation for
ẼT in terms of ẼI .

Add the first two to eliminate ẼR : 2ẼI = (1 + �)Ẽr + (1� �)Ẽl;
Add the last two to eliminate Ẽl : 2Ẽre

ik2d = (1 + ↵)ẼT e
ik3d;

Subtract the last two to eliminate Ẽr : 2Ẽle
�ik2d = (1� ↵)ẼT

e
ik3d

.
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Plug the last two of these into the first:

2ẼI = (1 + �)
1
2
e
�ik2d(1 + ↵)ẼT e

ik3d + (1� �)
1
2
e
ik2d(1� ↵)ẼT e

ik3d

4ẼI =
⇥
(1 + ↵)(1 + �)e�ik2d + (1� ↵)(1� �)eik2d

⇤
ẼT e

ik3d

=
⇥
(1 + ↵�)

�
e
�ik2d + e

ik2d
�

+ (↵+ �)
�
e
�ik2d � e

ik2d
�⇤

ẼT e
ik3d

= 2 [(1 + ↵�) cos(k2d)� i(↵+ �) sin(k2d)] ẼT e
ik3d

.

Now the transmission coe�cient is T =
v3✏3E

2
T0

v1✏1E
2
I0

=
v3

v1

✓
µ0✏3

µ0✏1

◆
|ẼT |2

|ẼI |2
=

v1

v3

|ẼT |2

|ẼI |2
= ↵�

|ẼT |2

|ẼI |2
, so

T
�1 =

1
↵�

|ẼI |2

|ẼT |2
=

1
↵�

����
1
2

[(1 + ↵�) cos(k2d)� i(↵+ �) sin(k2d)] eik3d

����
2

=
1

4↵�
⇥
(1 + ↵�)2 cos2(k2d) + (↵+ �)2 sin2(k2d)

⇤
. But cos2(k2d) = 1� sin2(k2d).

=
1

4↵�
⇥
(1 + ↵�)2 + (↵2 + 2↵� + �

2 � 1� 2↵� � ↵2
�

2) sin2(k2d)
⇤

=
1

4↵�
⇥
(1 + ↵�)2 � (1� ↵2)(1� �2) sin2(k2d)

⇤
.

But n1 =
c

v1
, n2 =

c

v2
, n3 =

c

v3
, so ↵ =

n3

n2
, � =

n2

n1
.

=
1

4n1n3


(n1 + n3)2 +

(n2
1 � n

2
2)(n2

3 � n
2
2)

n
2
2

sin2(k2d)
�

.

Problem 9.37

T = 1 ) sin kd = 0 ) kd = 0,⇡, 2⇡ . . .. The minimum (nonzero) thickness is d = ⇡/k. But k = !/v =
2⇡⌫/v = 2⇡⌫n/c, and n =

p
✏µ/✏0µ0 (Eq. 9.69), where (presumably) µ ⇡ µ0. So n =

p
✏/✏0 =

p
✏r, and hence

d =
⇡c

2⇡⌫
p
✏r

=
c

2⌫
p
✏r

=
3⇥ 108

2(10⇥ 109)
p

2.5
= 9.49⇥ 10�3 m, or 9.5mm.

Problem 9.38

From Eq. 9.199,

T
�1 =

1
4(4/3)(1)

⇢
[(4/3) + 1]2 +

[(16/9)� (9/4)][1� (9/4)]
(9/4)

sin2(3!d/2c)
�

=
3
16


49
9

+
(�17/36)(�5/4)

(9/4)
sin2(3!d/2c)

�
=

49
48

+
85

(48)(36)
sin2(3!d/2c).

T =
48

49 + (85/36) sin2(3!d/2c)
.

Since sin2(3!d/2c) ranges from 0 to 1, Tmin =
48

49 + (85/36)
= 0.935; Tmax =

48
49

= 0.980. Not much

variation, and the transmission is good (over 90%) for all frequencies. Since Eq. 9.199 is unchanged when you
switch 1 and 3, the transmission is the same either direction, and the fish sees you just as well as you see it.
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Problem 9.39

(a) Equation 9.91 ) ẼT (r, t) = Ẽ0T e
i(kT ·r�!t); kT · r = kT (sin ✓T x̂ + cos ✓T ẑ) · (x x̂ + y ŷ + z ẑ) =

kT (x sin ✓T + z cos ✓T ) = xkT sin ✓T + izkT

q
sin2

✓T � 1 = kx + iz, where

k ⌘ kT sin ✓T =
⇣
!n2

c

⌘
n1

n2
sin ✓I =

!n1

c
sin ✓I ,

 ⌘ kT

q
sin2

✓T � 1 =
!n2

c

q
(n1/n2)2 sin2

✓I � 1 =
!

c

q
n

2
1 sin2

✓I � n
2
2. So

ẼT (r, t) = Ẽ0T e
�z

e
i(kx�!t)

. qed

(b) R =

�����
Ẽ0R

Ẽ0I

�����

2

=
����
↵� �
↵+ �

����
2

. Here � is real (Eq. 9.106) and ↵ is purely imaginary (Eq. 9.108); write ↵ = ia,

with a real: R =
✓

ia� �
ia + �

◆✓
�ia� �
�ia + �

◆
=

a
2 + �

2

a2 + �2
= 1.

(c) From Prob. 9.17, E0R =
����
1� ↵�
1 + ↵�

����E0I , so R =
����
1� ↵�
1 + ↵�

����
2

=
����
1� ia�

1 + ia�

����
2

=
(1� ia�)(1 + ia�)
(1 + ia�)(1� ia�)

= 1.

(d) From the solution to Prob. 9.17, the transmitted wave is

Ẽ(r, t) = Ẽ0T e
i(kT ·r�!t)

ŷ, B̃(r, t) =
1
v2

Ẽ0T e
i(kT ·r�!t)(� cos ✓T x̂ + sin ✓T ẑ).

Using the results in (a): kT · r = kx + iz, sin ✓T =
ck

!n2
, cos ✓T = i

c

!n2
:

Ẽ(r, t) = Ẽ0T e
�z

e
i(kx�!t)

ŷ, B̃(r, t) =
1
v2

Ẽ0T e
�z

e
i(kx�!t)

✓
�i

c

!n2
x̂ +

ck

!n2
ẑ

◆
.

We may as well choose the phase constant so that Ẽ0T is real. Then

E(r, t) = E0e
�z cos(kx� !t) ŷ;

B(r, t) =
1
v2

E0e
�z c

!n2
Re {[cos(kx� !t) + i sin(kx� !t)] [�i x̂ + k ẑ]}

=
1
!

E0e
�z [ sin(kx� !t) x̂ + k cos(kx� !t) ẑ] . qed

(I used v2 = c/n2 to simplfy B.)
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(e) (i) r ·E =
@

@y

⇥
E0e

�z cos(kx� !t)
⇤

= 0. X

(ii) r ·B =
@

@x


E0

!
e
�z

 sin(kx� !t)
�

+
@

@z


E0

!
e
�z

k cos(kx� !t)
�

=
E0

!

⇥
e
�z

k cos(kx� !t)� e�z
k cos(kx� !t)

⇤
= 0. X

(iii) r⇥E =

������

x̂ ŷ ẑ

@/@x @/@y @/@z

0 Ey 0

������
= �@Ey

@z
x̂ +

@Ey

@x
ẑ

= E0e
�z cos(kx� !t) x̂� E0e

�z
k sin(kx� !t) ẑ.

�@B
@t

= �E0

!
e
�z [�! cos(kx� !t) x̂ + k! sin(kx� !t) ẑ]

= E0e
�z cos(kx� !t) x̂� kE0e

�z sin(kx� !t) ẑ = r⇥E. X

(iv) r⇥B =

������

x̂ ŷ ẑ

@/@x @/@y @/@z

Bx 0 Bz

������
=
✓
@Bx

@z
� @Bz

@x

◆
ŷ

=

�E0

!


2
e
�z sin(kx� !t) +

E0

!
e
�z

k
2 sin(kx� !t)

�
ŷ = (k2 � 2)

E0

!
e
�z sin(kx� !t) ŷ.

Eq. 9.202 ) k
2 � 2 =

⇣
!

c

⌘2 ⇥
n

2
1 sin2

✓I � (n1 sin ✓I)2 + (n2)2
⇤

=
⇣

n2!

c

⌘2
= !

2
✏2µ2.

= ✏2µ2!E0e
�z sin(kx� !t) ŷ.

µ2✏2
@E

@t
= µ2✏2E0e

�z
! sin(kx� !t) ŷ = r⇥B X.

(f)

S =
1
µ2

(E⇥B) =
1
µ2

E
2
0

!
e
�2z

������

x̂ ŷ ẑ

0 cos(kx� !t) 0
 sin(kx� !t) 0 k cos(kx� !t)

������

=
E

2
0

µ2!
e
�2z

⇥
k cos2(kx� !t) x̂�  sin(kx� !t) cos(kx� !t) ẑ

⇤
.

Averaging over a complete cycle, using hcos2i = 1/2 and hsin cosi = 0, hSi =
E

2
0k

2µ2!
e
�2z

x̂. On average,

then, no energy is transmitted in the z direction, only in the x direction (parallel to the interface). qed
Problem 9.40

Look for solutions of the form E = E0(x, y, z)e�i!t
, B = B0(x, y, z)e�i!t, subject to the boundary condi-

tions E
k = 0, B

? = 0 at all surfaces. Maxwell’s equations, in the form of Eq. 9.177, give⇢
r ·E = 0 )r ·E0 = 0; r⇥E = �@B

@t )r⇥E0 = i!B0;
r ·B = 0 )r ·B0 = 0; r⇥B = 1

c2
@E
@t )r⇥B0 = � i!

c2 E0.

�

From now on I’ll leave o↵ the subscript (0). The problem is to solve the (time independent) equations⇢
r ·E = 0; r⇥E = i!B;
r ·B = 0; r⇥B = � i!

c2 E.

�
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From r⇥E = i!B it follows that I can get B once I know E, so I’ll concentrate on the latter for the moment.

r⇥ (r⇥E) = r(r ·E)�r2
E = �r2

E = r⇥ (i!B) = i!

✓
� i!

c2
E

◆
=
!

2

c2
E. So

r2
Ex = �

⇣
!

c

⌘2
Ex; r2

Ey = �
⇣
!

c

⌘2
Ey; r2

Ez = �
⇣
!

c

⌘2
Ez. Solve each of these by separation of variables:

Ex(x, y, z) = X(x)Y (y)Z(z) ) Y Z
d
2
X

dx2
+ZX

d
2
Y

dy2
+XY

d
2
Z

dz2
= �

⇣
!

c

⌘2
XY Z, or

1
X

d
2
X

dx2
+

1
Y

d
2
Y

dy2
+

1
Z

d
2
Z

dz2
=

� (!/c)2. Each term must be a constant, so
d
2
X

dx2
= �k

2
xX,

d
2
Y

dy2
= �k

2
yY,

d
2
Z

dz2
= �k

2
zZ, with

k
2
x + k

2
y + k

2
z = (!/c)2. The solution is

Ex(x, y, z) = [A sin(kxx) + B cos(kxx)][C sin(kyy) + D cos(kyy)][E sin(kzz) + F cos(kzz)].

But E
k = 0 at the boundaries ) Ex = 0 at y = 0 and z = 0, so D = F = 0, and Ex = 0 at y = b and z = d, so

ky = n⇡/b and kz = l⇡/d, where n and l are integers. A similar argument applies to Ey and Ez. Conclusion:

Ex(x, y, z) = [A sin(kxx) + B cos(kxx)] sin(kyy) sin(kzz),
Ey(x, y, z) = sin(kxx)[C sin(kyy) + D cos(kyy)] sin(kzz),
Ez(x, y, z) = sin(kxx) sin(kyy)[E sin(kzz) + F cos(kzz)],

where kx = m⇡/a. (Actually, there is no reason at this stage to assume that kx, ky, and kz are the same for
all three components, and I should really a�x a second subscript (x for Ex, y for Ey, and z for Ez), but in a
moment we shall see that in fact they do have to be the same, so to avoid cumbersome notation I’ll assume

they are from the start.)
Now r·E = 0) kx[A cos(kxx)�B sin(kxx)] sin(kyy) sin(kzz)+ky sin(kxx)[C cos(kyy)�D sin(kyy)] sin(kzz)+

kz sin(kxx) sin(kyy)[E cos(kzz) � F sin(kzz)] = 0. In particular, putting in x = 0, kxA sin(kyy) sin(kzz) = 0,
and hence A = 0. Likewise y = 0) C = 0 and z = 0) E = 0. (Moreover, if the k’s were not equal for di↵erent
components, then by Fourier analysis this equation could not be satisfied (for all x, y, and z) unless the other
three constants were also zero, and we’d be left with no field at all.) It follows that �(Bkx + Dky + Fkz) = 0
(in order that r ·E = 0), and we are left with

E = B cos(kxx) sin(kyy) sin(kzz) x̂ + D sin(kxx) cos(kyy) sin(kzz) ŷ + F sin(kxx) sin(kyy) cos(kzz) ẑ,
with kx = (m⇡/a), ky = (n⇡/b), kz = (l⇡/d) (l, m, n all integers), and Bkx + Dky + Fkz = 0.

The corresponding magnetic field is given by B = �(i/!)r⇥E:

Bx = � i

!

✓
@Ez

@y
� @Ey

@z

◆
= � i

!
[Fky sin(kxx) cos(kyy) cos(kzz)�Dkz sin(kxx) cos(kyy) cos(kzz)] ,

By = � i

!

✓
@Ex

@z
� @Ez

@x

◆
= � i

!
[Bkz cos(kxx) sin(kyy) cos(kzz)� Fkx cos(kxx) sin(kyy) cos(kzz)] ,

Bz = � i

!

✓
@Ey

@x
� @Ex

@y

◆
= � i

!
[Dkx cos(kxx) cos(kyy) sin(kzz)�Bky cos(kxx) cos(kyy) sin(kzz)] .

Or:

B = � i

!
(Fky �Dkz) sin(kxx) cos(kyy) cos(kzz) x̂� i

!
(Bkz � Fkx) cos(kxx) sin(kyy) cos(kzz) ŷ

� i

!
(Dkx �Bky) cos(kxx) cos(kyy) sin(kzz) ẑ.
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These automatically satisfy the boundary condition B
? = 0 (Bx = 0 at x = 0 and x = a, By = 0 at y = 0 and

y = b, and Bz = 0 at z = 0 and z = d).
As a check, let’s see if r ·B = 0 :

r ·B = � i

!
(Fky �Dkz)kx cos(kxx) cos(kyy) cos(kzz)� i

!
(Bkz � Fkx)ky cos(kxx) cos(kyy) cos(kzz)

� i

!
(Dkx �Bky)kz cos(kxx) cos(kyy) cos(kzz)

= � i

!
(Fkxky �Dkxkz + Bkzky � Fkxky + Dkxkz �Bkykz) cos(kxx) cos(kyy) cos(kzz) = 0. X

The boxed equations satisfy all of Maxwell’s equations, and they meet the boundary conditions. For TE
modes, we pick Ez = 0, so F = 0 (and hence Bkx +Dky = 0, leaving only the overall amplitude undetermined,
for given l, m, and n); for TM modes we want Bz = 0 (so Dkx � Bky = 0, again leaving only one amplitude
undetermined, since Bkx + Dky + Fkz = 0). In either case (TElmn or TMlmn), the frequency is given by

!
2 = c

2(k2
x + k

2
y + k

2
z) = c

2
⇥
(m⇡/a)2 + (n⇡/b)2 + (l⇡/d)2

⇤
, or ! = c⇡

p
(m/a)2 + (n/b)2 + (l/d)2.
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Chapter 10

Potentials and Fields

Problem 10.1

22
V +

@L

@t
= r2

V � µ0✏0
@

2
V

@t2
+
@

@t
(r ·A) + µ0✏0

@
2
V

@t2
= r2

V +
@

@t
(r ·A) = � 1

✏0
⇢. X

22
A�rL = r2

A� µ0✏0
@

2
A

@t2
�r

✓
r ·A + µ0✏0

@V

@t

◆
= �µ0J. X

Problem 10.2

(a) W =
1
2

Z ✓
✏0E

2 +
1
µ0

B
2

◆
d⌧. At t1 = d/c, x � d = ct1, so E = 0, B = 0, and hence W (t1) = 0.

At T2 = (d + h)/c, ct2 = d + h:

E = �µ0k

2
(d + h� x) ẑ, B =

1
c

µ0k

2
(d + h� x) ŷ,

so B
2 =

1
c2

E
2, and

✓
✏0E

2 +
1
µ0

B
2

◆
= ✏0

✓
E

2 +
1

µ0✏0

1
c2

E
2

◆
= 2✏0E2

.

Therefore

W (t2) =
1
2
(2✏0)

µ
2
0k

2

4

(d+h)Z

d

(d + h� x)2 dx (lw) =
✏0µ

2
0k

2
lw

4


� (d + h� x)3

3

�d+h

d

=
✏0µ

2
0k

2
lwh

3

12
.

(b) S(x) =
1
µ0

(E⇥B) =
1

µ0c
E

2[�ẑ⇥ (±ŷ)] = ± 1
µ0c

E
2
x̂ = ±µ0k

2

4c
(ct� |x|)2 x̂

(plus sign for x > 0, as here). For |x| > ct, S = 0.
So the energy per unit time entering the box in this time interval is

dW

dt
= P =

Z
S(d) · da =

µ0k
2
lw

4c
(ct� d)2.

Note that no energy flows out the top, since S(d + h) = 0.
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(c) W =
t2Z

t1

P dt =
µ0k

2
lw

4c

(d+h)/cZ

d/c

(ct� d)2 dt =
µ0k

2
lw

4c


(ct� d)3

3c

�(d+h)/c

d/c

=
µ0k

2
lwh

3

12c2
.

Since 1/c
2 = µ0✏0, this agrees with the answer to (a).

Problem 10.3

(a)

E = �rV � @A

@t
=

1
4⇡✏0

q

r2
r̂. B = r⇥A = 0.

This is a funny set of potentials for a stationary point charge q at the origin. (V =
1

4⇡✏0
q

r
, A = 0 would, of

course, be the customary choice.) Evidently ⇢ = q�
3(r); J = 0.

(b)

V
0 = V � @�

@t
= 0�

✓
� 1

4⇡✏0
q

r

◆
=

1
4⇡✏0

q

r
; A

0 = A + r� = � 1
4⇡✏0

qt

r2
r̂ +

✓
� 1

4⇡✏0
qt

◆✓
� 1

r2
r̂

◆
= 0.

This gauge function transforms the “funny” potentials into the “ordinary” potentials of a stationary point
charge.
Problem 10.4

E = �rV � @A

@t
= �A0 cos(kx� !t) ŷ(�!) = A0! cos(kx� !t) ŷ,

B = r⇥A = ẑ
@

@x
[A0 sin(kx� !t)] = A0k cos(kx� !t) ẑ.

Hence r·E = 0 X, r·B = 0 X.

r⇥E = ẑ
@

@x
[A0! cos(kx� !t)] = �A0!k sin(kx� !t) ẑ, �@B

@t
= �A0!k sin(kx� !t) ẑ,

so r⇥E = �@B
@t

X.

r⇥B = �ŷ
@

@x
[A0k cos(kx� !t)] = A0k

2 sin(kx� !t) ŷ,
@E

@t
= A0!

2 sin(kx� !t) ŷ.

So r⇥B = µ0✏0
@E

@t
provided k

2 = µ0✏0!
2
, or, since c

2 = 1/µ0✏0, ! = ck.

Problem 10.5

Ex. 10.1: r·A = 0;
@V

@t
= 0. Both Coulomb and Lorentz.

Prob. 10.3: r·A = � qt

4⇡✏0
r·
✓

r̂

r2

◆
= �qt

✏0
�
3(r);

@V

@t
= 0. Neither.

Prob. 10.4: r·A = 0;
@V

@t
= 0. Both.
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Problem 10.6

Suppose r·A 6= �µ0✏0
@V

@t
. (Let r·A + µ0✏0

@V

@t
= �—some known function.) We want to pick � such

that A
0 and V

0 (Eq. 10.7) do obey r·A0 = �µ0✏0
@V

0

@t
.

r·A0 + µ0✏0
@V

0

@t
= r·A +r2

�+ µ0✏0
@V

@t
� µ0✏0

@
2
�

@t2
= � + 22

�.

This will be zero provided we pick for � the solution to 22
� = ��, which by hypothesis (and in fact) we know

how to solve.
We could always find a gauge in which V

0 = 0, simply by picking � =
R t
0 V dt

0. We cannot in general pick
A = 0—this would make B = 0. [Finding such a gauge function would amount to expressing A as �r�, and
we know that vector functions cannot in general be written as gradients—only if they happen to have curl
zero, which A (ordinarily) does not .]
Problem 10.7

(a) Using Eq. 1.99,

r · J = � q̇

4⇡
r ·

✓
r̂

r2

◆
= � q̇

4⇡
4⇡�3(r) = �q̇�

3(r) = �@⇢
@t

. X

(b) From Eq. 10.10,

V (r, t) =
q

4⇡✏0

Z
�
3(r0)
r d⌧

0 =
1

4⇡✏0
q(t)
r

.

By symmetry, B = 0 (what direction could it point?), so r ⇥ A = 0, r · A = 0, and A ! 0 at infinity.
Evidently A = 0.

(c) E = �rV � @A

@t
=

1
4⇡✏0

q(t)
r2

r̂. B = 0. Checking Maxwell’s equations:

r ·E =
q

4⇡✏0
r ·

✓
r̂

r2

◆
=

q

4⇡✏0
4⇡�3(r) =

q�
3(r)
✏0

=
⇢

✏0
. X

r ·B = 0. X
r⇥E = 0 = �@B

@t
. X

r⇥B = 0; µ0J + µ0✏0
@E

@t
= µ0

✓
� 1

4⇡
q̇

r2
r̂

◆
+ µ0✏0

✓
q̇

4⇡✏0
1
r2

r̂

◆
= 0. X

[Note that the displacement current exactly cancels the conduction current. Physically, this configuration is a
point charge at the origin that is changing with time as current flows in symmetrically (from infinity).]
Problem 10.8

Noting the A is independent of t and B is independent of r, use Eq. 10.19:
dA

dt
=
@A

@t
+ (v ·r)A = (v ·r)


�1

2
(r⇥B)

�

= �1
2


vx

@

@x
+ vy

@

@y
+ vz

@

@z

�
[(yBz � zBy) x̂ + (zBx � xBz) ŷ + (xBy � yBx) ẑ]

= �1
2

[vx(�Bz ŷ + By ẑ) + vy(Bz x̂�Bx ẑ) + vz(�By x̂ + Bx ŷ)]

= �1
2

[(vyBz � vzBy) x̂ + (vzBx � vxBz) ŷ + (vxBy � vyBx) ẑ] = �1
2
(v ⇥B). X

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



CHAPTER 10. POTENTIALS AND FIELDS 213

Equation 10.20 says

d

dt
(p + qA) =

dp

dt
� q

2
(v ⇥B) = qr(v ·A) = �q

2
r[v · (r⇥B)],

or
dp

dt
=

q

2
(v ⇥B)� q

2
r[r · (B⇥ v)].

Now, for a vector c that is independent of position,

r(r · c) =
✓
x̂
@

@x
+ ŷ

@

@y
+ ẑ

@

@z

◆
(xcx + ycy + zcz) = cx x̂ + cy ŷ + cz ẑ) = c.

In this case c = (B⇥ v) = �(v ⇥B), so

dp

dt
=

q

2
(v ⇥B) +

q

2
(v ⇥B) = q(v ⇥B). X

Problem 10.9

d

dt
(T + qV ) =

d

dt

✓
1
2
mv

2

◆
+ q

dV

dt
= mv · dv

dt
+ q


@V

@t
+ (v ·r)V

�
= v · F + q


@V

@t
+ (v ·r)V

�
.

But Eq. 10.17 says

v · F = qv ·

�rV � @A

@t
+ v ⇥ (r⇥A)

�
= �q


v ·rV + v · @A

@t

�
,

so

d

dt
(T + qV ) = �q


(v ·r)V + v · @A

@t

�
+ q


@V

@t
+ (v ·r)V

�
= q

✓
@V

@t
� v · @A

@t

◆
=

@

@t
[q(V � v ·A)] .

Problem 10.10

From the product rule:

r·
✓

J

r
◆

=
1
r (r·J) + J ·

✓
r 1

r
◆

, r0·
✓

J

r
◆

=
1
r (r0·J) + J ·

✓
r0 1

r
◆

.

But r 1
r = �r0 1

r , since r = r� r
0. So

r·
✓

J

r
◆

=
1
r (r·J)� J ·

✓
r0 1

r
◆

=
1
r (r·J) +

1
r (r0·J)�r0·

✓
J

r
◆

.

But
r·J =

@Jx

@x
+
@Jy

@y
+
@Jz

@z
=
@Jx

@tr

@tr

@x
+
@Jy

@tr

@tr

@y
+
@Jz

@tr

@tr

@z
,

and
@tr

@x
= �1

c

@ r
@x

,
@tr

@y
= �1

c

@ r
@y

,
@tr

@z
= �1

c

@ r
@z

,

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



214 CHAPTER 10. POTENTIALS AND FIELDS

so
r·J = �1

c


@Jx

@tr

@ r
@x

+
@Jy

@tr

@ r
@y

+
@Jz

@tr

@ r
@z

�
= �1

c

@J

@tr
· (rr ).

Similarly,

r0·J = �@⇢
@t
� 1

c

@J

@tr
· (r0 r ).

[The first term arises when we di↵erentiate with respect to the explicit r
0, and use the continuity equation.]

thus

r·
✓

J

r
◆

=
1
r

�1

c

@J

@tr
· (r0 r )

�
+

1
r

�@⇢
@t
� 1

c

@J

@tr
· (r0 r )

�
�r·

✓
J

r
◆

= � 1
r
@⇢

@t
�r0·

✓
J

r
◆

(the other two terms cancel, since rr = �r0 r ). Therefore:

r·A =
µ0

4⇡


� @

@t

Z
⇢

r d⌧ �
Z

r0·
✓

J

r
◆

d⌧

�
= �µ0✏0

@

@t


1

4⇡✏0

Z
⇢

r d⌧

�
� µ0

4⇡

I
J

r · da.

The last term is over the suface at “infinity”, where J = 0, so it’s zero. Therefore r·A = �µ0✏0
@V

@t
. X

Problem 10.11

(a) As in Ex. 10.2, for t < s/c, A = 0; for t > s/c,

A(s, t) =
⇣

µ0

4⇡
ẑ

⌘
2

p
(ct)2�s2Z

0

k(t�
p

s2 + z2/c)p
s2 + z2

dz =
µ0k

2⇡
ẑ

8
>><

>>:
t

p
(ct)2�s2Z

0

dzp
s2 + z2

� 1
c

p
(ct)2�s2Z

0

dz

9
>>=

>>;

=
✓

µ0k

2⇡
ẑ

◆"
t ln

 
ct +

p
(ct)2 � s2

s

!
� 1

c

p
(ct)2 � s2

#
. Accordingly,

E(s, t) = �@A
@t

= �µ0k

2⇡
ẑ

(
ln

 
ct +

p
(ct)2 � s2

s

!
+

t

 
s

ct +
p

(ct)2 � s2

!✓
1
s

◆ 
c +

1
2

2c
2
tp

(ct)2 � s2

!
� 1

2c

2c
2
tp

(ct)2 � s2

)

= �µ0k

2⇡
ẑ

(
ln

 
ct +

p
(ct)2 � s2

s

!
+

ctp
(ct)2 � s2

� ctp
(ct)2 � s2

)

= �µ0k

2⇡
ln

 
ct +

p
(ct)2 � s2

s

!
ẑ (or zero, for t < s/c).

B(s, t) = �@Az

@s
�̂

= �µ0k

2⇡

8
>><

>>:
t

 
s

ct +
p

(ct)2 � s2

!

s

1
2

(�2s)p
(ct)2�s2

� ct�
p

(ct)2 � s2

�

s2
� 1

2c

(�2s)p
(ct)2 � s2

9
>>=

>>;
�̂

= �µ0k

2⇡

(
�ct

2

s

p
(ct)2 � s2

+
s

c

p
(ct)2 � s2

)
�̂ = �µ0k

2⇡
(�c

2
t
2 + s

2)
sc

p
(ct)2 � s2

�̂ =
µ0k

2⇡sc

p
(ct)2 � s2 �̂.
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(b) A(s, t) =
µ0

4⇡
ẑ

Z 1

�1

q0�(t� r /c)
r dz. But r =

p
s2 + z2, so the integrand is even in z:

A(s, t) =
⇣

µ0q0

4⇡
ẑ

⌘
2
Z 1

0

�(t� r /c)
r dz.

Now z =
p

r 2 � s2 ) dz =
1
2

2r drpr 2 � s2
=

r drpr 2 � s2
, and z = 0) r = s, z =1) r =1. So:

A(s, t) =
µ0q0

2⇡
ẑ

Z 1

s

1
r �

✓
t� r

c

◆ r drpr 2 � s2
.

Now � (t� r /c) = c�(r � ct) (Ex. 1.15); therefore A =
µ0q0

2⇡
ẑ c

Z 1

s

�(r � ct)pr 2 � s2
dr , so

A(s, t) =
µ0q0c

2⇡
1p

(ct)2 � s2
ẑ (or zero, if ct < s);

E(s, t) = �@A
@t

= �µ0q0c

2⇡

✓
�1

2

◆
2c

2
t

[(ct)2 � s2]3/2
ẑ =

µ0q0c
3
t

2⇡[(ct)2 � s2]3/2
ẑ (or zero, for t < s/c);

B(s, t) = �@Az

@t
�̂ = �µ0q0c

2⇡

✓
�1

2

◆
�2s

[(ct)2 � s2]3/2
�̂ =

�µ0q0cs

2⇡[(ct)2 � s2]3/2
�̂ (or zero, for t < s/c).

Problem 10.12

A =
µ0

4⇡

Z
I(tr)
r dl =

µ0k

4⇡

Z
(t� r /c)

r dl =
µ0k

4⇡

⇢
t

Z
dl

r �
1
c

Z
dl

�
.

But for the complete loop,
R

dl = 0, so A =
µ0kt

4⇡

(
1
a

Z

1
dl +

1
b

Z

2
dl + 2 x̂

Z b

a

dx

x

)
. Here

R
1 dl = 2a x̂ (inner

circle),
R
2 dl = �2b x̂ (outer circle), so

A =
µ0kt

4⇡


1
a
(2a) +

1
b
(�2b) + 2 ln(b/a)

�
x̂) A =

µ0kt

2⇡
ln(b/a) x̂, E = �@A

@t
= �µ0k

2⇡
ln(b/a) x̂.

The changing magnetic field induces the electric field. Since we only know A at one point (the center), we
can’t compute r⇥A to get B.
Problem 10.13

In this case ⇢̇(r, t) = ⇢̇(r, 0) and J̇(r, t) = 0, so Eq. 10.36 )

E(r, t) =
1

4⇡✏0

Z 
⇢(r0, 0) + ⇢̇(r0, 0)tr

r 2 +
⇢̇(r0, 0)

cr
�

r̂ d⌧
0
, but tr = t� r

c
(Eq. 10.18), so

=
1

4⇡✏0

Z 
⇢(r0, 0) + ⇢̇(r0, 0)t

r 2 � ⇢̇(r0, 0)(r /c)
r 2 +

⇢̇(r0, 0)
cr

�
r̂ d⌧

0 =
1

4⇡✏0

Z
⇢(r0, t)

r 2 r̂ d⌧
0
. qed
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Problem 10.14

In this approximation we’re dropping the higher derivatives of J, so J̇(tr) = J̇(t), and Eq. 10.38 )

B(r, t) =
µ0

4⇡

Z
1

r 2


J(r0, t) + (tr � t)J̇(r0, t) +

r
c

J̇(r0, t)
�
⇥ r̂ d⌧

0
, but tr � t = � r

c
(Eq. 10.25), so

=
µ0

4⇡

Z
J(r0, t)⇥ r̂

r 2 d⌧
0
. qed

Problem 10.15

At time t the charge is at r(t) = a[cos(!t) x̂ + sin(!t) ŷ], so v(t) = !a[� sin(!t) x̂ + cos(!t) ŷ]. Therefore
r = z ẑ� a[cos(!tr) x̂ + sin(!tr) ŷ], and hence r 2 = z

2 + a
2 (of course), and r =

p
z2 + a2.

r̂ · v =
1
r (r · v) =

1
r
�
�!a

2[� sin(!tr) cos(!tr) + sin(!tr) cos(!tr)]
 

= 0, so
✓

1�
r̂ · v

c

◆
= 1.

Therefore

V (z, t) =
1

4⇡✏0
qp

z2 + a2
; A(z, t) =

q!a

4⇡✏0c2
p

z2 + a2
[� sin(!tr) x̂ + cos(!tr) ŷ), where tr = t�

p
z2 + a2

c
.

Problem 10.16

Term under square root in (Eq. 10.49) is:

I = c
4
t
2 � 2c

2
t(r · v) + (r · v)2 + c

2
r
2 � c

4
t
2 � v

2
r
2 + v

2
c
2
t
2

= (r · v)2 + (c2 � v
2)r2 + c

2(vt)2 � 2c
2(r · vt). put in vt = r�R

2
.

= (r · v)2 + (c2 � v
2)r2 + c

2(r2 + R
2 � 2r ·R)� 2c

2(r2 � r ·R) = (r · v)2 � r
2
v
2 + c

2
R

2
.

but

(r · v)2 � r
2
v
2 = ((R + vt) · v)2 � (R + vt)2v2

= (R · v)2 + v
4
t
2 + 2(R · v)v2

t�R
2
v
2 � 2(R · v)tv2 � v

2
t
2
v
2

= (R · v)2 �R
2
v
2 = R

2
v
2 cos2 ✓ �R

2
v
2 = �R

2
v
2
�
1� cos2 ✓

�

= �R
2
v
2 sin2

✓.

Therefore

I = �R
2
v
2 sin2

✓ + c
2
R

2 = c
2
R

2

✓
1� v

2

c2
sin2

✓

◆
.

Hence

V (r, t) =
1

4⇡✏0
q

R

q
1� v2

c2 sin2
✓

. qed

Problem 10.17

Once seen, from a given point x, the particle will forever remain in view—to disappear it would have to
travel faster than light.
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Problem 10.18

First calculate tr: tr = t� |r�w(tr)|/c)
�c(tr � t) = x�

p
b2 + c2t2r ) c(tr � t) + x =

p
b2 + c2t2r;

c
2
t
2
r � 2c

2
trt + c

2
t
2 + 2xctr � 2xct + x

2 = b
2 + c

2
t
2
r;

2ctr(x� ct) + (x2 � 2xct + c
2
t
2) = b

2;

2ctr(x� ct) = b
2 � (x� ct)2, or tr =

b
2 � (x� ct)2

2c(x� ct)
.

Now V (x, t) =
1

4⇡✏0
qc

(r c� r · v)
, and r c� r · v = r (c� v); r = c(t� tr).

v =
1
2

1p
b2 + c2t2r

2c
2
tr =

c
2
tr

c(tr � t) + x
=

c
2
tr

ctr + (x� ct)
; (c� v) =

c
2
tr + c(x� ct)� c

2
tr

ctr + (x� ct)
=

c(x� ct)
ctr + (x� ct)

;

r c� r ·v =
c(t� tr)c(x� ct)

ctr + (x� ct)
=

c
2(t� tr)(x� ct)
ctr + (x� ct)

; ctr +(x�ct) =
b
2 � (x� ct)2

2(x� ct)
+(x�ct) =

b
2 + (x� ct)2

2(x� ct)
;

t� tr =
2ct(x� ct)� b

2 + (x� ct)2

2c(x� ct)
=

(x� ct)(x + ct)� b
2

2c(x� ct)
=

(x2 � c
2
t
2 � b

2)
2c(x� ct)

. Therefore

1
r c� r · v =


b
2 + (x� ct)2

2(x� ct)

�
1

c2(x� ct)
2c(x� ct)

[2ct(x� ct)� b2 + (x� ct)2]
=

b
2 + (x� ct)2

c(x� ct) [2ct(x� ct)� b2 + (x� ct)2]
.

The term in square brackets simplifies to (2ct + x� ct)(x� ct)� b
2 = (x + ct)(x� ct)� b

2 = x
2 � c

2
t
2 � b

2.

So V (x, t) =
q

4⇡✏0
b
2 + (x� ct)2

(x� ct)(x2 � c2t2 � b2)
.

Meanwhile

A =
V

c2
v =

c
2
tr

ctr + (x� ct)
V

c2
x̂ =


b
2 � (x� ct)2

2c(x� ct)

�
2(x� ct)

b2 + (x� ct)2
q

4⇡✏0
b
2 + (x� ct)2

(x� ct)(x2 � c2t2 � b2)
x̂

=
q

4⇡✏0c
b
2 � (x� ct)2

(x� ct)(x2 � c2t2 � b2)
x̂.
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Problem 10.19

From Eq. 10.44, c(t� tr) = r ) c
2(t� tr)2 = r 2 = r · r . Di↵erentiate with respect to t:

2c
2(t� tr)

✓
1� @tr

@t

◆
= 2r · @

r
@t

, or cr
✓

1� @tr

@t

◆
= r · @

r
@t

. Now r = r�w(tr), so

@ r
@t

= �@w
@t

= �@w
@tr

@tr

@t
= �v

@tr

@t
; cr

✓
1� @tr

@t

◆
= �r · v@tr

@t
; cr =

@tr

@t
(cr � r · v) =

@tr

@t
(r · u) (Eq. 10.71), and hence

@tr

@t
=

cr
r · u . qed

Now Eq. 10.47 says A(r, t) =
v

c2
V (r, t), so

@A

@t
=

1
c2

✓
@v

@t
V + v

@V

@t

◆
=

1
c2

✓
@v

@tr

@tr

@t
V + v

@V

@t

◆

=
1
c2


a
@tr

@t

1
4⇡✏0

qc

r · u + v
1

4⇡✏0
�qc

(r · u)2
@

@t
(r c� r · v)

�

=
1
c2

qc

4⇡✏0


a

r · u
@tr

@t
� v

(r · u)2

✓
c
@ r
@t
� @ r

@t
· v � r · @v

@t

◆�
.

But r = c(t� tr))
@ r
@t

= c

✓
1� @tr

@t

◆
, r = r�w(tr))

@ r
@t

= �v
@tr

@t
(as above), and

@v

@t
=
@v

@tr

@tr

@t
= a

@tr

@t
.

=
q

4⇡✏0c(r · u)2

⇢
a(r · u)

@tr

@t
� v


c
2

✓
1� @tr

@t

◆
+ v

2 @tr

@t
� r · a@tr

@t

��

=
q

4⇡✏0c(r · u)2

⇢
�c

2
v +

⇥
(r · u)a + (c2 � v

2 + r · a)v
⇤ @tr

@t

�

=
q

4⇡✏0c(r · u)2

⇢
�c

2
v +

⇥
(r · u)a + (c2 � v

2 + r · a)v
⇤ cr

r · u

�

=
q

4⇡✏0c(r · u)3
⇥
�c

2
v(r · u) + cr (r · u)a + cr (c2 � v

2 + r · a)v
⇤

=
qc

4⇡✏0
1

(r c� r · v)3


(r c� r · v)

✓
�v +

r
c

a

◆
+

r
c

(c2 � v
2 + r · a)v

�
. qed

Problem 10.20

E =
q

4⇡✏0
r

(r · u)3
⇥
(c2 � v

2)u + r ⇥ (u⇥ a)
⇤
. Here

v = v x̂, a = a x̂, and, for points to the right , r̂ = x̂.
So u = (c� v) x̂, u⇥ a = 0, and r · u = r (c� v).

E =
q

4⇡✏0
r

r 3(c� v)3
(c2 � v

2)(c� v) x̂ =
q

4⇡✏0
1

r 2

(c + v)(c� v)2

(c� v)3
x̂ =

q

4⇡✏0
1

r 2

✓
c + v

c� v

◆
x̂;

B =
1
c
r̂ ⇥E = 0. qed

For field points to the left, r̂ = �x̂ and u = �(c + v) x̂, so r · u = r (c + v), and

E = � q

4⇡✏0
r

r 3(c + v)3
(c2 � v

2)(c + v) x̂ =
�q

4⇡✏0
1

r 2

✓
c� v

c + v

◆
x̂; B = 0.

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



CHAPTER 10. POTENTIALS AND FIELDS 219

Problem 10.21

By Gauss’s law (in integral form) the answer has to be q/✏0.

E =
1

4⇡✏0
q(1� v

2
/c

2)
(1� v2

c2 sin2
✓)3/2

bR
R2

(Eq. 10.75), so

I
E·da =

q(1� v
2
/c

2)
4⇡✏0

Z
R

2 sin ✓ d✓ d�

R2(1� v2

c2 sin2
✓)3/2

=
q(1� v

2
/c

2)
4⇡✏0

2⇡
Z ⇡

0

sin ✓ d✓

(1� v2

c2 sin2
✓)3/2

.

Let u ⌘ cos ✓, so du = � sin ✓d✓, sin2
✓ = 1� u

2.
I

E·da =
q(1� v

2
/c

2)
2✏0

Z 1

�1

du

[1� v2

c2 + v2

c2 u2]3/2
=

q(1� v
2
/c

2)
2✏0

⇣
c

v

⌘3
Z 1

�1

du

�
c2

v2 � 1 + u2
�3/2

.

The integral is:
u

�
c2

v2 � 1
�q

c2

v2 � 1 + u2

����
+1

�1

=
2�

c2

v2 � 1
�

c
v

=
⇣

v

c

⌘3 2
(1� v2/c2)

. So

I
E·da =

q(1� v
2
/c

2)
2✏0

⇣
c

v

⌘3 ⇣v

c

⌘3 2
(1� v2/c2)

=
q

✏0
. X

Problem 10.22

(a) E =
�

4⇡✏0
(1� v

2
/c

2)
Z

R̂

R2

dx

⇥
1� (v/c)2 sin2

✓
⇤3/2

.

The horizontal components cancel; the vertical com-
ponent of R̂ is sin ✓ (see diagram). Here d = R sin ✓, so
1

R2
=

sin2
✓

d2
; �x

d
= cot ✓, so dx = �d(� csc2

✓) d✓ =
d

sin2
✓

d✓;

1
R2

dx =
d

sin2
✓

sin2
✓

d2
d✓ =

d✓

d
. Thus

E =
�

4⇡✏0
(1� v

2
/c

2)
✓

ŷ

d

◆Z ⇡

0

sin ✓
⇥
1� (v/c)2 sin2

✓
⇤3/2

d✓. Let z ⌘ cos ✓, so sin2
✓ = 1� z

2
.

=
�(1� v

2
/c

2) ŷ
4⇡✏0d

Z 1

�1

1
[1� (v/c)2 + (v/c)2z2]3/2

dz

=
�(1� v

2
/c

2) ŷ
4⇡✏0d

"
1

(v/c)3
z

(c2/v2 � 1)
p

(c/v)2 � 1 + z2

#����
+1

�1

=
�(1� v

2
/c

2)
4⇡✏0d

c

v

1
(1� v2/c2)

2p
(c/v)2 � 1 + 1

ŷ =
1

4⇡✏0
2�
d

ŷ (same as for a line charge at rest).

(b) B =
1
c2

(v ⇥E) for each segment dq = � dx. Since v is constant, it comes outside the integral, and the
same formula holds for the total field:

B =
1
c2

(v ⇥E) =
1
c2

v
1

4⇡✏0
2�
d

(x̂⇥ ŷ) = µ0✏0v
1

4⇡✏0
2�
d

ẑ =
µ0

4⇡
2�v

d
ẑ.
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But �v = I, so B =
µ0

4⇡
2I

d
�̂ (the same as we got in magnetostatics, Eq. 5.39 and Ex. 5.7).

Problem 10.23

w(t) = R[cos(!t) x̂ + sin(!t) ŷ];
v(t) = R![� sin(!t) x̂ + cos(!t) ŷ];
a(t) = �R!

2[cos(!t) x̂ + sin(!t) ŷ] = �!2
w(t);

r = �w(tr);
r = R;
tr = t�R/c;
r̂ = �[cos(!tr) x̂ + sin(!tr) ŷ];

u = c r̂ � v(tr) = �c[cos(!tr) x̂ + sin(!tr) ŷ]� !R[� sin(!tr) x̂ + cos(!tr) ŷ]
= � {[c cos(!tr)� !R sin(!tr)] x̂ + [c sin(!tr) + !R cos(!tr)] ŷ} ;

r ⇥ (u⇥ a) = (r · a)u� (r · u)a; r · a = �w · (�!2
w) = !

2
R

2;
r · u = R

⇥
c cos2(!tr)� !R sin(!tr) cos(!tr) + c sin2(!tr) + !R sin(!tr) cos(!tr)

⇤
= Rc;

v
2 = (!R)2. So (Eq. 10.72):

E =
q

4⇡✏0
R

(Rc)3
⇥
u
�
c
2 � !2

R
2
�

+ u(!R)2 � a(Rc)
⇤

=
q

4⇡✏0
cu�Ra

(Rc)2

=
q

4⇡✏0
1

(Rc)2
�
�[c2 cos(!tr)� !Rc sin(!tr)] x̂� [c2 sin(!tr) + !Rc cos(!tr)] ŷ

+ R
2
!

2 cos(!tr) x̂ + R
2
!

2 sin(!tr) ŷ
 

=
q

4⇡✏0
1

(Rc)2
�⇥�

!
2
R

2 � c
2
�
cos(!tr) + !Rc sin(!tr)

⇤
x̂ +

⇥�
!

2
R

2 � c
2
�
sin(!tr)� !Rc cos(!tr)

⇤
ŷ
 

.

B =
1
c
r̂ ⇥E =

1
c

� r̂ xEy � r̂ yEx

�
ẑ

= �1
c

q

4⇡✏0
1

(Rc)2
�
cos(!tr)

⇥�
!

2
R

2 � c
2
�
sin(!tr)� !Rc cos(!tr)

⇤

� sin(!tr)
⇥�
!

2
R

2 � c
2
�
cos(!tr) + !Rc sin(!tr)

⇤ 
ẑ

= � q

4⇡✏0
1

R2c3

⇥
�!Rc cos2(!tr)� !Rc sin2(!tr)

⇤
ẑ =

q

4⇡✏0
1

R2c3
!Rc ẑ =

q

4⇡✏0
!

Rc2
ẑ.

Notice that B is constant in time.
To obtain the field at the center of a circular ring of charge, let q ! �(2⇡R); for this ring to carry current

I, we need I = �v = �!R, so � = I/!R, and hence q ! (I/!R)(2⇡R) = 2⇡I/!. Thus B =
2⇡I

4⇡✏0
1

Rc2
ẑ, or,

since 1/c
2 = ✏0µ0, B =

µ0I

2R
ẑ, the same as Eq. 5.41, in the case z = 0.
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Problem 10.24

�(�, t) = �0| sin(✓/2)|, where ✓ = �� !t. So the (retarded) scalar potential at the center is (Eq. 10.26)

V (t) =
1

4⇡✏0

Z
�

r dl
0 =

1
4⇡✏0

Z 2⇡

0

�0 |sin[(�� !tr)/2]|
a

a d�

=
�0

4⇡✏0

Z 2⇡

0
sin(✓/2) d✓ =

�0

4⇡✏0
[�2 cos(✓/2)]

���
2⇡

0

=
�0

4⇡✏0
[2� (�2)] =

�0

⇡✏0
.

(Note: at fixed tr, d� = d✓, and it goes through one full cycle of � or ✓.)
Meanwhile I(�, t) = �v = �0!a |sin[(�� !t)/2]| �̂. From Eq. 10.26 (again)

A(t) =
µ0

4⇡

Z
I

r dl
0 =

µ0

4⇡

Z 2⇡

0

�0!a |sin[(�� !tr)/2]| �̂

a
a d�.

But tr = t� a/c is again constant, for the � integration, and �̂ = � sin� x̂ + cos� ŷ.

=
µ0�0!a

4⇡

Z 2⇡

0
|sin[(�� !tr)/2]| (� sin� x̂ + cos� ŷ) d�. Again, switch variables to ✓ = �� !tr,

and integrate from ✓ = 0 to ✓ = 2⇡ (so we don0t have to worry about the absolute value).

=
µ0�0!a

4⇡

Z 2⇡

0
sin(✓/2) [� sin(✓ + !tr) x̂ + cos(✓ + !tr) ŷ] d✓. Now

Z 2⇡

0
sin (✓/2) sin(✓ + !tr) d✓ =

1
2

Z 2⇡

0
[cos (✓/2 + !tr)� cos (3✓/2 + !tr)] d✓

=
1
2


2 sin (✓/2 + !tr)�

2
3

sin (3✓/2 + !tr)
�����

2⇡

0

= sin(⇡ + !tr)� sin(!tr)�
1
3

sin(3⇡ + !tr) +
1
3

sin(!tr)

= �2 sin(!tr) +
2
3

sin(!tr) = �4
3

sin(!tr).
Z 2⇡

0
sin (✓/2) cos(✓ + !tr) d✓ =

1
2

Z 2⇡

0
[� sin (✓/2 + !tr) + sin (3✓/2 + !tr)] d✓

=
1
2


2 cos (✓/2 + !tr)�

2
3

cos (3✓/2 + !tr)
�����

2⇡

0

= cos(⇡ + !tr)� cos(!tr)�
1
3

cos(3⇡ + !tr) +
1
3

cos(!tr)

= �2 cos(!tr) +
2
3

cos(!tr) = �4
3

cos(!tr). So

A(t) =
µ0�0!a

4⇡

✓
4
3

◆
[sin(!tr) x̂� cos(!tr) ŷ] =

µ0�0!a

3⇡
{sin[!(t� a/c)] x̂� cos[!(t� a/c)] ŷ} .
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Problem 10.25

1

Hello

r · A = � 1
c2

@V

@t

c�2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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Problem 10.26

⇢(r, t) =

8
<

:

Q

(4/3)⇡R3
=

3Q

4⇡v3t3
, (r < R = vt),

0, (otherwise).

For a point at the center, tr = t� r/c, so

⇢(r, tr) =

8
<

:

3Q

4⇡v3(t� r/c)3
=

3Q

4⇡(v/c)3(ct� r)3
,

✓
r < v(t� r/c)) r <

vt

1 + v/c

◆
,

0, (otherwise).

Let a ⌘ vt/(1 + v/c); then

Qe↵ =
3Q

4⇡(v/c)3

Z a

0

1
(ct� r)3

4⇡r
2
dr =

3Q

(v/c)3

Z a

0

r
2

(ct� r)3
dr

= � 3Q

(v/c)3


ln(ct� r) +

2ct

(ct� r)
� (ct)2

2(ct� r)2

� ����
a

0

= � 3Q

(v/c)3


ln(ct� a) +

2ct

(ct� a)
� (ct)2

2(ct� a)2
� ln(ct)� 2 +

1
2

�

=
3Q

(v/c)3

"
3
2

+ ln
✓

ct

ct� a

◆
� 2

✓
ct

ct� a

◆
+

1
2

✓
ct

ct� a

◆2
#

.
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Now, ct� a = ct� vt

1 + v/c
=

ct

1 + v/c

⇣
1 +

v

c
� v

c

⌘
=

ct

1 + v/c
, so

ct

ct� a
= 1 +

v

c
, and hence

Qe↵ =
3Q

(v/c)3


3
2

+ ln
⇣
1 +

v

c

⌘
� 2

⇣
1 +

v

c

⌘
+

1
2

⇣
1 +

v

c

⌘2
�

=
3Q

(v/c)3


3
2

+ ln
⇣
1 +

v

c

⌘
� 2� 2

v

c
+

1
2

+
v

c
+

1
2

⇣
v

c

⌘2
�

=
3Q

(v/c)3


ln
⇣
1 +

v

c

⌘
� v

c
+

1
2

⇣
v

c

⌘2
�

.

If ✏⌧ 1, then ln(1 + ✏) = ✏� 1
2✏

2 + 1
3✏

3 � 1
4✏

4 + . . ., so for v ⌧ c,

Qe↵ ⇡
3Q

(v/c)3


v

c
� 1

2

⇣
v

c

⌘2
+

1
3

⇣
v

c

⌘3
� 1

4

⇣
v

c

⌘4
� v

c
+

1
2

⇣
v

c

⌘2
�

= Q

✓
1� 3v

4c

◆
. X

Problem 10.27

Using Product Rule #5, Eq. 10.50 )

r ·A =
µ0

4⇡
qcv ·r

⇥
(c2

t� r · v)2 + (c2 � v
2)(r2 � c

2
t
2)
⇤�1/2

=
µ0qc

4⇡
v ·
⇢
�1

2
⇥
(c2

t� r · v)2 + (c2 � v
2)(r2 � c

2
t
2)
⇤�3/2 r

⇥
(c2

t� r · v)2 + (c2 � v
2)(r2 � c

2
t
2)
⇤�

= �µ0qc

8⇡
⇥
(c2

t� r · v)2 + (c2 � v
2)(r2 � c

2
t
2)
⇤�3/2

v ·
�
�2(c2

t� r · v)r(r · v) + (c2 � v
2)r(r2)

 
.

Product Rule #4 )

r(r · v) = v ⇥ (r⇥ r) + (v ·r)r, but r⇥ r = 0,

(v ·r)r =
✓

vx
@

@x
+ vy

@

@y
+ vz

@

@z

◆
(x x̂ + y ŷ + z ẑ) = vx x̂ + vy ŷ + vz ẑ = v, and

r(r2) = r(r · r) = 2r⇥ (r⇥ r) + 2(r ·r)r = 2r. So

r ·A = �µ0qc

8⇡
⇥
(c2

t� r · v)2 + (c2 � v
2)(r2 � c

2
t
2)
⇤�3/2

v ·
⇥
�2(c2

t� r · v)v + (c2 � v
2)2r

⇤

=
µ0qc

4⇡
⇥
(c2

t� r · v)2 + (c2 � v
2)(r2 � c

2
t
2)
⇤�3/2 �(c2

t� r · v)v2 � (c2 � v
2)(r · v)

 
.

But the term in curly brackets is : c
2
tv

2 � v
2(r · v)� c

2(r · v) + v
2(r · v) = c

2(v2
t� r · v).

=
µ0qc

3

4⇡
(v2

t� r · v)
[(c2t� r · v)2 + (c2 � v2)(r2 � c2t2)]3/2

.

Meanwhile, from Eq. 10.49,

�µ0✏0
@V

@t
= �µ0✏0

1
4⇡✏0

qc

✓
�1

2

◆⇥
(c2

t� r · v)2 + (c2 � v
2)(r2 � c

2
t
2)
⇤�3/2 ⇥

@

@t

⇥
(c2

t� r · v)2 + (c2 � v
2)(r2 � c

2
t
2)
⇤

= �µ0qc

8⇡
⇥
(c2

t� r · v)2 + (c2 � v
2)(r2 � c

2
t
2)
⇤�3/2 ⇥2(c2

t� r · v)c2 + (c2 � v
2)(�2c

2
t)
⇤

= �µ0qc
3

4⇡
(c2

t� r · v � c
2
t + v

2
t)

[(c2t� r · v)2 + (c2 � v2)(r2 � c2t2)]3/2
= r ·A. X
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Problem 10.28

(a) F2 =
q1q2

4⇡✏0
1

(b2 + c2t2)
x̂.

(This is just Coulomb’s law, since q1 is at rest.)

(b) I2 =
q1q2

4⇡✏0

Z 1

�1

1
(b2 + c2t2)

dt =
q1q2

4⇡✏0


1
bc

tan�1 (ct/b)
�����
1

�1
=

q1q2

4⇡✏0bc
⇥
tan�1(1)� tan�1(�1)

⇤

=
q1q2

4⇡✏0bc

h
⇡

2
�
⇣
�⇡

2

⌘i
=

q1q2

4⇡✏0
⇡

bc
.

(c) From Prob. 10.20, E = � q2

4⇡✏0
1
x2

✓
c� v

c + v

◆
x̂. Here x

and v are to be evaluated at the retarded time tr, which is
given by c(t � tr) = x(tr) =

p
b2 + c2t2r ) c

2
t
2 � 2cttr +

c
2
t
2
r = b

2 + c
2
t
2
r ) tr =

c
2
t
2 � b

2

2c2t
. Note: As we found

in Prob. 10.17, q2 first “comes into view” (for q1) at time
t = 0. Before that it can exert no force on q1, and there is

no retarded time. From the graph of tr versus t we see that
tr ranges all the way from �1 to 1 while t > 0.

x(tr) = c(t� tr) =
2c

2
t
2 � c

2
t
2 + b

2

2ct
=

b
2 + c

2
t
2

2ct
(for t > 0). v(t) =

1
2

2c
2
tp

b2 + c2t2
=

c
2
t

x
, so

v(tr) =
✓

c
2
t
2 � b

2

2t

◆✓
2ct

b2 + c2t2

◆
= c

✓
c
2
t
2 � b

2

c2t2 + b2

◆
(for t > 0). Therefore

c� v

c + v
=

(c2
t
2 + b

2)� (c2
t
2 � b

2)
(c2t2 + b2) + (c2t2 � b2)

=
2b

2

2c2t2
=

b
2

c2t2
(for t > 0). E = � q2

4⇡✏0
4c

2
t
2

(b2 + c2t2)2
b
2

c2t2
x̂)

F1 =

8
<

:

0, t < 0;

� q1q2

4⇡✏0
4b

2

(b2 + c2t2)2
x̂, t > 0.

(d) I1 = � q1q2

4⇡✏0
4b

2

Z 1

0

1
(b2 + c2t2)2

dt. The integral is

1
c4

Z 1

0

1
[(b/c)2 + t2]2

dt =
1
c4

✓
c
2

2b2

◆
t

(b/c)2 + t2

����
1

0

+
Z 1

0

1
[(b/c)2 + t2)]

dt

�
=

1
2c2b2

⇣
⇡c

2b

⌘
=

⇡

4cb3
.

So I1 = � q1q2

4⇡✏0
⇡

bc
.

(e) F1 6= �F2, so Newton’s third law is not obeyed. On the other hand, I1 = �I2 in this instance, which
suggests that the net momentum delivered from (1) to (2) is equal and opposite to the net momentum delivered
from (2) to (1), and hence that the total mechanical momentum is conserved. (In general the fields might carry
o↵ some momentum, leaving the mechanical momentum altered; but that doesn’t happen in the present case.)

Problem 10.29

The electric field of q1 at q2 [Eq. 10.75, with ✓ = 45 � and R = (�vt x̂ + vt ŷ)] is

E1 =
q1

4⇡✏0
1� v

2
/c

2

(1� v2/2c2)3/2

1
2
p

2(vt)2
(�x̂ + ŷ).
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The magnetic field [Eq. 10.76, with v1 = �v x̂] is

B1 =
1
c2

(v1 ⇥E) = � v

c2
(x̂⇥E) = � v

c2

q1

4⇡✏0
1� v

2
/c

2

(1� v2/2c2)3/2

1
2
p

2(vt)2
ẑ.

The force on q2 is therefore [Lorentz force law with v2 = �v ŷ]

F2 = q2(E1 + v2 ⇥B1) =
q1q2

4⇡✏0
1� v

2
/c

2

(1� v2/2c2)3/2

1
2
p

2(vt)2

✓
�x̂ + ŷ +

v
2

c2
x̂

◆
.

The electric field of q2 at q1 is reversed, E2 = �E1; so is the magnetic field B2 = �B1. The electric force
is also reversed, but the magnetic force now points in the y direction instead of the x direction. So the force
on q1 is

F1 =
q1q2

4⇡✏0
1� v

2
/c

2

(1� v2/2c2)3/2

1
2
p

2(vt)2

✓
x̂� ŷ +

v
2

c2
ŷ

◆
.

The forces are equal in magnitude, but not opposite in direction. No, Newton’s third law is not obeyed.

Problem 10.30

c(t� t1) = vt1, t = t1(1+ v/c), t1 =
t

1 + v/c
. c(t� t2) = vt2 +L, t�L/c = t2(1+ v/c), t2 =

t� L/c

1 + v/c
.

x1 = vt1 =
vt

1 + v/c
. x2 = vt2 + L =

v(t� L/c)
1 + v/c

+ L =
vt� vL/c + L + vL/c

1 + v/c
=

vt + L

1 + v/c
.

V (0, t) =
1

4⇡✏0

Z x2

x1

�

x
dx =

�

4⇡✏0
ln
✓

x2

x1

◆
=

�

4⇡✏0
ln
✓

vt + L

vt

◆
.

If L⌧ vt, V =
�

4⇡✏0
ln
✓

1 +
L

vt

◆
⇡ �

4⇡✏0
L

vt
=

q

4⇡✏0

✓
1
vt

◆
. The Liénard-Wiechert potential is

V =
q

4⇡✏0(r � r · v/c)
. Here (r � r · v/c) = vtr + v

2
tr/c = v(1 + v/c)tr = v(1 + v/c)

t

1 + v/c
= vt.

(In the limit L! 0, tr = t1 = t2.) So V =
q

4⇡✏0

✓
1
vt

◆
. X

Problem 10.31

S =
1
µ0

(E⇥B); B =
1
c2

(v ⇥E) (Eq. 10.76).

So S =
1

µ0c
2

[E⇥ (v ⇥E)] = ✏0

⇥
E

2
v � (v ·E)E

⇤
.

The power crossing the plane is P =
R

S · da,
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and da = 2⇡r dr x̂ (see diagram). So

P = ✏0

Z
(E2

v � E
2
xv)2⇡r dr; Ex = E cos ✓, so E

2 � E
2
x = E

2 sin2
✓.

= 2⇡✏0v
Z

E
2 sin2

✓ r dr. From Eq. 10.75, E =
q

4⇡✏0
1
�2

R̂

R2
⇥
1� (v/c)2 sin2

✓
⇤3/2

where � ⌘ 1p
1� v2/c2

.

= 2⇡✏0v
✓

q

4⇡✏0

◆2 1
�2

Z 1

0

r sin2
✓

R4
⇥
1� (v/c)2 sin2

✓
⇤3 dr. Now r = a tan ✓ ) dr = a

1
cos2 ✓

d✓;
1
R

=
cos ✓

a
.

=
v

2�4

q
2

4⇡✏0
1
a2

Z ⇡/2

0

sin3
✓ cos ✓

⇥
1� (v/c)2 sin2

✓
⇤3 d✓. Let u ⌘ sin2

✓, so du = 2 sin ✓ cos ✓ d✓.

=
vq

2

16⇡✏0a2�4

Z 1

0

u

[1� (v/c)2u]3
du =

vq
2

16⇡✏0a2�4

✓
�

4

2

◆
=

vq
2

32⇡✏0a2
.

Problem 10.32

(a) F12(t) =
1

4⇡✏0
q1q2

(vt)2
ẑ.

(b) From Eq. 10.75, with ✓ = 180�, R = vt, and R̂ = �ẑ:

F21(t) = � 1
4⇡✏0

q1q2(1� v
2
/c

2)
(vt)2

ẑ.

No, Newton’s third law does not hold: F12 6= F21,

because of the extra factor (1� v
2
/c

2).

(c) From Eq. 8.28, p = ✏0

R
(E⇥B) d⌧ . Here E = E1+E2, whereas B = B2, so E⇥B = (E1⇥B2)+(E2⇥B2).

But the latter, when integrated over all space, is independent of time. We want only the time-dependent part:

p(t) = ✏0

Z
(E1 ⇥B2) d⌧. Now E1 =

1
4⇡✏0

q1

r2
r̂, while, from Eq. 10.76, B2 =

1
c2

(v ⇥E2), and (Eq. 10.75)

E2 =
q2

4⇡✏0
(1� v

2
/c

2)
(1� v2 sin2

✓0/c2)3/2

R̂

R2
. But R = r� vt; R

2 = r
2 + v

2
t
2 � 2rvt cos ✓; sin ✓0 =

r sin ✓
R

. So

E2 =
q2

4⇡✏0
(1� v

2
/c

2)
[1� (vr sin ✓/Rc)2]3/2

(r� vt)
R3

. Finally, noting that v ⇥ (r� vt) = v ⇥ r = vr sin ✓ �̂, we get

B2 =
q2(1� v

2
/c

2)
4⇡✏0c2

vr sin ✓
[R2 � (vr sin ✓/c)2]3/2

�̂. So p(t) = ✏0
q1

4⇡✏0
q2(1� v

2
/c

2)v
4⇡✏0c2

Z
1
r2

r sin ✓ (r̂⇥ �̂)
[R2 � (vr sin ✓/c)2]3/2

.

But r̂⇥ �̂ = �✓̂ = �(cos ✓ cos� x̂ + cos ✓ sin� ŷ � sin ✓ ẑ), and the x and y components integrate to zero, so:

p(t) =
q1q2v(1� v

2
/c

2) ẑ
(4⇡c)2✏0

Z
sin2

✓

r [r2 + (vt)2 � 2rvt cos ✓ � (vr sin ✓/c)2]3/2
r
2 sin ✓ dr d✓ d�

=
q1q2v(1� v

2
/c

2) ẑ
8⇡c2✏0

Z
r sin3

✓

[r2 + (vt)2 � 2rvt cos ✓ � (vr sin ✓/c)2]3/2
dr d✓.

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



CHAPTER 10. POTENTIALS AND FIELDS 227

I’ll do the r integral first. According to the CRC Tables,
Z 1

0

x

(a + bx + cx2)3/2
dx = � 2(bx + 2a)

(4ac� b2)
p

a + bx + cx2

����
1

0

= � 2
4ac� b2


bp
c
� 2ap

a

�

= � 2p
c(4ac� b2)

�
b� 2

p
ac
�

=
2p
c

(2
p

ac� b)
(2
p

ac� b) (2
p

ac + b)
=

2p
c

�
2
p

ac + b
��1

.

In this case x = r, a = (vt)2, b = �2vt cos ✓, and c = 1� (v/c)2 sin2
✓. So the r integral is

2
q

1� (v/c)2 sin2
✓


2vt

q
1� (v/c)2 sin2

✓ � 2vt cos ✓
� =

1

vt

q
1� (v/c)2 sin2

✓

q
1� (v/c)2 sin2

✓ � cos ✓
�

=

q
1� (v/c)2 sin2

✓ + cos ✓
�

vt

q
1� (v/c)2 sin2

✓
⇥
1� (v/c)2 sin2

✓ � cos2 ✓
⇤ =

1
vt sin2

✓(1� v2/c2)

2

41 +
cos ✓q

1� (v/c)2 sin2
✓

3

5.

So

p(t) =
q1q2v(1� v

2
/c

2) ẑ
8⇡c2✏0

1
vt(1� v2/c2)

Z ⇡

0

1
sin2

✓

2

41 +
cos ✓q

1� (v/c)2 sin2
✓

3

5 sin3
✓ d✓

=
q1q2 ẑ

8⇡c2✏0t

8
<

:

Z ⇡

0
sin ✓ d✓ +

c

v

Z ⇡

0

cos ✓ sin ✓q
(c/v)2 � sin2

✓

d✓

9
=

; .

But
R ⇡
0 sin ✓ d✓ = 2. In the second integral let u ⌘ cos ✓, so du = � sin ✓ d✓:Z ⇡

0

cos ✓ sin ✓q
(c/v)2 � sin2

✓

d✓ =
Z 1

�1

up
(c/v)2 � 1 + u2

du = 0 (the integrand is odd, and the interval is even).

Conclusion: p(t) =
µ0q1q2

4⇡t
ẑ (plus a term constant in time).

(d)

F12 + F21 =
1

4⇡✏0
q1q2

v2t2
ẑ� 1

4⇡✏0
q1q2(1� v

2
/c

2)
v2t2

ẑ =
q1q2

4⇡✏0v2t2

✓
1� 1 +

v
2

c2

◆
ẑ =

q1q2

4⇡✏0c2t2
ẑ =

µ0q1q2

4⇡t2
ẑ.

�dp

dt
=

µ0q1q2

4⇡t2
ẑ = F12 + F21. qed

Since q1 is at rest, and q2 is moving at constant velocity, there must be another force (Fmech) acting on
them, to balance F12 + F21; what we have found is that Fmech = dpem/dt, which means that the impulse
imparted to the system by the external force ends up as momentum in the fields. [For further discussion of
this problem see J. J. G. Scanio, Am. J. Phys. 43, 258 (1975).]
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Problem 10.33

Maxwell’s equations with magnetic charge read:

(i) r ·E = 1
✏0
⇢e, (iii) r⇥E = �µ0Jm �

@B

@t
,

(ii) r ·B = µ0⇢m, (iv) r⇥B = µ0Je + µ0✏0
@E

@t
,

where ⇢e is the electric charge density, ⇢m is the magnetic charge density, Je is the electric current density,
and Jm is the magnetic current density.

If there are only electric charges and currents, then the usual potential formulation applies (Section 10.1.1),
with E = �rVe � @Ae/@t, B = r⇥Ae. If there are only magnetic charges and currents,

(i) r ·E = 0, (iii) r⇥E = �µ0Jm �
@B

@t
,

(ii) r ·B = µ0⇢m, (iv) r⇥B = µ0✏0
@E

@t
.

This time equation (i) says that E can be expressed as the curl of a vector potential: E = �r ⇥ Am, and
plugging this into (iv) yields r⇥ (B + µ0✏0@Am/@t) = 0, which tells us that the quantity in parentheses can
be represented as the gradient of a scalar: B = �rVm�µ0✏0@Am/@t. [The signs of Vm and Am are arbitrary,
but I think this choice yields the most symmetrical formulation.] Putting these into (ii) and (iii) yields

22
Vm = �µ0⇢m � µ0✏0

@

@t

✓
r ·Am +

@Vm

@t

◆
, 22

Am = �µ0Jm + r
✓

r ·Am +
@Vm

@t

◆
.

The “Lorenz gauge” for the magnetic potentials, r ·Am = �@Vm/@t, kills the terms in parentheses.
In general, if there are both electric and magnetic charges and currents present, the total fields are the sums

(by the superposition principle):

E = �rVe �
@Ae

@t
�r⇥Am, B = �rVm � µ0✏0

@Am

@t
+r⇥Ae.

If we choose to work in the Lorenz gauge:

r ·Ae = �µ0✏0
@Ve

@t
, r ·Am = �@Vm

@t
,

Maxwell’s equations become (in terms of the potentials)

22
Ve = � 1

✏0
⇢e, 22

Vm = �µ0⇢m, 22
Ae = �µ0Je, 22

Am = �µ0Jm,

and the retarded solutions are

Ve(r, t) =
1

4⇡✏0

Z
⇢e(r0, tr)

r d⌧
0
, Vm(r, t) =

µ0

4⇡

Z
⇢m(r0, tr)

r d⌧
0
,

Ae(r, t) =
µ0

4⇡

Z
Je(r0, tr)

r d⌧
0
, Am(r, t) =

µ0

4⇡

Z
Jm(r0, tr)

r d⌧
0
.
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Problem 10.34

The retarded potentials are

V (r, t) =
1

4⇡✏0

Z
⇢(r0, tr)

r d⌧
0
, A(r, t) =

µ0

4⇡

Z
J(r0, tr)

r d⌧
0
.

We want a source localized at the origin, so we expand in powers of r
0, keeping terms up to first order:

r2 = (r� r
0) · (r� r

0) = r
2 � 2r · r0 + (r0)2,

r ⇡ r

✓
1� r · r0

r2

◆
,

1
r ⇡ 1

r

✓
1 +

r · r0

r2

◆
,

t� r
c
⇡ t� r

c
+

r · r0

rc
= t0 +

r · r0

rc
,

where t0 ⌘ t� r/c is the retarded time for a source at the origin. Thus (Taylor expanding about t0)

⇢(r0, tr) = ⇢

✓
r
0
, t� r

c

◆
⇡ ⇢(r0, t0) +

r · r0

rc
⇢̇(r0, t0),

⇢(r0, tr)
r =

1
r

✓
1 +

r · r0

r2

◆
⇢(r0, t0) +

r · r0

rc
⇢̇(r0, t0)

�
⇡ 1

r
⇢(r0, t0) +

r · r0

r3
⇢(r0, t0) +

r · r0

r2c
⇢̇(r0, t0),

and hence
V (r, t) =

1
4⇡✏0


1
r

Z
⇢(r0, t0) d⌧

0 +
r

r3
·
Z

r
0
⇢(r0, t0) d⌧

0 +
r

r2c
·
Z

r
0
⇢̇(r0, t0) d⌧

0
�

.

The first integral is the total charge of the dipole, which is zero; the second integral is the dipole moment, and
the third is the time derivative of the dipole moment:

V (r, t) =
1

4⇡✏0
r̂

r2
·
h
p(t0) +

r

c
ṗ(t0)

i
.

By the same reasoning, the vector potential is

A(r, t) =
µ0

4⇡


1
r

Z
J(r0, t0) d⌧

0 +
1
r3

Z
(r · r0)J(r0, t0) d⌧

0 +
1

r2c

Z
(r · r0)J̇(r0, t0) d⌧

0
�

.

From Eq. 5.31
Z

J(r0, t) d⌧
0 = ṗ(t), and J = ⇢v

0 = ⇢(dr0/dt) is already first order in r
0, so the second and

third integrals are second order, and we drop them.

A(r, t) =
µ0

4⇡


ṗ(t0)

r

�
.

In calculating the fields, remember that the dipole moments themselves depend on r, through their argument
(t0 = t� r/c). For a function of t0 alone,

rf(t0) =
df

dt0
rt0 = ḟ

✓
�1

c
rr

◆
= �1

c
ḟ r̂,
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so you simply replace r by � r̂

c

d

dt
. For a structure of the form

h
f(t0) +

r

c
ḟ(t0)

i

r
h
f(t0) +

r

c
ḟ(t0)

i
= � r̂

c
ḟ +

r

c

✓
� r̂

c
f̈

◆
+

ḟ

c
r̂ = � r

c2
f̈ .

Using the product rule for r(A ·B):

rV =
1

4⇡✏0

⇢
r̂

r2
⇥
⇣
r⇥

h
p +

r

c
ṗ

i⌘
+
h
p +

r

c
ṗ

i
⇥
✓

r⇥ r̂

r2

◆
+
✓

r̂

r2
·r
◆h

p +
r

c
ṗ

i
+
⇣h

p +
r

c
ṗ

i
·r
⌘

r̂

r2

�

=
1

4⇡✏0

⇢
r̂

r2
⇥
⇣
� r

c2
⇥ p̈

⌘
+ 0 +


r̂

r2
·
⇣
� r

c2

⌘�
p̈ +

1
r3

⇣h
p +

r

c
ṗ

i
� 3r̂

⇣
r̂ ·
h
p +

r

c
ṗ

i⌘⌘�

=
1

4⇡✏0

⇢
� r̂(r̂ · p̈)

rc2
+

[p + (r/c)ṗ]� 3r̂(r̂ · [p + (r/c)ṗ])
r3

�
.

The others are easier:

r⇥A =
µ0

4⇡


1
r
(r⇥ ṗ)� ṗ⇥

✓
r1

r

◆�
=

µ0

4⇡


1
r

✓
� r̂

c
⇥ p̈

◆
+
✓
ṗ⇥ r̂

r2

◆�
= �µ0

4⇡

⇢
r̂⇥ [(ṗ + (r/c)p̈]

r2

�
,

@A

@t
=

µ0

4⇡

✓
p̈

r

◆
.

The fields are therefore

E(r, t) = �rV � @A

@t
= �µ0

4⇡

⇢
p̈� r̂(r̂ · p̈)

r
+ c

2 [p + (r/c)ṗ]� 3r̂(r̂ · [p + (r/c)ṗ])
r3

�
,

B(r, t) = r⇥A = �µ0

4⇡

⇢
r̂⇥ [ṗ + (r/c)p̈]

r2

�

(with all dipole moments evaluated at the retarded time t0 = t� r/c).
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Chapter 11

Radiation

Problem 11.1

From Eq. 11.17, A = �µ0p0!

4⇡
1
r

sin[!(t� r/c)](cos ✓ r̂� sin ✓ ✓̂), so

r ·A = �µ0p0!

4⇡

⇢
1
r2

@

@r


r
2 1
r

sin[!(t� r/c)] cos ✓
�

+
1

r sin ✓
@

@✓


� sin2

✓
1
r

sin[!(t� r/c)]
��

= �µ0p0!

4⇡

⇢
1
r2

⇣
sin[!(t� r/c)]� !r

c
cos[!(t� r/c)]

⌘
cos ✓ � 2 sin ✓ cos ✓

r2 sin ✓
sin[!(t� r/c)]

�

= µ0✏0

⇢
p0!

4⇡✏0

✓
1
r2

sin[!(t� r/c)] +
!

rc
cos[!(t� r/c)]

◆
cos ✓

�
.

Meanwhile, from Eq. 11.12,

@V

@t
=

p0 cos ✓
4⇡✏0r

⇢
�!

2

c
cos[!(t� r/c)]� !

r
sin[!(t� r/c)]

�

= � p0!

4⇡✏0

⇢
1
r2

sin[!(t� r/c)] +
!

rc
cos[!(t� r/c)]

�
cos ✓. So r ·A = �µ0✏0

@V

@t
. qed

Problem 11.2

Eq. 11.14: V (r, t) = � !

4⇡✏0c
p0 · r̂

r
sin[!(t� r/c)]. Eq. 11.17: A(r, t) = �µ0!

4⇡
p0

r
sin[!(t� r/c)].

Now p0 ⇥ r̂ = p0 sin ✓ �̂ and r̂⇥ (p0 ⇥ r̂) = p0 sin ✓(r̂⇥ �̂) = �p0 sin ✓ ✓̂, so

Eq. 11.18: E(r, t) =
µ0!

2

4⇡
r̂⇥ (p0 ⇥ r̂)

r
cos[!(t� r/c)]. Eq. 11.19: B(r, t) = �µ0!

2

4⇡c

(p0 ⇥ r̂)
r

cos[!(t� r/c)].

Eq. 11.21: hSi =
µ0!

4

32⇡2c

(p0 ⇥ r̂)2

r2
r̂.

Problem 11.3

P = I
2
R = q

2
0!

2 sin2(!t)R (Eq. 11.15)) hP i = 1
2q

2
0!

2
R. Equate this to Eq. 11.22:

1
2
q
2
0!

2
R =

µ0q
2
0d

2
!

4

12⇡c
) R =

µ0d
2
!

2

6⇡c
; or, since ! =

2⇡c

�
,

R =
µ0d

2

6⇡c

4⇡2
c
2

�2
=

2
3
⇡µ0c

✓
d

�

◆2

=
2
3
⇡(4⇡ ⇥ 10�7)(3⇥ 108)

✓
d

�

◆2

= 80⇡2

✓
d

�

◆2

⌦ = 789.6(d/�)2 ⌦.

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



232 CHAPTER 11. RADIATION

For the wires in an ordinary radio, with d = 5⇥10�2 m and (say) � = 103 m, R = 790(5⇥10�5)2 = 2⇥10�6 ⌦,
which is negligible compared to the Ohmic resistance.

Problem 11.4

By the superposition principle, we can add the potentials of the two dipoles. Let’s first express V (Eq. 11.14)

in Cartesian coordinates: V (x, y, z, t) = � p0!

4⇡✏0c

✓
z

x2 + y2 + z2

◆
sin[!(t�r/c)]. That’s for an oscillating dipole

along the z axis. For one along x or y, we just change z to x or y. In the present case,

p = p0[cos(!t) x̂ + cos(!t� ⇡/2) ŷ], so the one along y is delayed by a phase angle ⇡/2:

sin[!(t� r/c)]! sin[!(t� r/c)� ⇡/2] = � cos[!(t� r/c)] (just let !t! !t� ⇡/2). Thus

V = � p0!

4⇡✏0c

⇢
x

x2 + y2 + z2
sin[!(t� r/c)]� y

x2 + y2 + z2
cos[!(t� r/c)]

�

= � p0!

4⇡✏0c
sin ✓

r
{cos� sin[!(t� r/c)]� sin� cos[!(t� r/c)]} . Similarly,

A = �µ0p0!

4⇡r
{sin[!(t� r/c)] x̂� cos[!(t� r/c)] ŷ} .

We could get the fields by di↵erentiating these potentials, but I prefer to work with Eqs. 11.18 and 11.19,
using superposition. Since ẑ = cos ✓ r̂� sin ✓ ✓̂, and cos ✓ = z/r, Eq. 11.18 can be written

E =
µ0p0!

2

4⇡r
cos[!(t� r/c)]

⇣
ẑ� z

r
r̂

⌘
. In the case of the rotating dipole, therefore,

E =
µ0p0!

2

4⇡r

n
cos[!(t� r/c)]

⇣
x̂� x

r
r̂

⌘
+ sin[!(t� r/c)]

⇣
ŷ � y

r
r̂

⌘o
,

B =
1
c
(r̂⇥E).

S =
1
µ0

(E⇥B) =
1

µ0c
[E⇥ (r̂⇥E)] =

1
µ0c

⇥
E

2
r̂� (E · r̂)E

⇤
=

E
2

µ0c
r̂ (notice that E · r̂ = 0). Now

E
2 =

✓
µ0p0!

2

4⇡r

◆2 �
a
2 cos2[!(t� r/c)] + b

2 sin2[!(t� r/c)] + 2(a · b) sin[!(t� r/c)] cos[!(t� r/c)]
 

,

where a ⌘ x̂� (x/r)r̂ and b ⌘ ŷ � (y/r)r̂. Noting that x̂ · r = x and ŷ · r = y, we have
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a
2 = 1 +

x
2

r2
� 2

x
2

r2
= 1� x

2

r2
; b

2 = 1� y
2

r2
; a · b = �y

r

x

r
� x

r

y

r
+

xy

r2
= �xy

r2
.

E
2 =

✓
µ0p0!

2

4⇡r

◆2⇢✓
1� x

2

r2

◆
cos2[!(t� r/c)] +

✓
1� y

2

r2

◆
sin2[!(t� r/c)]

� 2
xy

r2
sin[!(t� r/c)] cos[!(t� r/c)]

o

=
✓

µ0p0!
2

4⇡r

◆2⇢
1� 1

r2

�
x

2 cos2[!(t� r/c)] + 2xy sin[!(t� r/c)] cos[!(t� r/c)] + y
2 sin2[!(t� r/c)]

��

=
✓

µ0p0!
2

4⇡r

◆2⇢
1� 1

r2
(x cos[!(t� r/c)] + y sin[!(t� r/c)])2

�

But x = r sin ✓ cos� and y = r sin ✓ sin�.

=
✓

µ0p0!
2

4⇡r

◆2 n
1� sin2

✓ (cos� cos[!(t� r/c)] + sin� sin[!(t� r/c)])2
o

=
✓

µ0p0!
2

4⇡r

◆2 n
1� (sin ✓ cos[!(t� r/c)� �])2

o
.

S =
µ0

c

✓
p0!

2

4⇡r

◆2 n
1� (sin ✓ cos[!(t� r/c)� �])2

o
r̂.

hSi =
µ0

c

✓
p0!

2

4⇡r

◆2 
1� 1

2
sin2

✓

�
r̂.

P =
Z
hSi · da =

µ0

c

✓
p0!

2

4⇡

◆2 Z 1
r2

✓
1� 1

2
sin2

✓

◆
r
2 sin ✓ d✓ d�

=
µ0p

2
0!

4

16⇡2c
2⇡
Z ⇡

0
sin ✓ d✓ � 1

2

Z ⇡

0
sin3

✓ d✓

�
=

µ0p
2
0!

4

8⇡c

✓
2� 1

2
· 4
3

◆
=

µ0p
2
0!

4

6⇡c
.

This is twice the power radiated by either oscillating dipole alone (Eq. 11.22). In general, S =
1
µ0

(E⇥B) =

1
µ0

[(E1 + E2)⇥ (B1 + B2)] =
1
µ0

[(E1 ⇥B1) + (E2 ⇥B2) + (E1 ⇥B2) + (E2 ⇥B1)] = S1 + S2+ cross terms.

In this particular case the fields of 1 and 2 are 90� out of phase, so the cross terms go to zero in the time
averaging, and the total power radiated is just the sum of the two individual powers.

Problem 11.5

Go back to Eq. 11.33:

A =
µ0m0

4⇡

✓
sin ✓

r

◆⇢
1
r

cos[!(t� r/c)]� !

c
sin[!(t� r/c)]

�
�̂.
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Since V = 0 here,

E = �@A
@t

= �µ0m0

4⇡

✓
sin ✓

r

◆⇢
1
r
(�!) sin[!(t� r/c)]� !

c
! cos[!(t� r/c)]

�
�̂

=
µ0m0!

4⇡

✓
sin ✓

r

◆⇢
1
r

sin[!(t� r/c)] +
!

c
cos[!(t� r/c)]

�
�̂.

B = r⇥A =
1

r sin ✓
@

@✓
(A� sin ✓) r̂� 1

r

@

@r
(rA�) ✓̂

=
µ0m0

4⇡

⇢
1

r sin ✓
2 sin ✓ cos ✓

r


1
r

cos[!(t� r/c)]� !

c
sin[!(t� r/c)]

�
r̂

� sin ✓
r


� 1

r2
cos[!(t� r/c)] +

!

rc
sin[!(t� r/c)]� !

c

⇣
�!

c

⌘
cos[!(t� r/c)]

�
✓̂

�

=

µ0m0

4⇡

n2 cos ✓
r2


1
r

cos[!(t� r/c)]� !

c
sin[!(t� r/c)]

�
r̂

� sin ✓
r


� 1

r2
cos[!(t� r/c)] +

!

rc
sin[!(t� r/c)] +

⇣
!

c

⌘2
cos[!(t� r/c)]

�
✓̂
o

.

These are precisely the fields we studied in Prob. 9.35, with A! µ0m0!
2

4⇡c
. The Poynting vector (quoting

the solution to that problem) is

S =
µ0m

2
0!

3

16⇡2c2

✓
sin ✓
r2

◆n2 cos ✓
r

✓
1� c

2

!2r2

◆
sinu cos u +

c

!r

�
cos2 u� sin2

u
��

✓̂

sin ✓
✓
�2

r
+

c
2

!2r3

◆
sinu cos u +

!

c
cos2 u +

c

!r2

�
sin2

u� cos2 u
��

r̂

o
,

where u ⌘ �!(t� r/c). The intensity is hSi =
µ0m

2
0!

4

32⇡2c3

sin2
✓

r2
r̂, the same as Eq. 11.39.

Problem 11.6

I
2
R = I

2
0R cos2(!t)) hP i =

1
2
I
2
0R =

µ0m
2
0!

4

12⇡c3
=

µ0⇡
2
b
4
I
2
0!

4

12⇡c3
, so R =

µ0⇡b
4
!

4

6c3
; or, since ! =

2⇡c

�
,

R =
µ0⇡b

4

6c3

16⇡4
c
4

�4
=

8
3
⇡

5
µ0c

✓
b

�

◆4

=
8
3
(⇡5)(4⇡ ⇥ 10�7)(3⇥ 108)(b/�)4 = 3.08⇥ 105(b/�)4 ⌦.

Because b ⌧ �, and R goes like the fourth power of this small number, R is typically much smaller than the
electric radiative resistance (Prob. 11.3). For the dimensions we used in Prob. 11.3 (b = 5 cm and � = 103 m),
R = 3⇥ 105(5⇥ 10�5)4 = 2⇥ 10�12 ⌦, which is a millionth of the comparable electrical radiative resistance.
Problem 11.7

With ↵ = 90�, Eq. 7.68 ) E
0 = cB, B

0 = �E/c, q
0
m = �cqe ) m0 ⌘ q

0
md = �cqed = �cp0. So

E
0 = c

⇢
�µ0(�m0/c)!2

4⇡c

✓
sin ✓

r

◆
cos[!(t� r/c)] �̂

�
=

µ0m0!
2

4⇡c

✓
sin ✓

r

◆
cos[!(t� r/c)] �̂.

B
0 = �1

c

⇢
�µ0(�m0/c)!2

4⇡

✓
sin ✓

r

◆
cos[!(t� r/c)] ✓̂

�
= �µ0m0!

2

4⇡c2

✓
sin ✓

r

◆
cos[!(t� r/c)] ✓̂.
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These are identical to the fields of an Ampére dipole (Eqs. 11.36 and 11.37), which is consistent with our
general experience that the two models generate identical fields except right at the dipole (not relevant here,
since we’re in the radiation zone).
Problem 11.8

(a) The power radiated (Eq. 11.60) is
dWr

dt
=

µ0

6⇡c
p̈
2
. In this case p = Qd, so p̈ = Q̈d = Q0

✓
1

RC

◆2

e
�t/RC

d,

so
dWr

dt
=

µ0

6⇡c

(Q0d)2

(RC)4
e
�2t/RC , and the total energy radiated is

Wr =
µ0

6⇡c

(Q0d)2

(RC)4

Z 1

0
e
�2t/RC

dt =
µ0

6⇡c

(Q0d)2

(RC)4


�RC

2
e
�2t/RC

� ����
1

0

=
µ0

6⇡c

(Q0d)2

(RC)4
RC

2
=

µ0

12⇡c

(Q0d)2

(RC)3
.

The fraction of the original energy that is radiated is therefore

f =
Wr

W0
=

µ0

12⇡c

(Q0d)2

(RC)3
2C

Q
2
0

=
µ0

6⇡c

d
2

R3C2
.

[Technically, Q̇(t) is discontinuous at t = 0, and Q̈ picks up a delta function. But any real circuit has some
(self-)inductance, which smoothes out the sudden change in Q̇.]

(b) With the parameters given,

f =
4⇡ ⇥ 10�7

6⇡(3⇥ 108)
10�8

(106)(10�24)
= 2.22⇥ 10�6

.

About a millionth of the total energy is radiated away, so yes, this is negligible.

Problem 11.9

p(t) = p0[cos(!t) x̂ + sin(!t) ŷ]) p̈(t) = �!2
p0[cos(!t) x̂ + sin(!t) ŷ])

[p̈(t)]2 = !
4
p
2
0[cos2(!t) + sin2(!t)] = p

2
0!

4
. So Eq. 11.59 says S =

µ0p
2
0!

4

16⇡2c

sin2
✓

r2
r̂. (This appears to disagree

with the answer to Prob. 11.4. The reason is that in Eq. 11.59 the polar axis is along the direction of p̈(t0);
as the dipole rotates, so do the axes. Thus the angle ✓ here is not the same as in Prob. 11.4.) Meanwhile,

Eq. 11.60 says P =
µ0p

2
0!

4

6⇡c
. (This does agree with Prob. 11.4, because we have now integrated over all angles,

and the orientation of the polar axis irrelevant.)
Problem 11.10

At t = 0 the dipole moment of the ring is

p0 =
Z
�r dl =

Z
(�0 sin�)(b sin� ŷ + b cos� x̂)b d� = �0b

2

✓
ŷ

Z 2⇡

0
sin2

� d�+ x̂

Z 2⇡

0
sin� cos� d�

◆

= �b
2(⇡ ŷ + 0 x̂) = ⇡b

2
�0 ŷ.

As it rotates (counterclockwise, say) p(t) = p0[cos(!t) ŷ � sin(!t) x̂], so p̈ = �!2
p, and hence (p̈)2 = !

4
p
2
0.

Therefore (Eq. 11.60) P =
µ0

6⇡c
!

4(⇡b
2
�0)2 =

⇡µ0!
4
b
4
�

2
0

6c
.
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Problem 11.11

Here V = 0 (since the ring is neutral), and the current depends only on t (not on position), so the retarded

vector potential (Eq. 11.52) is A(r, t) =
µ0

4⇡

I
I(t� r /c)

r dl
0. But in this case it does not su�ce to replace

r by r in the denominator—that would lead to Eq. 11.54, and hence to A = 0 (since p = 0). Instead, use

Eq. 11.30:
1
r
⇠=

1
r

✓
1 +

b

r
sin ✓ cos�0

◆
. Meanwhile, dl

0 = b d�
0�̂ = b(� sin�0 x̂ + cos�0 ŷ) d�

0, and

I(t� r /c) ⇠= I(t� r/c + (b/c) sin ✓ cos�0) = I(t0 + (b/c) sin ✓ cos�0) ⇠= I(t0) + İ(t0)
b

c
sin ✓ cos�0

(carrying all terms to first order in b). As always, t0 = t � r/c. (From now on I’ll suppress the argument: I,
İ, etc. are all to be evaluated at t0.) Then

A(r, t) =
µ0

4⇡

I
1
r

✓
1 +

b

r
sin ✓ cos�0

◆✓
I + İ

b

c
sin ✓ cos�0

◆
b(� sin�0 x̂ + cos�0 ŷ) d�

0

⇠=
µ0b

4⇡r

Z 2⇡

0


I + İ

b

c
sin ✓ cos�0 + I

b

r
sin ✓ cos�0

�
(� sin�0 x̂ + cos�0 ŷ) d�

0
.

But
Z 2⇡

0
sin�0 d�0 =

Z 2⇡

0
cos�0 d�0 =

Z 2⇡

0
sin�0 cos�0 d�0 = 0, while

Z 2⇡

0
cos2 �0 d�0 = ⇡.

=
µ0b

4⇡r
(⇡ ŷ)


İ
b

c
sin ✓ + I

b

r
sin ✓

�
=

µ0b
2

4r2
sin ✓

⇣
I +

r

c
İ

⌘
ŷ.

In general (i.e. for points not on the x z plane) ŷ ! �̂; moreover, in the radiation zone we are not interested

in terms that go like 1/r
2, so A(r, t) =

µ0b
2

4c

h
İ(t� r/c)

i sin ✓
r

�̂.

E(r, t) = �@A
@t

= �µ0b
2

4c

h
Ï(t� r/c)

i sin ✓
r

�̂.

B(r, t) = r⇥A =
1

r sin ✓
@

@✓
(A� sin ✓) r̂� 1

r

@

@r
(rA�) ✓̂

=
µ0b

2

4c

"
İ

r sin ✓
1
r
2 sin ✓ cos ✓ r̂� 1

r
Ï

✓
�1

c

◆
sin ✓ ✓̂

#
=

µ0b
2

4c2
Ï
sin ✓

r
✓̂.

S =
1
µ0

(E⇥B) =
1

µ0c

✓
µ0b

2

4c
Ï
sin ✓

r

◆2 ⇣
��̂⇥ ✓̂

⌘
=

µ0

16c3

⇣
b
2
Ï

⌘2 sin2
✓

r2
r̂.

P =
Z

S · da =
µ0

16c3

⇣
b
2
Ï

⌘2
Z

sin2
✓

r2
r
2 sin ✓ d✓ d� =

µ0

16c3

⇣
b
2
Ï

⌘2
(2⇡)

✓
4
3

◆
=

µ0⇡

6c3

⇣
b
2
Ï

⌘2

=
µ0m̈

2

6⇡c3
. (Note that m = I⇡b

2
, so m̈ = Ï⇡b

2
.)

Problem 11.12

p = �ey ŷ, y = 1
2gt

2
, so p = � 1

2get
2
ŷ; p̈ = �ge ŷ. Therefore (Eq. 11.60) :P =

µ0

6⇡c
(ge)2. Now, the time

it takes to fall a distance h is given by h = 1
2gt

2 ) t =
p

2h/g, so the energy radiated in falling a distance h
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is Urad = Pt =
µ0(ge)2

6⇡c

p
2h/g. Meanwhile, the potential energy lost is Upot = mgh. So the fraction is

f =
Urad

Upot
=

µ0g
2
e
2

6⇡c

s
2h

g

1
mgh

=
µ0e

2

6⇡mc

r
2g

h
. =

(4⇡ ⇥ 10�7)(1.6⇥ 10�19)2

6⇡(9.11⇥ 10�31)(3⇥ 108)

s
(2)(9.8)
(0.01)

= 2.76⇥ 10�22
.

Evidently almost all the energy goes into kinetic form (as indeed I assumed in saying y = 1
2gt

2).

Problem 11.13

The power radiated (Eq. 11.70) is
dWr

dt
=

µ0q
2
a
2

6⇡c
. Here F =

1
4⇡✏0

qQ

x2
= ma, so a =

k

x2
, where k ⌘ qQ

4⇡✏0m
.

The energy radiated (twice that radiated on the way out) is

Wr =
µ0q

2

6⇡c

Z
k

2

x4
dt =

µ0q
2

6⇡c
2k

2

Z 1

x0

1
x4

1
v

dx,

where x0 is the distance of closest approach. Conservation of energy (ignoring radiative losses, as suggested)
says

1
2
mv

2
0 =

1
2
mv

2 +
1

4⇡✏0
qQ

x
) v

2 = v
2
0 � 2

qQ

4⇡✏0m
1
x

= v
2
0 �

2k

x
, and x0 =

2k

v
2
0

(note that q is at x0 when v = 0). So

Wr =
µ0q

2

6⇡c
2k

2

Z 1

x0

1
x4
p

v
2
0 � 2k/x

dx =
µ0q

2

6⇡c

2k
2

p
2k

Z 1

x0

1
x4
p

(1/x0)� (1/x)
dx =

µ0q
2

6⇡c

2k
2

p
2k

16

15x
5/2
0

.

(I used Mathematica to do the integral.) Simplifying,

Wr =
2µ0q

2
v
5
0

45⇡ck
=

2µ0q
2
v
5
0

45⇡c

4⇡✏0m
qQ

=
8qmv

5
0

45c3Q
) f =

Wr

W0
=

8qmv
5
0

45c3Q

2
mv

2
0

=
16q

45Q

⇣
v0

c

⌘3
.

Problem 11.14

F =
1

4⇡✏0
q
2

r2
= ma = m

v
2

r
) v =

s
1

4⇡✏0
q2

mr
. At the beginning (r0 = 0.5 Å),

v

c
=


(1.6⇥ 10�19)2

4⇡(8.85⇥ 10�12)(9.11⇥ 10�31)(5⇥ 10�11)

��1/2 1
3⇥ 108

= 0.0075,

and when the radius is one hundredth of this v/c is only 10 times greater (0.075), so for most of the trip the
velocity is safely nonrelativistic.

From the Larmor formula, P =
µ0q

2

6⇡c

✓
v
2

r

◆2

=
µ0q

2

6⇡c

✓
1

4⇡✏0
q
2

mr2

◆2

(since a = v
2
/r), and P = �dU/dt,

where U is the (total) energy of the electron:

U = Ukin + Upot =
1
2
mv

2 � 1
4⇡✏0

q
2

r
=

1
2

✓
1

4⇡✏0
q
2

r

◆
� 1

4⇡✏0
q
2

r
= � 1

8⇡✏0
q
2

r
.

So �dU

dt
= � 1

8⇡✏0
q
2

r2

dr

dt
= P =

q
2

6⇡✏0c3

✓
1

4⇡✏0
q
2

mr2

◆2

, and hence
dr

dt
= � 1

3c

✓
q
2

2⇡✏0mc

◆2 1
r2

, or
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dt = �3c

✓
2⇡✏0mc

q2

◆2

r
2
dr ) t = �3c

✓
2⇡✏0mc

q2

◆2 Z 0

r0

r
2
dr = c

✓
2⇡✏0mc

q2

◆2

r
3
0

= (3⇥ 108)

2⇡(8.85⇥ 10�12)(9.11⇥ 10�31)(3⇥ 108)

(1.6⇥ 10�19)2

�2
(5⇥ 10�11)3 = 1.3⇥ 10�11 s. (Not very long!)

Problem 11.15

According to Eq. 11.74, the maximum occurs at
d

d✓


sin2

✓

(1� � cos ✓)5

�
= 0. Thus

2 sin ✓ cos ✓
(1� � cos ✓)5

� 5 sin2
✓(� sin ✓)

(1� � cos ✓)6
= 0) 2 cos ✓(1� � cos ✓) = 5� sin2

✓ = 5�(1� cos2 ✓);

2 cos ✓ � 2� cos2 ✓ = 5� � 5� cos2 ✓, or 3� cos2 ✓ + 2 cos ✓ � 5� = 0. So

cos ✓ =
�2±

p
4 + 60�2

6�
=

1
3�

⇣
±
p

1 + 15�2 � 1
⌘
. We want the plus sign, since ✓m ! 90�(cos ✓m = 0) when

� ! 0 (Fig. 11.11): ✓max = cos�1

 p
1 + 15�2 � 1

3�

!
.

For v ⇡ c, � ⇡ 1; write � = 1� ✏ (where ✏⌧ 1), and expand to first order in ✏:

 p
1 + 15�2 � 1

3�

!
=

1
3(1� ✏)

hp
1 + 15(1� ✏)2 � 1

i
⇠=

1
3
(1 + ✏)

hp
1 + 15(1� 2✏)� 1

i

=
1
3
(1 + ✏)

⇥p
16� 30✏� 1

⇤
=

1
3
(1 + ✏)

h
4
p

1� (15✏/8)� 1
i

=
1
3
(1 + ✏)


4
✓

1� 15
16
✏

◆
� 1
�

=
1
3
(1 + ✏)

✓
3� 15

4
✏

◆
= (1 + ✏)(1� 5

4
✏) ⇠= 1 + ✏� 5

4
✏ = 1� 1

4
✏.

Evidently ✓max ⇡ 0, so cos ✓max
⇠= 1� 1

2✓
2
max = 1� 1

4✏) ✓
2
max = 1

2✏, or ✓max
⇠=
p
✏/2 =

p
(1� �)/2.

Let f ⌘
(dP/d⌦|✓m)ur

(dP/d⌦|✓m)rest
=


sin2
✓max

(1� � cos ✓max)5

�

ur

. Now sin2
✓max

⇠= ✏/2, and

(1� � cos ✓max) ⇠= 1� (1� ✏)(1� 1
4✏) ⇠= 1� (1� ✏� 1

4✏) = 5
4✏. So f =

✏/2
(5✏/4)5

=
✓

4
5

◆5 1
2✏4

. But

� =
1p

1� �2
=

1p
1� (1� ✏)2

⇠=
1p

1� (1� 2✏)
=

1p
2✏
) ✏ =

1
2�2

. Therefore

f =
✓

4
5

◆5 1
2
(2�2)4 =

1
4

✓
8
5

◆5

�
8 = 2.62�8

.

Problem 11.16

Equation 11.72 says
dP

d⌦
=

q
2

16⇡2✏0

�� r̂ ⇥ (u⇥ a)
��2

( r̂ · u)5
. Let � ⌘ v/c.

u = c r̂ � v = c r̂ � vẑ) r̂ · u = c� v( r̂ · ẑ) = c� v cos ✓ = c

⇣
1� v

c
cos ✓

⌘
= c(1� � cos ✓);

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



CHAPTER 11. RADIATION 239

a · u = ac(x̂ · r̂ )� av(x̂ · ẑ) = ac sin ✓ cos�; u
2 = u · u = c

2 � 2cv( r̂ · ẑ) + v
2 = c

2 + v
2 � 2cv cos ✓.

r̂ ⇥ (u⇥ a) = ( r̂ · a)u� ( r̂ · u)a;
| r̂ ⇥ (u⇥ a)|2 = ( r̂ · a)2u2 � 2(u · a)( r̂ · a)( r̂ · u) + ( r̂ · u)2a2

= (c2 + v
2 � 2cv cos ✓)(a sin ✓ cos�)2 � 2(ac sin ✓ cos�)(a sin ✓ cos�)(c� v cos ✓) + a

2
c
2(1� � cos ✓)2

= a
2
⇥
c
2(1� � cos ✓)2 + (sin2

✓ cos2 �)(c2 + v
2 � 2cv cos ✓ � 2c

2 + 2cv cos ✓
⇤

= a
2
c
2
⇥
(1� � cos ✓)2 � (1� �2)(sin ✓ cos�)2

⇤
.

dP

d⌦
=

µ0q
2
a
2

16⇡2c

⇥
(1� � cos ✓)2 � (1� �2) sin2

✓ cos2 �
⇤

(1� � cos ✓)5
.

The total power radiated (in all directions) is:

P =
Z

dP

d⌦
d⌦ =

Z
dP

d⌦
sin ✓ d✓ d� =

µ0q
2
a
2

16⇡2c

Z Z ⇥
(1� � cos ✓)2 � (1� �2) sin2

✓ cos2 �
⇤

(1� � cos ✓)5
sin ✓ d✓ d�.

But
Z 2⇡

0
d� = 2⇡ and

Z 2⇡

0
cos2 � d� = ⇡.

=
µ0q

2
a
2

16⇡2c
⇡

Z ⇡

0

⇥
2(1� � cos ✓)2 � (1� �2) sin2

✓
⇤

(1� � cos ✓)5
sin ✓ d✓.

Let w ⌘ (1� � cos ✓). Then (1� w)/� = cos ✓; sin2
✓ =

⇥
�

2 � (1� w)2
⇤
/�

2, and the numerator becomes

2w
2 � (1� �2)

�2
(�2 � 1 + 2w � w

2) =
1
�2

⇥
2w

2
�

2 + (1� �2)2 � 2(1� �2)w + w
2(1� �2)

⇤

=
1
�2

⇥
(1� �2)2 � 2(1� �2)w + (1 + �

2)w2
⇤
;

dw = � sin ✓ d✓ ) sin ✓ d✓ =
1
�

dw. When ✓ = 0, w = (1� �); when ✓ = ⇡, w = (1 + �).

P =
µ0q

2
a
2

16⇡c

1
�3

Z (1+�)

(1��)

1
w5

⇥
(1� �2)2 � 2(1� �2)w + (1 + �

2)w2
⇤
dw. The integral is

Int = (1� �2)2
Z

1
w5

dw � 2(1� �2)
Z

1
w4

dw + (1 + �
2)
Z

1
w3

dw

=

(1� �2)2

✓
� 1

4w4

◆
� 2(1� �2)

✓
� 1

3w3

◆
+ (1 + �

2)
✓
� 1

2w2

◆�����
1+�

1��

.

1
w2

���
1+�

1��
=

1
(1 + �)2

� 1
(1� �)2

=
(1� 2� + �

2)� (1 + 2� + �
2)

(1 + �)2(1� �)2
= � 4�

(1� �2)2
.

1
w3

���
1+�

1��
=

1
(1 + �)3

� 1
(1� �)3

=
(1� 3� + 3�2 � �3)� (1 + 3� + 3�2 + �

3)
(1 + �)3(1� �)3

= �2�(3 + �
2)

(1� �2)3
.

1
w4

���
1+�

1��
=

1
(1 + �)4

� 1
(1� �)4

=
(1� 4� + 6�2 � 4�3 + �

4)� (1 + 4� + 6�2 + 4�3 + �
4)

(1 + �)4(1� �)4
= �8�(1 + �

2)
(1� �2)4

.
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Int = (1� �2)2
✓
�1

4

◆
�8�(1 + �

2)
(1� �2)4

� 2(1� �2)
✓
�1

3

◆
�2�(3 + �

2)
(1� �2)3

+ (1 + �
2)
✓
�1

2

◆
�4�

(1� �2)2

=
2�

(1� �2)2


(1 + �

2)� 2
3
(3 + �

2) + (1 + �
2)
�

=
8
3

�
3

(1� �2)2
.

P =
µ0q

2
a
2

16⇡c

1
�3

8
3

�
3

(1� �2)2
=

µ0q
2
a
2
�

4

6⇡c
, where � =

1p
1� �2

.

Is this consistent with the Liénard formula (Eq. 11.73)? Here v ⇥ a = va(ẑ⇥ x̂) = va ŷ, so

a
2 �

⇣
v

c
⇥ a

⌘2
= a

2

✓
1� v

2

c2

◆
= (1� �2)a2 =

1
�2

a
2, so the Liénard formula says P =

µ0q
2
�

6

6⇡c

a
2

�2
. X

Problem 11.17

(a) To counteract the radiation reaction (Eq. 11.80), you must exert a force Fe = �µ0q
2

6⇡c
ȧ.

For circular motion, r(t) = R [cos(!t) x̂ + sin(!t) ŷ] , v(t) = ṙ = R! [� sin(!t) x̂ + cos(!t) ŷ] ;

a(t) = v̇ = �R!
2 [cos(!t) x̂ + sin(!t) ŷ] = �!2

r; ȧ = �!2
ṙ = �!2

v. So Fe =
µ0q

2

6⇡c
!

2
v.

Pe = Fe · v =
µ0q

2

6⇡c
!

2
v
2
. This is the power you must supply.

Meanwhile, the power radiated is (Eq. 11.70) Prad =
µ0q

2
a
2

6⇡c
, and a

2 = !
4
r
2 = !

4
R

2 = !
2
v
2, so

Prad =
µ0q

2

6⇡c
!

2
v
2, and the two expressions agree.

(b) For simple harmonic motion, r(t) = A cos(!t) ẑ; v = ṙ = �A! sin(!t) ẑ; a = v̇ = �A!
2 cos(!t) ẑ =

�!2
r; ȧ = �!2

ṙ = �!2
v. So Fe =

µ0q
2

6⇡c
!

2
v; Pe =

µ0q
2

6⇡c
!

2
v
2
. But this time a

2 = !
4
r
2 = !

4
A

2 cos2(!t),

whereas !2
v
2 = !

4
A

2 sin2(!t), so

Prad =
µ0q

2

6⇡c
!

4
A

2 cos2(!t) 6= Pe =
µ0q

2

6⇡c
!

4
A

2 sin2(!t);

the power you deliver is not equal to the power radiated. However, since the time averages of sin2(!t) and
cos2(!t) are equal (to wit: 1/2), over a full cycle the energy radiated is the same as the energy input. (In the
mean time energy is evidently being stored temporarily in the nearby fields.)

(c) In free fall, v(t) = 1
2gt

2
ŷ; v = gt ŷ; a = g ŷ; ȧ = 0. So Fe = 0; the radiation reaction is zero, and

hence Pe = 0. But there is radiation: Prad =
µ0q

2

6⇡c
g
2
. Evidently energy is being continuously extracted from

the nearby fields. This paradox persists even in the exact solution (where we do not assume v ⌧ c, as in the
Larmor formula and the Abraham-Lorentz formula)—see Prob. 11.34.

Problem 11.18

(a) From Eq. 11.80, Frad =
µ0q

2

6⇡c
ȧ = m⌧

...
x (Eq. 11.82). The equation of motion is

F = mẍ = Fspring + Frad = �kx + m⌧
...
x, or ẍ + !

2
0x� ⌧ ...x = 0, with !0 =

p
k/m.
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Since the damping is small, it oscillates at the natural frequency !0, and hence ...
x = �!2

0 ẋ, so ẍ+!2
0⌧ ẋ+!2

0x = 0,
or ẍ + �ẋ + !

2
0x = 0, with � = !

2
0⌧. The solution with x(0) = 0 is (for � ⌧ !0)

x(t) = Ae
��t/2 sin(!0t); v(t) = ��

2
Ae

��t/2 sin(!0t) + !0Ae
��t/2 cos(!0t), so v(0) = A!0 = v0 ) A =

v0

!0
,

and x(t) =
v0

!0
e
��t/2 sin(!0t).

According to the Larmor formula (Eq. 11.70), the power radiated is P =
µ0q

2
a
2

6⇡c
. In this case (still assuming

� ⌧ !0)

a = �!2
0x = �!2

0
v0

!0
e
��t/2 sin(!0t), P =

µ0q
2

6⇡c
(!0v0)

2
e
��t sin2(!0t).

Averaging over a full cycle (holding e
��t constant) hP i =

µ0q
2
!

2
0v

2
0

6⇡c
e
��t 1

2
, and the total energy radiated is

Z 1

0
hP i dt =

µ0q
2
!

2
0v

2
0

12⇡c


� 1
�

e
��t

� ����
1

0

=
µ0q

2
!

2
0v

2
0

12⇡c�
=

µ0q
2
!

2
0v

2
0

12⇡c!
2
0⌧

=
µ0q

2
v
2
0

12⇡c

✓
6⇡mc

µ0q
2

◆
=

1
2
mv

2
0 . X

(b) This “equivalent” single oscillator has twice the charge, and twice the mass, so ⌧ (and hence �) is
doubled. Since

R
hP i dt goes like q

2
/�, it also doubles. The power radiated is indeed four times as great, but

the oscillations die away faster, and the total energy radiated is just twice as much as for one oscillator.
Problem 11.19

(a) a = ⌧ ȧ +
F

m
) dv

dt
= ⌧

da

dt
+

F

m
)
Z

dv

dt
dt = ⌧

Z
da

dt
dt +

1
m

Z
F dt.

[v(t0 + ✏)� v(t0 � ✏)] = ⌧ [a(t0 + ✏)� a(t0 � ✏)] +
2✏
m

Fave, where Fave is the average force during the inter-
val. But v is continuous, so as long as F is not a delta function, we are left (in the limit ✏ ! 0) with
[a(t0 + ✏)� a(t0 � ✏)] = 0. Thus a, too, is continuous. qed

(b) (i) a = ⌧ ȧ = ⌧
da

dt
) da

a
=

1
⌧

dt )
Z

da

a
=

1
⌧

Z
dt ) ln a =

t

⌧
+ constant ) a(t) = Ae

t/⌧
, where A

is a constant.
(ii) a = ⌧ ȧ +

F

m
) ⌧

da

dt
= a� F

m
) da

a� F/m
=

1
⌧

dt) ln(a�F/m) =
t

⌧
+ constant) a� F

m
= Be

t/⌧ )

a(t) =
F

m
+ Be

t/⌧
, where B is some other constant.

(iii) Same as (i): a(t) = Ce
t/⌧

, where C is a third constant.
(c) At t = 0, A = F/m + B; at t = T , F/m + Be

T/⌧ = Ce
T/⌧ ) C = (F/m)e�T/⌧ + B. So

a(t) =

8
>>>>>><

>>>>>>:

[(F/m) + B] et/⌧
, t  0;

h
(F/m) + Be

t/⌧
i
, 0  t  T ;

h
(F/m)e�T/⌧ + B

i
e
t/⌧

, t � T.

To eliminate the runaway in region (iii), we’d need B = �(F/m)e�T/⌧ ; to avoid preacceleration in region
(i), we’d need B = �(F/m). Obviously, we cannot do both at once.
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(d) If we choose to eliminate the runaway, then

a(t) =

8
>>>>>><

>>>>>>:

(F/m)
h
1� e

�T/⌧
i
e
t/⌧

, t  0;

(F/m)
h
1� e

(t�T )/⌧
i
, 0  t  T ;

0, t � T.

(i) v = (F/m)
h
1� e

�T/⌧
i Z

e
t/⌧

dt = (F ⌧/m)
h
1� e

�T/⌧
i
e
t/⌧ + D, where D is a constant determined by the

condition v(�1) = 0) D = 0.

(ii) v = (F/m)
h
t� ⌧e(t�T )/⌧

i
+ E, where E is a constant determined by the continuity of v at t = 0:

(F ⌧/m)
h
1� e

�T/⌧
i

= (F/m)
h
�⌧e�T/⌧

i
+ E ) E = (F ⌧/m).

(iii) v is a constant determined by the continuity of v at t = T : v = (F/m)[T + ⌧ � ⌧ ] = (F/m)T.

v(t) =

8
>>>>>><

>>>>>>:

(F ⌧/m)
h
1� e

�T/⌧
i
e
t/⌧

, t  0;

(F/m)
h
t + ⌧ � ⌧e(t�T )/⌧

i
, 0  t  T ;

(F/m)T, t � T.

(e)

Problem 11.20

(a) From Eq.11.80, F
end
rad =

µ0(q/2)2

6⇡c
ȧ, so Frad = F

int
rad + 2F

end
rad =

µ0q
2

6⇡c
ȧ


1
2

+ 2
✓

1
4

◆�
=

µ0q
2

6⇡c
ȧ. X

(b) Following the suggested method:

F (q) = F
int(q) + 2

✓
1
4

◆
F (q) ) 1

2
F (q) = F

int(q) ) F (q) = 2F
int(q) =

µ0q
2
ȧ

6⇡c
. X

(c) Frad =
µ0

12⇡c
ȧ

Z L

0

⇢Z y1

0
2� dy2

�
2� dy1. (Running the y2

integral up to y1 insures that y1 � y2, so we don’t count the
same pair twice. Alternatively, run both integrals from 0 to
L—intentionally double-counting—and divide the result by 2.)
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Frad =
µ0ȧ

12⇡c
(4�2)

Z L

0
y1 dy1 =

µ0ȧ

12⇡c
(4�2)

L
2

2
=

µ0

6⇡c
(�L)2ȧ =

µ0q
2

6⇡c
ȧ. X

Problem 11.21

(a) The total torque is twice the torque on +q; we might as well calculate it at time t = 0. First we
need the electric field at +q, due to �q when it was at the retarded point P (Eq. 10.72). From the figure,
r̂ = cos ✓ x̂ � sin ✓ ŷ, r = 2R cos ✓. The velocity of �q (at P ) was v = �!R (sin 2✓ x̂ + cos 2✓ ŷ), and its
acceleration was a = !

2
R (cos 2✓ x̂� sin 2✓ ŷ) . Quantities we will need in Eq. 10.72 are:

u = c r̂ � v = (c cos ✓ + !R sin 2✓) x̂� (c sin ✓ � !R cos 2✓) ŷ,

r · u = 2R cos ✓(c + !R sin ✓), r · a = 2(!R cos ✓)2.

q x

y

P

q
-q R

r

E =
�q

4⇡✏0
2R cos ✓

(2R cos ✓)3(c + !R sin ✓)3
n

[c2 � (!R)2 + 2(!R cos ✓)2][(c cos ✓ + !R sin 2✓) x̂� (c sin ✓ � !R cos 2✓) ŷ]

� 2R cos ✓(c + !R sin ✓)!2
R (cos 2✓ x̂� sin 2✓ ŷ)

o

The total torque (about the origin) is

N = 2(R x̂)⇥ (qE) =
�2q

2
R

4⇡✏0
ẑ

(2R cos ✓)2(c + !R sin ✓)3
n
�
⇥
c
2 � (!R)2 + 2(!R cos ✓)2

⇤
(c sin ✓ � !R cos 2✓)

+ 2(!R)2 cos ✓(c + !R sin ✓) sin 2✓
o

= � q
2

4⇡✏0
ẑ

2R cos2 ✓(c + !R sin ✓)3
⇥
�c

3 sin ✓ + c
2
!R(2 cos2 ✓ � 1) + c(!R)2(2 cos2 ✓ + 1) sin ✓ + (!R)3

⇤

= � q
2

4⇡✏0
1

2R cos2 ✓(1 + � sin ✓)3
⇥
� sin ✓ + �(2 cos2 ✓ � 1) + �

2(2 cos2 ✓ + 1) sin ✓ + �
3
⇤
ẑ,

where � ⌘ !R/c. [Since E and r both lie in the xy plane, B = (1/c) r̂ ⇥E is along the z direction, v⇥B is
radial, and hence the magnetic contribution to the torque is zero.]

The angle ✓ is determined by the retarded time condition, r = �ctr (note that tr is negative, here), and
2✓ is the angle through which the dipole rotates in time �tr, so 2R cos ✓ = �ctr = c(2✓/!), or ✓ = � cos ✓. We
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can use this to eliminate the trig functions:

N = � q
2

4⇡✏0
�

2R✓2
⇣
1 +

p
�2 � ✓2

⌘3

h
(�4 � �2 + 2✓2) +

p
�2 � ✓2(�2 + 2✓2 � 1)

i
ẑ.

Meanwhile, expanding in powers of ✓:

� = ✓ sec ✓ = ✓ +
1
2
✓
3 +

5
24
✓
5 +

61
720

✓
7 + . . . .

This can be “solved” (for ✓ as a function of �) by reverting the series:

✓ = � � 1
2
�

3 +
13
24
�

5 � 541
720

�
7 + . . . .

Then
✓
2 = �

2

✓
1� �2 +

4
3
�

4 + . . .

◆
,

p
�2 � ✓2 = �

2

✓
1� 2

3
�

2 +
4
5
�

4 + . . .

◆
,

1
✓2

=
1
�2

�
1 + �

2 + . . .
�
,

1
⇣
1 +

p
�2 � ✓2

⌘3 = 1� 3�2 + . . . ,

h
(�4 � �2 + 2✓2) +

p
�2 � ✓2(�2 + 2✓2 � 1)

i
=

8
3
�

4

✓
1� 4

5
�

2 + . . .

◆
.

To leading order in �, then,

N = � q
2

4⇡✏0
�

2R

1
�2

8�4

3
ẑ = � q

2

4⇡✏0
4�3

3R
ẑ.

(b) The radiation reaction force on +q is (Eq. 11.80) F =
µ0q

2

6⇡c
ȧ. In this case ȧ = �!2

v = �!3
R ŷ, so the

net torque (counting both ends) is

N = �2R
µ0q

2

6⇡c
!

3
R ẑ = � q

2

4⇡✏0
4�3

3R
ẑ.

Adding this to the interaction torque from (a), the total is

N = � q
2

4⇡✏0
8�3

3R
ẑ = �µ0p

2
!

3

6⇡c
ẑ.

(c) p̈ = 2qr̈ = 2q(�!2)r = �!2
p, so Eq. 11.60 says the power radiated is P =

µ0

6⇡c
!

4
p
2
. The power

associated with the torque in (b) is N! = �µ0p
2
!

3

6⇡c
!, so they are in agreement. X

Problem 11.22

(a) This is an oscillating electric dipole, with amplitude p0 = qd and frequency ! =
p

k/m. The (averaged)

Poynting vector is given by Eq. 11.21: hSi =
✓

µ0p
2
0!

4

32⇡2c

◆
sin2

✓

r2
r̂, so the power per unit area of floor is

If = hSi · ẑ =
✓

µ0p
2
0!

4

32⇡2c

◆
sin2

✓ cos ✓
r2

. But sin ✓ =
R

r
, cos ✓ =

h

r
, and r

2 = R
2 + h

2
.

=
✓

µ0q
2
d
2
!

4

32⇡2c

◆
R

2
h

(R2 + h2)5/2
.
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dIf

dR
= 0) d

dR


R

2

(R2 + h2)5/2

�
= 0) 2R

(R2 + h2)5/2
� 5

2
R

2

(R2 + h2)7/2
2R = 0)

(R2 + h
2)� 5

2
R

2 = 0) h
2 =

3
2
R

2 ) R =
p

2/3h, for maximum intensity.
(b)

P =
Z

If (R) da =
Z

If (R) 2⇡R dR = 2⇡
✓

µ0(qd)2!4

32⇡2c

◆
h

Z 1

0

R
3

(R2 + h2)5/2
dR. Let x ⌘ R

2 :
Z 1

0

R
3

(R2 + h2)5/2
dR =

1
2

Z 1

0

x

(x + h2)5/2
dx =

1
2h

�(2)�(1/2)
�(5/2)

=
2
3h

.

= 2⇡
✓

µ0q
2
d
2
!

4

32⇡2c

◆
h

2
3h

=
µ0q

2
d
2
!

4

24⇡c
,

which should be (and is) half the total radiated power (Eq. 11.22)—the rest hits the ceiling, of course.
(c) The amplitude is x0(t), so U = 1

2kx
2
0 is the energy, at time t, and dU/dt = �2P is the power radiated:

1
2
k

d

dt
(x2

0) = �µ0!
4

12⇡c
q
2
x

2
0 )

d

dt
(x2

0) = �µ0!
4
q
2

6⇡kc
(x2

0) = �x2
0 ) x

2
0 = d

2
e
�t or x0(t) = de

�t/2
.

⌧ =
2


=
12⇡kc

µ0q
2k2

m
2 =

12⇡cm
2

µ0q
2k

.

Problem 11.23

(a) From Eq. 11.39, hSi =
✓

µ0m
2
0!

4

32⇡2c3

◆
sin2

✓

r2
r̂. Here sin ✓ =

R/r, r =
p

R2 + h2, and the total radiated power (Eq. 11.40) is

P =
µ0m

2
0!

4

12⇡c3
. So the intensity is I(R) =

✓
12P

32⇡

◆
R

2

(R2 + h2)2
=

3P

8⇡
R

2

(R2 + h2)2
.

(b) The intensity directly below the antenna (R = 0) would (ideally) have been zero. The engineer should

have measured it at the position of maximum intensity:

dI

dR
=

3P

8⇡


2R

(R2 + h2)2
� 2R

2

(R2 + h2)3
2R

�
=

3P

8⇡
2R

(R2 + h2)3
�
R

2 + h
2 � 2R

2
�

= 0) R = h.

At this location the intensity is I(h) =
3P

8⇡
h

2

(2h2)2
=

3P

32⇡h2
.

(c) Imax =
3(35⇥ 103)
32⇡(200)2

= 0.026 W/m2 = 2.6µW/cm2. Yes, KRUD is in compliance.
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Problem 11.24

(a)
V± = ⌥ p0!

4⇡✏0c

✓
cos ✓±

r±

◆
sin[!(t� r±/c)]. Vtot = V+ + V�.

r± =
p

r2 + (d/2)2 ⌥ 2r(d/2) cos ✓ ⇠= r

p
1⌥ (d/r) cos ✓ ⇠= r

✓
1⌥ d

2r
cos ✓

◆
.

1
r±
⇠=

1
r

✓
1± d

2r
cos ✓

◆
.

cos ✓± =
r cos ✓ ⌥ (d/2)

r±
= r

✓
cos ✓ ⌥ d

2r

◆
1
r

✓
1± d

2r
cos ✓

◆
= cos ✓ ± d

2r
cos2 ✓ ⌥ d

2r

= cos ✓ ⌥ d

2r
(1� cos2 ✓) = cos ✓ ⌥ d

2r
sin2

✓.

sin[!(t� r±/c)] = sin
⇢
!


t� r

c

✓
1⌥ d

2r
cos ✓

◆��
= sin

✓
!t0 ±

!d

2c
cos ✓

◆
, where t0 ⌘ t� r/c.

= sin(!t0) cos
✓
!d

2c
cos ✓

◆
± cos(!t0) sin

✓
!d

2c
cos ✓

◆
⇠= sin(!t0)±

!d

2c
cos ✓ cos(!t0).

V± = ⌥ p0!

4⇡✏0cr

⇢✓
1± d

2r
cos ✓

◆✓
cos ✓ ⌥ d

2r
sin2

✓

◆
sin(!t0)±

!d

2c
cos ✓ cos(!t0)

��

= ⌥ p0!

4⇡✏0cr

⇢✓
cos ✓ ⌥ d

2r
sin2

✓ ± d

2r
cos2 ✓

◆
sin(!t0)±

!d

2c
cos ✓ cos(!t0)

��

= ⌥ p0!

4⇡✏0cr


cos ✓ sin(!t0)±

!d

2c
cos2 ✓ cos(!t0)±

d

2r

�
cos2 ✓ � sin2

✓
�
sin(!t0

�
.

Vtot = � p0!

4⇡✏0cr


!d

c
cos2 ✓ cos(!t0) +

d

r

�
cos2 ✓ � sin2

✓
�
sin(!t0)

�

= � p0!
2
d

4⇡✏0c2r

h
cos2 ✓ cos(!t0) +

c

!r

�
cos2 ✓ � sin2

✓
�
sin(!t0

i
.

In the radiation zone (r � !/c) the second term is negligible, so V = � p0!
2
d

4⇡✏0c2r
cos2 ✓ cos[!(t� r/c)].

Meanwhile

A± = ⌥µ0p0!

4⇡r±
sin[!(t� r±/c)] ẑ

= ⌥µ0p0!

4⇡r

⇢✓
1± d

2r
cos ✓

◆
sin(!t0)±

!d

2c
cos ✓ cos(!t0)

��
ẑ

= ⌥µ0p0!

4⇡r


sin(!t0)±

!d

2c
cos ✓ cos(!t0)±

d

2r
cos ✓ sin(!t0)

�
ẑ.

Atot = A+ + A= �
µ0p0!

4⇡r


!d

c
cos ✓ cos(!t0) +

d

r
cos ✓ sin(!t0)

�
ẑ

= �µ0p0!
2
d

4⇡cr
cos ✓

h
cos(!t0) +

c

!r
sin(!t0)

i
ẑ.
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In the radiation zone, A = �µ0p0!
2
d

4⇡cr
cos ✓ cos[!(t� r/c)] ẑ.

(b) To simplify the notation, let ↵ ⌘ �µ0p0!
2
d

4⇡
. Then

V = ↵
cos2 ✓

r
cos[!(t� r/c)];

rV =
@V

@r
r̂ +

1
r

@V

@✓
✓̂ = ↵ cos2 ✓

⇢
� 1

r2
cos[!(t� r/c)] +

!

rc
sin[!(t� r/c)]

�
r̂

+ ↵
�2 cos ✓ sin ✓

r2
cos[!(t� r/c)] ✓̂ = ↵

!

c

cos2 ✓
r

sin[!(t� r/c)] r̂ (in the radiation zone).

A =
↵

c

cos ✓
r

cos[!(t� r/c)]
⇣
cos ✓ r̂� sin ✓ ✓̂

⌘
.

@A

@t
= �↵!

c

cos ✓
r

sin[!(t� r/c)]
⇣
cos ✓ r̂� sin ✓ ✓̂

⌘
.

E = �rV � @A

@t
= �↵!

cr
sin[!(t� r/c)]

⇣
cos2 ✓ r̂� cos2 ✓ r̂ + sin ✓ cos ✓ ✓̂

⌘

= �↵!
cr

sin ✓ cos ✓ sin[!(t� r/c)] ✓̂.

B = r⇥A =
1
r


@

@r
(rA✓)�

@Ar

@✓

�
�̂

=
↵

cr

⇢
@

@r
(cos ✓ cos[!(t� r/c)](� sin ✓))� @

@✓


cos2 ✓

r
cos[!(t� r/c)]

��
�̂

=
↵

cr
(� sin ✓ cos ✓)

!

c
sin[!(t� r/c)] �̂ (in the radiation zone) = �↵!

c2r
sin ✓ cos ✓ sin[!(t� r/c)] �̂.

Notice that B =
1
c
(r̂⇥E) and E · r̂ = 0.

S =
1
µ0

(E⇥B) =
1

µ0c
E⇥ (r̂⇥E) =

1
µ0c

⇥
E

2
r̂� (E · r̂)E

⇤
=

E
2

µ0c
r̂

=
1

µ0c

n
↵!

rc
sin ✓ cos ✓ sin[!(t� r/c)]

o2
r̂. I =

1
2µ0c

⇣
↵!

rc
sin ✓ cos ✓

⌘2
.

P =
Z
hSi · da =

1
µ0c

⇣
↵!

c

⌘2
Z

sin2
✓ cos2 ✓ sin ✓ d✓ d� =

1
2µ0c

⇣
↵!

c

⌘2
2⇡
Z ⇡

0
(1� cos2 ✓) cos2 ✓ sin ✓ d✓.

The integral is : � cos3 ✓
3

���
⇡

0
+

cos5 ✓
5

���
⇡

0
=

2
3
� 2

5
=

4
15

.

=
1

2µ0c

!
2

c2

µ
2
0

16⇡2
(p0d)2!42⇡

4
15

=
µ0

60⇡c3
(p0d)2!6

.

Notice that it goes like !6, whereas dipole radiation goes like !4.
Problem 11.25

(a) m(t) = M cos ẑ + M sin [cos(!t) x̂ + sin(!t) ŷ]. As in Prob. 11.4, the power radiated will be twice
that of an oscillating magnetic dipole with dipole moment of amplitude m0 = M sin . Therefore (quoting

Eq. 11.40): P =
µ0M

2
!

4 sin2
 

6⇡c3
. (Alternatively, you can get this from the answer to Prob. 11.11.)
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(b) From Eq. 5.88, with r ! R, m!M , and ✓ = ⇡/2: B =
µ0

4⇡
M

R3
, so

M =
4⇡R

3

µ0
B =

4⇡(6.4⇥ 106)3(5⇥ 10�5)
4⇡ ⇥ 10�7

= 1.3⇥ 1023 A m2.

(c) P =
(4⇡ ⇥ 10�7)(1.3⇥ 1023)2 sin2(11�)

6⇡(3⇥ 108)3

✓
2⇡

24⇥ 60⇥ 60

◆4

= 4⇥ 10�5 W (not much).

(d) P =
µ0(4⇡R

3
B/µ0)2!4 sin2

 

6⇡c3
=

8⇡
3µ0c

3

�
!

2
R

3
B sin 

�2. Using the average value (1/2) for sin2
 ,

P =
8⇡

3(4⇡ ⇥ 10�7)(3⇥ 108)3

"✓
2⇡

10�3

◆2

(104)3(108)

#2
1
2

= 2⇥ 1036 W (a lot).

Problem 11.26

(a) Write p(t) = q(t)d ẑ, with q(t) = kt
2, where kd = (1/2)p̈0. As in Eq. 11.5,

V (r, t) =
1

4⇡✏0


k(t� r +/c)2

r +
� k(t� r �/c)2

r �

�

=
k

4⇡✏0

"�
t
2 � (2t/c)r + + r 2

+/c
2
�

r +
�
�
t
2 � (2t/c)r � + r 2

+/c
2
�

r �

#

=
k

4⇡✏0


t
2

✓
1

r +
� 1

r �

◆
+

1
c2

(r + � r �)
�

.

From Eqs. 11.8 and 11.9,

r ± = r

✓
1⌥ d

2r
cos ✓

◆
,

1
r ±

=
1
r

✓
1± d

2r
cos ✓

◆
,

so

V (r, t) =
k

4⇡✏0


t
2

r

✓
d

r
cos ✓

◆
� r

c2

✓
d

r
cos ✓

◆�
=

k

4⇡✏0c2
d cos ✓

"✓
ct

r

◆2

� 1

#
=

µ0p̈0

8⇡
cos ✓

"✓
ct

r

◆2

� 1

#
.

As in Eq. 11.15, I(t) = (dq/dt) ẑ = 2kt ẑ, so (following Eqs. 11.16, and 11.17),

A(r, t) =
µ0

4⇡
ẑ

Z d/2

�d/2

2k(t� r /c)
r dz =

µ0

4⇡
2k

(t� r/c)
r

d ẑ =
µ0p̈0

4⇡c

✓
ct

r

◆
� 1
�

ẑ.

E = �rV � @A

@t
= �µ0p̈0

8⇡

(
cos ✓


�2

(ct)2

r3

�
r̂� 1

r
sin ✓

"✓
ct

r

◆2

� 1

#
✓̂

)
� µ0p̈0

4⇡c

⇣
c

r

⌘
ẑ

=
µ0p̈0

4⇡r

"
cos ✓

✓
ct

r

◆2

r̂ +
1
2

sin ✓
✓

ct

r

◆2

✓̂ � 1
2

sin ✓ ✓̂ � (cos ✓ r̂� sin ✓ ✓̂)

#

=
µ0p̈0

4⇡r

("✓
ct

r

◆2

� 1

#
cos ✓ r̂ +

1
2

"✓
ct

r

◆2

+ 1

#
sin ✓ ✓̂

)
.
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B = �r⇥A =
µ0p̈0

4⇡c
r⇥

⇢✓
ct

r

◆
� 1
�

(cos ✓ r̂� sin ✓ ✓̂)
�

=
µ0p̈0

4⇡cr

⇢
� @

@r

✓
r

✓
ct

r

◆
� 1
�

sin ✓
◆
� @

@✓

✓✓
ct

r

◆
� 1
�

cos ✓
◆�

�̂

=
µ0p̈0

4⇡cr

⇢
sin ✓ +

✓
ct

r

◆
� 1
�

sin ✓
�

�̂ =
µ0p̈0t

4⇡r2
sin ✓ �̂.

(b) The Poynting vector is

S =
1
µ0

(E⇥B) =
µ0p̈

2
0t

16⇡2r3
sin ✓

("✓
ct

r

◆2

� 1

#
cos ✓(�✓̂) +

1
2

"✓
ct

r

◆2

+ 1

#
sin ✓ r̂

)
.

S · da =
µ0p̈

2
0t

32⇡2

"✓
ct

r

◆2

+ 1

#
sin2

✓

r3
(r2 sin ✓ d✓ d�).

P (r, t) =
µ0p̈

2
0t

32⇡2r

"✓
ct

r

◆2

+ 1

#
2⇡
Z ⇡

0
sin3

✓ d✓ =
µ0p̈

2
0t

12⇡r

"✓
ct

r

◆2

+ 1

#
.

(c) P (r, t0 + r/c) =
µ0p̈

2
0

12⇡r

⇣
t0 +

r

c

⌘
c
2

r2

✓
t
2
0 + 2t0

r

c
+

r
2

c2

◆
+ 1
�

=
µ0p̈

2
0

12⇡c

✓
1 +

ct0

r

◆"
2 + 2

ct0

r
+
✓

ct0

r

◆2
#

.

Prad(t0) = lim
r!1

P (r, t0 + r/c) =
µ0p̈

2
0

6⇡c
,

in agreement with Eq. 11.60.
Problem 11.27

The momentum flux density is (minus) the Maxwell stress tensor (Section 8.2.3),

Tij = ✏0

✓
EiEj �

1
2
�ijE

2

◆
+

1
µ0

✓
BiBj �

1
2
�ijB

2

◆
,

(Eq. 8.17) so the momentum radiated per unit (retarded) time is

dp

dtr
= �

I
1

(@tr/@t)
$
T · dA,

where (Eq. 10.78)
@tr

@t
=

r c

r · u =
✓

1� r̂ · v
c

◆�1

.

(This factor is 1, when v = 0; it can be ignored in deriving the Larmor formula, but it does contribute to the
momentum radiated.) The integration is over a large spherical surface centered on the charge:

dA = r 2 sin ✓ d✓ d� r̂ .

As in the case of the power radiated, only the radiation fields contribute (Eq. 11.66):

Erad =
q

4⇡✏0
r

(r · u)3
[r ⇥ (u⇥ a)], Brad =

1
c

r̂ ⇥Erad.
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Thus

$
T · dA = ✏0


E(E · dA)� 1

2
E

2
dA

�
+

1
µ0


B(B · dA)� 1

2
B

2
dA

�
= �1

2


✏0E

2 +
1
µ0

B
2

�
dA = �✏0E2

dA

(note that B · dA = 0, and, for radiation fields, E · dA = 0, (1/µ0)B2 = (1/µ0c
2)( r̂ ⇥ E) · ( r̂ ⇥ E) =

✏0 r̂ · [E⇥ ( r̂ ⇥E)] = ✏0 r̂ · [ r̂ E
2 �E( r̂ ·E)] = ✏0E

2). So

dp

dtr
= ✏0

I ✓ r · u
r c

◆
E

2
dA =

q
2

16⇡2✏0c

I r
(r · u)5

[r ⇥ (u⇥ a)]2dA.

We expand the integrand to first order in � ⌘ v/c: u = c r̂ � v = c
� r̂ � �

�
, r · u = cr (1� r̂ · �),

1
(r · u)5

=
1

r 5c5
[1 + 5( r̂ · �)],

r ⇥ (u⇥ a) = u(r · a)� a(r · u) = r c
� r̂ � �

�
( r̂ · a)� ar c(1� r̂ · �)

= r c
⇥ r̂ ( r̂ · a)� a + a( r̂ · �)� �( r̂ · a)

⇤
.

[r ⇥ (u⇥ a)]2 = r 2
c
2
h
( r̂ · a)2 � 2( r̂ · a)2 + a

2 + 2( r̂ · a)2( r̂ · �)� 2( r̂ · �)( r̂ · a)2 � 2a
2( r̂ · �)

+ 2(a · �)( r̂ · a)
i

= r 2
c
2
⇥
a
2 � ( r̂ · a)2 � 2a

2( r̂ · �) + 2( r̂ · a)(a · �)
⇤
.

r
(r · u)5

[r ⇥ (u⇥ a)]2 =
1

r 2c3
[1 + 5( r̂ · �)]

⇥
a
2 � ( r̂ · a)2 � 2a

2( r̂ · �) + 2( r̂ · a)(a · �)
⇤

=
1

r 2c3

⇥
a
2 � ( r̂ · a)2 � 2a

2( r̂ · �) + 2( r̂ · a)(a · �) + 5( r̂ · �)a2 � 5( r̂ · �)( r̂ · a)2
⇤

=
1

r 2c3

⇥
a
2 � ( r̂ · a)2 + 3a

2( r̂ · �) + 2( r̂ · a)(a · �)� 5( r̂ · �)( r̂ · a)2
⇤

=
1

r 2c3

⇥
( r̂ ⇥ a)2 + r̂ · [3a

2� + 2(a · �)a]� 5( r̂ · �)( r̂ · a)2
⇤
.

To integrate the first term we set the polar axis along a, so ( r̂ ⇥ a)2 = a
2 sin2

✓, while r̂ = sin ✓ cos� x̂ +
sin ✓ sin� ŷ + cos ✓ ẑ. The � integral kills the x̂ and ŷ components, leaving

I
1

r 2 ( r̂ ⇥ a)2dA = 2⇡a
2
ẑ

Z ⇡

0
sin3

✓ cos ✓ d✓ = 0.

[Note that if v = 0 then dp/dtr = 0—a particle instantaneously at rest radiates no momentum. That’s why
we had to carry the expansion to first order in �, whereas in deriving the Larmor formula we could a↵ord to
set v = 0.] The second term is of the form ( r̂ · g), for a constant vector g. Setting the polar axis along g, so
r̂ · g = g cos ✓, the x and y components again vanish, leaving

I
1

r 2 ( r̂ · g) dA = 2⇡g ẑ

Z ⇡

0
cos2 ✓ sin ✓ d✓ =

4⇡
3

g.

The last term involves ( r̂ ·�)( r̂ · a)2; this time we orient the polar axis along a and let v lie in the xz plane:
� = �x x̂ + �z ẑ, so ( r̂ · �) = �x sin ✓ cos�+ �z cos ✓. Then
I

1
r 2 ( r̂ ·�)( r̂ ·a)2 dA = a

2

Z
(�x sin ✓ cos�+�z cos ✓) cos2 ✓

⇥
sin ✓ cos� x̂+sin ✓ sin� ŷ+cos ✓ ẑ

⇤
sin ✓ d✓ d�
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= a
2

✓
�x x̂

Z
sin3

✓ cos2 ✓ cos2 � d✓ d�+ �z ẑ

Z
cos4 ✓ sin ✓ d✓ d�

◆
=

4⇡
15

a
2 (�x x̂ + 3�z ẑ) =

4⇡
15
�
a
2� + 2(a · �)a

�
.

Putting all this together,

dp

dtr
=

q
2

16⇡2✏0

1
c4

⇢
4⇡
3
⇥
2a(a · �) + 3a

2�
⇤
� 5

4⇡
15
⇥
a
2� + 2(a · �)a

⇤�
=

µ0q
2

6⇡c3
a
2
v.

The angular momentum radiated is

dL

dtr
= �

I
1

(@tr/@t)

⇣
r ⇥$T

⌘
· dA.

Because of the “extra” r in the integrand, it seems at first glance that the radiation fields alone will produce a
result that grows without limit (as r !1); however, the coe�cient of this term is precisely zero:

⇣
r ⇥$T

⌘
·

dA = �✏0E2 (r ⇥ dA) = 0 (for radiation fields). The finite contribution comes from the cross terms, in which

one field (in $T ) is a radiation field and the other a Coulomb field
✓
Ecoul ⌘

q

4⇡✏0
r

(r · u)3
(c2 � v

2)u
◆

:

Tij = ✏0

⇣
E

(r)
i E

(c)
j + E

(c)
i E

(r)
j � �ijE(r) ·E(c)

⌘
+

1
µ0

⇣
B

(r)
i B

(c)
j + B

(c)
i B

(r)
j � �ijB(r) ·B(c)

⌘
.

This time
$
T · dA = ✏0

h
E

(r)(E(c) · dA)�
⇣
E

(r) ·E(c)
⌘

dA

i
� 1

µ0

⇣
B

(r) ·B(c)
⌘

dA,

so
(r ⇥$T ) · dA = ✏0

⇣
r ⇥E

(r)
⌘⇣

E
(c) · dA

⌘
.

Thus
dL

dtr
= � q

2
c

16⇡2✏0�
2

I r
(r · u)5

n
r ⇥ [r ⇥ (u⇥ a)]

o
u · dA, where � ⌘ 1p

1� (v/c)2
.

Now, {r ⇥ [r ⇥ (u⇥ a)]} = r [r ·(u⇥a)]�(u⇥a)r 2
, and (u⇥a) = c( r̂ ��)⇥a = c

⇥
( r̂ ⇥ a)� (� ⇥ a)

⇤
,

r̂ · (u ⇥ a) = �c r̂ · (� ⇥ a), so {r ⇥ [r ⇥ (u⇥ a)]} = �r 2
c
�
( r̂ ⇥ a)� (� ⇥ a) + r̂ ⇥ r̂ · (� ⇥ a)

⇤ 
.

Meanwhile u · dA = (u · r̂ )r 2
d⌦, where d⌦ ⌘ sin ✓ d✓ d�. Expanding to first order in �,

dL

dtr
= �µ0q

2
c
3

16⇡2

I r
(r · u)5

(�r 2
c)
�
( r̂ ⇥ a)� (� ⇥ a) + r̂ ⇥ r̂ · (� ⇥ a)

⇤ r (r · u) d⌦

=
µ0q

2

16⇡2

Z ⇥
1 + 4( r̂ · �)

⇤ �
( r̂ ⇥ a)� (� ⇥ a) + r̂ ⇥ r̂ · (� ⇥ a)

⇤ 
d⌦

=
µ0q

2

16⇡2

Z n
( r̂ ⇥ a)� (� ⇥ a) + r̂ [ r̂ · (� ⇥ a)] + 4( r̂ · �)( r̂ ⇥ a)

⇤o
d⌦

The first integral is

�a⇥
Z

r̂ sin ✓ d✓ d� = �a⇥
Z

(sin ✓ cos� x̂ + sin ✓ sin� ŷ + cos ✓ ẑ) sin ✓ d✓ d� = 0,

the second is
�(� ⇥ a)

Z
sin ✓ d✓ d� = �4⇡(� ⇥ a),
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for the third we set the polar axis along g ⌘ � ⇥ a and get

g

Z
r̂ cos ✓ sin ✓ d✓ d� = 2⇡g ẑ

Z
cos2 ✓ sin ✓ d✓ =

4⇡
3

g =
4⇡
3

(� ⇥ a),

and for the last we put the polar axis along a and let � = �xx̂ + �z ẑ lie in the xz plane:

4a

Z
(�x sin ✓ cos�+ �z cos ✓) sin ✓(��̂) sin ✓ d✓ d�

= 4a

Z
(�x sin ✓ cos�+ �z cos ✓)(sin� x̂� cos� ŷ) sin2

✓ d✓ d�

= �4a�x ŷ

Z
cos2 � sin3

✓ d✓ d� = �16⇡
3

a�xŷ =
16⇡
3

(� ⇥ a).

Putting this all together, we conclude

dL

dtr
=

µ0q
2

16⇡2


�4⇡(� ⇥ a) +

4⇡
3

(� ⇥ a) +
16⇡
3

(� ⇥ a)
�

=
µ0q

2

6⇡c
(v ⇥ a).

Problem 11.28

(a) A(x, t) =
µ0

4⇡

Z
K(tr)

r da

=
µ0ẑ

4⇡

Z
K(tr)p
r2 + x2

2⇡r dr

=
µ0ẑ

2

Z
K(t�

p
r2 + x2/c)p

r2 + x2
r dr.

The maximum r is given by t�
p

r2 + x2/c = 0;

rmax =
p

c2t2 � x2 (since K(t) = 0 for t < 0).

(i)

A(x, t) =
µ0K0ẑ

2

Z rm

0

rp
r2 + x2

dr =
µ0K0ẑ

2

p
r2 + x2

���
rm

0
=

µ0K0ẑ

2

⇣p
r2
m � x2 � x

⌘
=

µ0K0(ct� x)
2

ẑ.

E(x, t) = �@A
@t

= �µ0K0c

2
ẑ, for ct > x, and 0, for ct < x.

B(x, t) = r⇥A = �@Az

@x
ŷ =

µ0K0

2
ŷ, for ct > x, and 0, for ct < x.
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(ii)

A(x, t) =
µ0↵ ẑ

2

Z rm

0

�
t�
p

r2 + x2/c
�

p
r2 + x2

r dr =
µ0↵ẑ

2


t

Z rm

0

rp
r2 + x2

dr � 1
c

Z rm

0
r dr

�

=
µ0↵ ẑ

2


t(ct� x)� 1

2c
(c2

t
2 � x

2)
�

=
µ0↵ ẑ

4c
(x2 � 2ctx + c

2
t
2) =

µ0↵(x� ct)2

4c
ẑ.

E(x, t) = �@A
@t

=
µ0↵(x� ct)

2
ẑ, for ct > x, and 0, for ct < x.

B(x, t) = r⇥A = �@Az

@x
ŷ = �µ0↵

2c
(x� ct) ŷ, for ct > x, and 0, for ct < x.

(b) Let u ⌘ 1
c

⇣p
r2 + x2 � x

⌘
, so du =

1
c


1
2

1p
r2 + x2

2r dr

�
=

1
c

rp
r2 + x2

dr, and

t�
p

r2 + x2

c
= t� x

c
� u, and as r : 0!1, u : 0!1. Then A(x, t) =

µ0c ẑ

2

Z 1

0
K

⇣
t� x

c
� u

⌘
du. qed

E(x, t) = �@A
@t

= �µ0c ẑ

2

Z 1

0

@

@t
K

⇣
t� x

c
� u

⌘
du. But

@

@t
K

⇣
t� x

c
� u

⌘
= � @

@u
K

⇣
t� x

c
� u

⌘
.

=
µ0c

2
ẑ

Z 1

0

@

@u
K

⇣
t� x

c
� u

⌘
du =

µ0c

2
ẑ

h
K

⇣
t� x

c
� u

⌘i���
1

0
= �µ0c

2
[K(t� x/c)�K(�1)] ẑ

= �µ0c

2
K(t� x/c) ẑ, [if K(�1) = 0].

Note that (i) and (ii) are consistent with this result. Meanwhile

B(x, t) = �@Az

@x
ŷ = �µ0c

c
ŷ

Z 1

0

@

@x
K

⇣
t� x

c
� u

⌘
du. But

@

@x
K

⇣
t� x

c
� u

⌘
=

1
c

@

@u
K

⇣
t� x

c
� u

⌘
.

= �µ0

2
ŷ

Z 1

0

@

@u
K

⇣
t� x

c
� u

⌘
du = �µ0

2
ŷ

h
K

⇣
t� x

c
� u

⌘i���
1

0
=

µ0

2
[K(t� x/c)�K(�1)] ŷ

=
µ0

2
K(t� x/c) ŷ, [if K(�1) = 0].

S =
1
µ0

(E⇥B) =
1
µ0

⇣
µ0c

2

⌘⇣
µ0

2

⌘
K(t� x/c) [�ẑ⇥ ŷ] =

µ0c

4
[K(t� x/c)]2 x̂.

This is the power per unit area that reaches x at time t; it left the surface at time (t � x/c). Moreover, an
equal amount of energy is radiated downward, so the total power leaving the surface at time t is

µ0c

2
[K(t)]2 .

Problem 11.29

With ↵ = 90�, Eq. 7.68 gives E
0 = cB, B

0 = �1
c
E, q

0
m = �cqe. Use this to “translate” Eqs. 10.72, 10.73,
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and 11.70:

E
0 = c

✓
1
c
r̂ ⇥E

◆
= r̂ ⇥ (�cB

0) = �c( r̂ ⇥B
0).

B
0 = �1

c
E = �1

c

qe

4⇡✏0
r

(r · u)3
⇥
(c2 � v

2)u + r ⇥ (u⇥ a)
⇤

= �1
c

(�q
0
m/c)

4⇡✏0
r

(r · u)3
⇥
(c2 � v

2)u + r ⇥ (u⇥ a)
⇤

=
µ0q

0
m

4⇡
r

(r · u)3
⇥
(c2 � v

2)u + r ⇥ (u⇥ a)
⇤
.

P =
µ0a

2

6⇡c
q
2
e =

µ0a
2

6⇡c

✓
�1

c
q
0
m

◆2

=
µ0a

2

6⇡c3
(q0m)2.

Or, dropping the primes,

B(r, t) =
µ0qm

4⇡
r

(r · u)3
⇥
(c2 � v

2)u + r ⇥ (u⇥ a)
⇤
.

E(r, t) = �c( r̂ ⇥B).

P =
µ0q

2
ma

2

6⇡c3
.

Problem 11.30

(a) Wext =
Z

F dx = F

Z T

0
v(t) dt. From Prob. 11.19, v(t) =

F

m

h
t + ⌧ � ⌧e(t�T )/⌧

i
. So

Wext =
F

2

m

"Z T

0
t dt + ⌧

Z T

0
dt� ⌧e�T/⌧

Z T

0
e
t/⌧

dt

#
=

F
2

m


t
2

2
+ ⌧ t� ⌧e�T/⌧

⌧e
t/⌧

�����
T

0

=
F

2

m


1
2
T

2 + ⌧T � ⌧2
e
�T/⌧

⇣
e
T/⌧ � 1

⌘�
=

F
2

m

✓
1
2
T

2 + ⌧T � ⌧2 + ⌧
2
e
�T/⌧

◆
.

(b) From Prob. 11.19, the final velocity is vf = (F/m)T , so Wkin =
1
2
mv

2
f =

1
2
m

F
2

m2
T

2 =
F

2
T

2

2m
.

(c) Wrad =
R

P dt. According to the Larmor formula, P =
µ0q

2
a
2

6⇡c
, and (again from Prob. 11.19)

a(t) =

8
<

:

(F/m)
⇥
1� e

�T/⌧
⇤
e
t/⌧

, (t  0);

(F/m)
⇥
1� e

(t�T )/⌧
⇤
, (0  t  T ).
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Wrad =
µ0q

2

6⇡c

F
2

m2

(⇣
1� e

�T/⌧
⌘2
Z 0

�1
e
2t/⌧

dt +
Z T

0

h
1� e

(t�T )/⌧
i2

dt

)

= ⌧
F

2

m

(⇣
1� e

�T/⌧
⌘2 ⇣⌧

2
e
2t/⌧

⌘����
0

�1
+
Z T

0
dt� 2e

�T/⌧

Z T

0
e
t/⌧

dt + e
�2T/⌧

Z T

0
e
2t/⌧

dt

)

=
⌧F

2

m


⌧

2

⇣
1� e

�T/⌧
⌘2

+ T � 2e
�T/⌧

⇣
⌧e

t/⌧
⌘���

T

0
+ e

�2T/⌧
⇣
⌧

2
e
2t/⌧

⌘���
T

0

�

=
⌧F

2

m

h
⌧

2

⇣
1� 2e

�T/⌧ + e
�2T/⌧

⌘
+ T � 2⌧e�T/⌧

⇣
e
T/⌧ � 1

⌘
+
⌧

2
e
�2T/⌧

⇣
e
2T/⌧ � 1

⌘i

=
⌧F

2

m

h
⌧

2
� ⌧e�T/⌧ +

⌧

2
e
�2T/⌧ + T � 2⌧ + 2⌧e�T/⌧ +

⌧

2
� ⌧

2
e
�2T/⌧

i
=

⌧F
2

m

⇣
T � ⌧ + ⌧e

�T/⌧
⌘

.

Energy conservation requires that the work done by the external force equal the final kinetic energy plus
the energy radiated:

Wkin + Wrad =
F

2
T

2

2m
+
⌧F

2

m

⇣
T � ⌧ + ⌧e

�T/⌧
⌘

=
F

2

m

✓
1
2
T

2 + ⌧T � ⌧2 + ⌧
2
e
�T/⌧

◆
= Wext. X

Problem 11.31

(a) a = ⌧ ȧ +
k

m
�(t))

Z ✏

�✏
a(t) dt = v(✏)� v(�✏) = ⌧

Z ✏

�✏

da

dt
dt +

k

m

Z ✏

�✏
�(t) dt = ⌧ [a(✏)� a(�✏)] +

k

m
.

If the velocity is continuous, so v(✏) = v(�✏), then a(✏)� a(�✏) = � k

m⌧
.

When t < 0, a = ⌧ ȧ) a(t) = Ae
t/⌧ ; when t > 0, a = ⌧ ȧ) a(t) = Be

t/⌧ ; �a = B �A = � k

m⌧

) B = A� k

m⌧
, so the general solution is a(t) =

⇢
Ae

t/⌧
, (t < 0);

[A� (k/m⌧)] et/⌧
, (t > 0).

To eliminate the runaway we’d need A = k/m⌧ ; to eliminate preacceleration we’d need A = 0. Obviously,

you can’t do both. If you choose to eliminate the runaway, then a(t) =
⇢

(k/m⌧)et/⌧
, (t < 0);

0, (t > 0).

v(t) =
Z t

�1
a(t) dt =

k

m⌧

Z t

�1
e
t/⌧

dt =
k

m⌧

⇣
⌧e

t/⌧
⌘���

t

�1
=

k

m
e
t/⌧ (for t < 0);

for t > 0, v(t) = v(0) +
Z t

0
a(t) dt = v(0) =

k

m
. So v(t) =

⇢
(k/m)et/⌧

, (t < 0);
(k/m), (t > 0).

For an uncharged particle we would have a(t) =
k

m
�(t), v(t) =

Z t

�1
a(t) dt =

⇢
0, (t < 0);
(k/m), (t > 0).

The graphs:
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(b)

Wext =
Z

F dx =
Z

Fv dt = k

Z
�(t)v(t) dt = kv(0) =

k
2

m
.

Wkin =
1
2
mv

2
f =

1
2
m

✓
k

m

◆2

=
k

2

2m
.

Wext =
Z

Prad dt =
µ0q

2

6⇡c

Z
[a(t)]2 dt = ⌧m

✓
k

m⌧

◆2 Z 0

�1
e
2t/⌧

dt =
k

2

m⌧

⇣
⌧

2
e
2t/⌧

⌘����
0

�1
=

k
2

m⌧

⌧

2
=

k
2

2m
.

Clearly, Wext = Wkin + Wrad. X

Problem 11.32

Our task is to solve the equation a = ⌧ ȧ +
U0

m
[��(x) + �(x� L)], subject to the boundary conditions

(1) x continuous at x = 0 and x = L;
(2) v continuous at x = 0 and x = L;
(3) �a = ±U0/m⌧v (plus at x = 0, minus at x = L).

The third of these follows from integrating the equation of motion:
Z

dv

dt
dt = ⌧

Z
da

dt
dt +

U0

m

Z
[��(x) + �(x� L)] dt,

�v = ⌧�a +
U0

m

Z
[��(x) + �(x� L)]

dt

dx
dx = 0,

�a = =
U0

m⌧

Z
1
v

[��(x) + �(x� L)] dx = ± U0

m⌧v
.

In each of the three regions the force is zero (it acts only at x = 0 and x = L), and the general solution is

a(t) = Ae
t/⌧ ; v(t) = A⌧e

t/⌧ + B; x(t) = A⌧
2
e
t/⌧ + Bt + C.

(I’ll put subscripts on the constants A, B, and C, to distinguish the three regions.)

Region iii (x > L): To avoid the runaway we pick A3 = 0; then a(t) = 0, v(t) = B3, x(t) = B3t + C3. Let
the final velocity be vf (= B3), set the clock so that t = 0 when the particle is at x = 0, and let T be the time
it takes to traverse the barrier, so x(T ) = L = vfT + C3, and hence C3 = L� vfT . Then

a(t) = 0; v(t) = vf , x(t) = L + vf (t� T ), (t < T ).

Region ii (0 < x < L): a = A2e
t/⌧

, v = A2⌧e
t/⌧ + B2, x = A2⌧

2
e
t/⌧ + B2t + C2.
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(3) ) 0�A2e
T/⌧ = � U0

m⌧vf
) A2 =

U0

m⌧vf
e
�T/⌧

.

(2) ) vf = A2⌧e
T/⌧ + B2 =

U0

mvf
+ B2 ) B2 = vf �

U0

mvf
.

(1) ) L = A2⌧
2
e
T/⌧ + B2T + C2 =

U0⌧

mvf
+ vfT � U0T

mvf
+ C2 = vfT +

U0

mvf
(⌧ � T ) + C2 )

C2 = L� vfT +
U0

mvf
(T � ⌧).

a(t) =
U0

m⌧vf
e
(t�T )/⌧ ;

v(t) = vf +
U0

mvf

h
e
(t�T )/⌧ � 1

i
;

x(t) = L + vf (t� T ) +
U0

mvf

h
⌧e

(t�T )/⌧ � t + T � ⌧
i
;

(0 < t < T ).

[Note: if the barrier is su�ciently wide (or high) the particle may turn around before reaching L, but we’re
interested here in the régime where it does tunnel through.]

In particular, for t = 0 (when x = 0):

0 = L� vfT +
U0

mvf

h
⌧e
�T/⌧ + T � ⌧

i
) L = vfT � U0

mvf

h
⌧e
�T/⌧ + T � ⌧

i
. qed

Region i (x < 0): a = A1e
t/⌧

, v = A1⌧e
t/⌧ + B1, x = A1⌧

2
e
t/⌧ + B1t + C1. Let vi be the incident velocity

(at t! �1); then B1 = vi. Condition (3) says

U0

m⌧vf
e
�T/⌧ �A1 =

U0

m⌧v0
,

where v0 is the speed of the particle as it passes x = 0. From the solution in region (ii) it follows that

v0 = vf +
U0

mvf

⇣
e
�T/⌧ � 1

⌘
. But we can also express it in terms of the solution in region (i): v0 = A1⌧ + vi.

Therefore

vi = vf +
U0

mvf

⇣
e
�T/⌧ � 1

⌘
�A1⌧ = vf +

U0

mvf

⇣
e
�T/⌧ � 1

⌘
+

U0

mv0
� U0

mvf
e
�T/⌧

= vf �
U0

mvf
+

U0

mv0
= vf �

U0

mvf

✓
1� vf

v0

◆
= vf �

U0

mvf

(
1� vf

vf + (U0/mvf )
⇥
e�T/⌧ � 1

⇤
)

= vf �
U0

mvf

(
1� 1

1 + (U0/mv
2
f )
⇥
e�T/⌧ � 1

⇤
)

. qed

If 1
2mv

2
f = 1

2U0, then

L = vfT � vf

h
⌧e
�T/⌧ + T � ⌧

i
= vf

h
T � ⌧e�T/⌧ � T + ⌧

i
= ⌧vf

⇣
1� e

�T/⌧
⌘

;

vi = vf � vf


1� 1

1 + e�T/⌧ � 1

�
= vf

⇣
1� 1 + e

T/⌧
⌘

= vfe
T/⌧

.
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Putting these together,

L

⌧vf
= 1� e

�T/⌧ ) e
�T/⌧ = 1� L

⌧vf
) e

T/⌧ =
1

1� (L/⌧vf )
) vi =

vf

1� (L/vf⌧)
. qed

In particular, for L = vf⌧/4, vi =
vf

1� 1/4
=

4
3
vf , so

KEi

KEf
=

1
2mv

2
i

1
2mv

2
f

=
✓

vi

vf

◆2

=
16
9
)

KEi =
16
9

KEf =
16
9

1
2
U0 =

8
9
U0.

Problem 11.33

(a) From Eq. 10.72, E1 =
(q/2)
4⇡✏0

r
(r · u)3

⇥
(c2 � v

2)u + (r · a)u� (r · u)a
⇤
. Here u = c r̂ � v, r =

l x̂ + d ŷ, v = v x̂, a = a x̂, so r · v = lv, r · a = la, r · u = cr � r · v = cr � lv. We want only the x

component. Noting that ux = (c/r )l � v = (cl � v r )/r , we have:

E1x =
q

8⇡✏0
r

(cr � lv)3


1
r (cl � v r )(c2 � v

2 + la)� a(cr � lv)
�

=
q

8⇡✏0
1

(cr � lv)3
⇥
(cl � v r )(c2 � v

2) + cl
2
a� v r la� acr 2 + alv r ⇤ . But r 2 = l

2 + d
2
.

=
q

8⇡✏0
1

(cr � lv)3
⇥
(cl � v r )(c2 � v

2)� acd
2
⇤
.

Fself =
q
2

8⇡✏0
1

(cr � lv)3
⇥
(cl � v r )(c2 � v

2)� acd
2
⇤
x̂. (This generalizes Eq. 11.90.)

Now x(t)� x(tr) = l = vT + 1
2aT

2 + 1
6 ȧT

3 + · · · , where T = t� tr, and v, a, and ȧ are all evaluated at the
retarded time tr.

(cT )2 = r 2 = l
2 + d

2 = d
2 + (vT +

1
2
aT

2 +
1
6
ȧT

3)2 = d
2 + v

2
T

2 + vaT
3 +

1
3
vȧT

4 +
1
4
a
2
T

4;

c
2
T

2(1� v
2
/c

2) = c
2
T

2
/�

2 = d
2 + vaT

3 +
✓

1
3
vȧ +

1
4
a
2

◆
T

4. Solve for T as a power series in d:

T =
�d

c

�
1 + Ad + Bd

2 + · · ·
�
) c

2

�2

�
2
d
2

c2

�
1 + 2Ad + 2Bd

2 + A
2
d
2
�

= d
2+va

�
3
d
3

c3
(1+3Ad)+

✓
vȧ

3
+

a
2

4

◆
�

4

c4
d
4
.

Comparing like powers of d: A =
1
2
va
�

3

c3
; 2B + A

2 =
3va�

3

c3
A +

✓
vȧ

3
+

a
2

4

◆
�

4

c4
.

2B =
3va�

3

c3

1
2
va
�

3

c3
� 1

4
v
2
a
2 �

6

c6
+

vȧ

3
�

4

c4
+

a
2
�

4

4c4
=

vȧ

3
�

4

c4
+
�

6
a
2

4c4

✓
1
�2
� v

2

c2

◆
+

3
2

v
2
a
2
�

6

c6

=
�

4

c4


vȧ

3
+

a
2
�

2

4

✓
1� v

2

c2
� v

2

c2
+ 6

v
2

c2

◆�
) B =

�
4

2c4


vȧ

3
+
�

2
a
2

4

✓
1 + 4

v
2

c2

◆�
.

T =
�d

c

⇢
1 +

va

2
�

3

c3
d +

�
4

2c4


vȧ

3
+
�

2
a
2

4

✓
1 + 4

v
2

c2

◆�
d
2

�
+ ( ) d

4 + · · · (generalizing Eq. 11.93).
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l = vT +
1
2
aT

2 +
1
6
ȧT

3 + · · ·

=
v�d

c

⇢
1 +

va

2
�

3

c3
d +

�
4

2c4


vȧ

3
+
�

2
a
2

4

✓
1 + 4

v
2

c2

◆�
d
2

�
+

1
2
a
�

2
d
2

c2


1 + va

�
3

c3
d

�
+

1
6
ȧ
�

3

c3
d
3

=
⇣

v�

c

⌘
d +

a

2
�

4

c2

✓
1� v

2

c2
+

v
2

c2

◆
d
2 +

⇢
v�

2c

�
4

c4


vȧ

3
+
�

2
a
2

4

✓
1 + 4

v
2

c2

◆�
+

1
2
a
�

2

c2
va
�

3

c3
+

1
6
ȧ
�

3

c3

�
d
3

=
⇣

v�

c

⌘
d +

✓
a�

4

2c2

◆
d
2 +

�
3

2c3


ȧ

3

✓
1 + �

2 v
2

c2

◆
+

v�
4
a
2

c2

✓
1
4

+
v
2

c2
+ 1� v

2

c2

◆�
d
3

=
⇣

v�

c

⌘
d +

✓
a�

4

2c2

◆
d
2 +

�
5

2c3


ȧ

3
+

5
4

v�
2
a
2

c2

�
d
3 + ( ) d

4 + · · ·

r = cT = �d

⇢
1 +

va

2
�

3

c3
d +

�
4

2c4


vȧ

3
+ �

2
a
2

✓
1
4

+
v
2

c2

◆�
d
2

�
+ ( ) d

4 + · · ·

cr � lv = c�d +
va�

4

2c2
d
2 +

�
5

2c3


vȧ

3
+ �

2
a
2

✓
1
4

+
v
2

c2

◆�
d
3 � v

2
�

c
d� av�

4

2c2
d
2 � �

5
v

2c3


ȧ

3
+

5
4

v�
2
a
2

c2

�
d
3 + · · ·

= c�d

✓
1� v

2

c2

◆
+
�

5

2c3


vȧ

3
+ �

2
a
2

✓
1
4

+
v
2

c2

◆
� vȧ

3
� 5

4
v
2
�

2
a
2

c2

�
d
3 + · · ·

=
c

�
d +

�
5
a
2

8c3
d
3 + ( ) d

4 + · · ·

cl � v r = v�d +
a�

4

2c
d
2 +

�
5

2c2

✓
ȧ

3
+

5
4

v�
2
a
2

c2

◆
d
3 � v�d� v

2
a

2
�

4

c3
d
2 � v�

5

2c4


vȧ

3
+ �

2
a
2

✓
1
4

+
v
2

c2

◆�
d
3

=
a�

4

2c

✓
1� v

2

c2

◆
d
2 +

�
5

2c2


ȧ

3
+

5
4

v�
2
a
2

c2
� v

2

c2

ȧ

3
� v�

2
a
2

c2

✓
1
4

+
v
2

c2

◆�
d
3 + ( ) d

4 + · · ·

=
✓

a�
2

2c

◆
d
2 +

�
5

2c2


ȧ

3�2
+

v�
2
a
2

c2

✓
5
4
� 1

4
� v

2

c2

◆�
d
3 + ( ) d

4 + · · ·

=
✓

a�
2

2c

◆
d
2 +

�
3

2c2

✓
ȧ

3
+

v�
2
a
2

c2

◆
d
3 + ( ) d

4 + · · ·

(cr � lv)�3 =

cd

�

✓
1 +

�
6
a
2

8c4
d
2

◆��3

=
⇣
�

cd

⌘3
✓

1� 3
�

6
a
2

8c4
d
2

◆
+ · · ·

Fself =
q
2

8⇡✏0

⇣
�

cd

⌘3
✓

1� 3
�

6
a
2

8c4
d
2

◆⇢✓
a�

2

2c

◆
d
2 +

�
3

2c2

✓
ȧ

3
+

v�
2
a
2

c2

◆
d
3

�
c
2

�2
� acd

2

�
x̂

=
q
2

8⇡✏0
�

3

c3d

✓
1� 3

8
�

6
a
2

c4
d
2

◆
�ac

2
+
�

2

✓
ȧ

3
+

v�
2
a
2

c2

◆
d

�
x̂

=
q
2

8⇡✏0
�

3

c3d

1
2


�ac + �

✓
ȧ

3
+

v�
2
a
2

c2

◆
d + ( ) d

2 + · · ·
�
x̂

=
q
2

4⇡✏0


��3 a

4c2d
+
�

4

4c3

✓
ȧ

3
+

v�
2
a
2

c2

◆
+ ( ) d + · · ·

�
x̂ (generalizing Eq. 11.95).

Switching to t: v(tr) = v(t) + v̇(t)(tr � t) + · · · = v(t) � a(t)T = v(t) � a�d/c. (When multiplied by d, it
doesn’t matter—to this order—whether we evaluate at t or at tr.)
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1�

v(tr)

c

�2
= 1� [v(t)2 � 2va�d/c]

c2
=

1� v(t)2

c2

�✓
1 +

2av�
3
d

c3

◆
, so

� =

"
1�

✓
v(tr)

c

◆2
#�1/2

= �(t)
✓

1� va�
3

c3
d

◆
; a(tr) = a(t)� T ȧ = a(t)� ȧ�

c
d.

Evaluating everything now at time t:

Fself =
q
2

4⇡✏0

"
��3

�
1� 3va�

3
d/c

3
�
(a� ȧ�d/c)

4c2d
+
�

4

4c3

✓
ȧ

3
+

v�
2
a
2

c2

◆
+ ( ) d

2 + · · ·
#
x̂

=
q
2

4⇡✏0


� �

3
a

4c2d
+
�

3

4c2

✓
ȧ�

c
+ 3

va
2
�

2

c3

◆
+
�

4

4c3

✓
ȧ

3
+

v�
2
a
2

c2

◆
+ ( ) d + · · ·

�
x̂

=
q
2

4⇡✏0


� �

3
a

4c2d
+
�

4

4c3

✓
ȧ +

ȧ

3
+ 3

va
2
�

2

c2
+

v�
2
a
2

c2

◆
+ ( ) d + · · ·

�
x̂

=
q
2

4⇡✏0


� �

3
a

4c2d
+
�

4

3c3

✓
ȧ + 3

va
2
�

2

c2

◆
+ ( ) d + · · ·

�
x̂ (generalizing Eq. 11.96).

The first term is the electromagnetic mass; the radiation reaction itself is the second term:

F
int
rad =

µ0q
2

12⇡c
�

4

✓
ȧ + 3

va
2
�

2

c2

◆
(generalizing Eq. 11.99), so the generalization of Eq. 11.100 is

Frad =
µ0q

2

6⇡c
�

4

✓
ȧ + 3

va
2
�

2

c2

◆
.

(b) Frad = A�
4

✓
ȧ +

3�2
a
2
v

c2

◆
, where A ⌘ µ0q

2

6⇡c
. P = Aa

2
�

6 (Eq. 11.75). What we must show is that

Z t2

t1

Fradv dt = �
Z t2

t1

P dt, or
Z t2

t1

�
4

✓
ȧv + 3

v
2
a
2
�

2

c2

◆
dt = �

Z t2

t1

a
2
�

6
dt

(except for boundary terms—see Sect. 11.2.2).

Rewrite the first term:
Z t2

t1

�
4
ȧv dt =

Z t2

t1

(�4
v)

da

dt
dt = �

4
va

���
t2

t1
�
Z t2

t1

d

dt
(�4

v)a dt.

Now
d

dt
(�4

v) = 4�3 d�

dt
v + �

4
a;

d�

dt
=

d

dt

 
1p

1� v2/c2

!
= �1

2
1

(1� v2/c2)3/2

✓
�2va

c2

◆
=

va�
3

c2
. So

d

dt
(�4

v) = 4�3
v
va�

3

c2
+ �

4
a = �

6
a

✓
1� v

2

c2
+ 4

v
2

c2

◆
= �

6
a

✓
1 + 3

v
2

c2

◆
.

Z t2

t1

�
4
ȧv dt = �

4
va

���
t2

t1
�
Z t2

t1

�
6
a
2

✓
1 + 3

v
2

c2

◆
dt, and hence

Z t2

t1

�
4

✓
ȧv +

3�2
a
2
v
2

c2

◆
dt = �

4
va

���
t2

t1
+
Z t2

t1


��6

a
2

✓
1 + 3

v
2

c2

◆
+ 3�6 a

2
v
2

c2

�
dt = �

4
va

���
t2

t1
�
Z t2

t1

�
6
a
2
dt. qed

Problem 11.34

(a) P =
µ0q

2
a
2
�

6

6⇡c
(Eq. 11.75). w =

p
b2 + c2t2 (Eq. 10.52); v = ẇ =

c
2
tp

b2 + c2t2
;

a = v̇ =
c
2

p
b2 + c2t2

� c
2
t(c2

t)
(b2 + c2t2)3/2

=
c
2

(b2 + c2t2)3/2

�
b
2 + c

2
t
2 � c

2
t
2
�

=
b
2
c
2

(b2 + c2t2)3/2
;
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�
2 =

1
1� v2/c2

=
1

1� [c2t2/(b2 + c2t2)]
=

b
2 + c

2
t
2

b2 + c2t2 � c2t2
=

1
b2

�
b
2 + c

2
t
2
�
. So

P =
µ0q

2

6⇡c

b
4
c
4

(b2 + c2t2)3
(b2 + c

2
t
2)3

b6
=

q
2
c

6⇡✏0b2
. Yes, it radiates (in fact, at a constant rate).

(b) Frad =
µ0q

2
�

4

6⇡c

✓
ȧ +

3�2
a
2
v

c2

◆
; ȧ = �3

2
b
2
c
2(2c

2
t)

(b2 + c2t2)5/2
= � 3b

2
c
4
t

(b2 + c2t2)5/2
;
✓

ȧ +
3�2

a
2
v

c2

◆
=

� 3b
2
c
4
t

(b2 + c2t2)5/2
+

3
c2

(b2 + c
2
t
2)

b2

b
4
c
4

(b2 + c2t2)3
c
2
tp

b2 + c2t2
= 0. Frad = 0. No, the radiation reaction is zero.

Problem 11.35

The fields of a nonstatic ideal dipole (Problem 10.34) contain terms that go like 1/r, 1/r
2, and 1/r

3, for
fixed t0 ⌘ t� r/c; radiation comes from the first of these:

Er = � µ0

4⇡r
[p̈� r̂(r̂ · p̈)], Br = � µ0

4⇡rc
(r̂⇥ p̈)

where the dipole moments are evaluated at time t0. The 1/r
2 term in the Poynting vector is

Sr =
1
µ0

(Er ⇥Br) =
µ0

16⇡2cr2
[p̈� r̂(r̂ · p̈)]⇥ (r̂⇥ p̈) =

µ0

16⇡2cr2
{p̈⇥ (r̂⇥ p̈)� (r̂ · p̈)[̂r⇥ (r̂⇥ p̈)]}

=
µ0

16⇡2cr2

�
r̂ p̈

2 � p̈(r̂ · p̈)� (r̂ · p̈)[̂r(r̂ · p̈)� p̈]
 

=
µ0

16⇡2cr2

⇥
p̈
2 � (r̂ · p̈)2

⇤
r̂.

Setting the z axis along p̈,
⇥
p̈
2 � (r̂ · p̈)2

⇤
= p̈

2 sin2
✓, and the power radiated is

P =
I

Sr · da =
µ0

16⇡2c
p̈
2

I
1
r2

sin2
✓r

2 sin ✓ d✓ d� =
µ0

8⇡c
p̈
2

Z ⇡

0
sin3

✓ d✓ =
µ0

6⇡c
p̈
2
.

For the sinusoidal case, p = p0 cos!t, we have p̈ = �!2
p0 cos!t, p̈

2 = !
4
p
2
0 cos2 !t, and its time average

is (1/2)p2
0!

4, so
hP i =

µ0

12⇡c
p̈
2
0!

4
,

in agreement with Eq. 11.22. And in the case of quadratic time dependence our result agrees with the answer
to Problem 11.26.
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Chapter 12

Electrodynamics and Relativity

Problem 12.1

Let u be the velocity of a particle in S, ū its velocity in S̄, and v the velocity of S̄ with respect to S.
Galileo’s velocity addition rule says that u = ū + v. For a free particle, u is constant (that’s Newton’s first
law in S.

(a) If v is constant, then ū = u�v is also constant, so Newton’s first law holds in S̄, and hence S̄ is inertial.
(b) If S̄ is inertial, then ū is also constant, so v = u� ū is constant.

Problem 12.2

(a) mAuA + mBuB = mCuC + mDuD; ui = ūi + v.

mA(ūA + v) + mB(ūB + v) = mC(ūC + v) + mD(ūD + v),
mAūA + mBūB + (mA + mB)v = mC ūC + mDūD + (mC + mD)v.

Assuming mass is conserved, (mA + mB) = (mC + mD), it follows that
mAūA + mBūB = mC ūC + mDūD, so momentum is conserved in S̄.

(b) 1
2mAu

2
A + 1

2mBu
2
B = 1

2mCu
2
C + 1

2mDu
2
D )

1
2mA(ū2

A + 2ūA · v + v
2) + 1

2mB(ū2
B + 2ūB · v + v

2) = 1
2mC(ū2

C + 2ūC · v + v
2) + 1

2mD(ū2
D + 2ūD · v + v

2)
1
2mAū

2
A + 1

2mBū
2
B + v · (mAūA + mBūB) + 1

2v
2(mA + mB)

= 1
2mC ū

2
C + 1

2mDū
2
D + v · (mC ūC + mDūD) + 1

2v
2(mC + mD).

But the middle terms are equal by conservation of momentum, and the last terms are equal by conservation
of mass, so 1

2mAū
2
A + 1

2mBū
2
B = 1

2mC ū
2
C + 1

2mDū
2
D. qed

Problem 12.3

(a) vG = vAB + vBC ; vE = vAB+vBC
1+vABvBC/c2 ⇡ vG

�
1� vABvBC

c2

�
; ) vG�vE

vG
= vABvBC

c2 .
In mi/h, c = (186, 000 mi/s)⇥ (3600 sec/hr) = 6.7⇥ 108 mi/hr.
) vG�vE

vG
= (5)(60)

(6.7⇥108)2 = 6.7⇥ 10�16. ) 6.7⇥ 10�14% error (pretty small!)

(b)
�

1
2c + 3

4c
�
/
�
1 + 1

2 ·
3
4

�
=
�

5
4c
�
/
�

11
8

�
=

10
11

c (still less than c)

(c) To simplify notation, let � = vAC/c, �1 = vAB/c, �2 = vBC/c. Then Eq. 12.3 says: � = �1+�2
1+�1�2

, or:

�
2 =

�
2
1 + 2�1�2 + 2�1�2 + �

2
2

(1 + 2�1�2 + �
2
1�

2
2)

=
1 + 2�1�2 + �

2
1�

2
2

(1 + 2�1�2 + �
2
1�

2
2)
� (1 + �

2
1�

2
2 � �2

1 � �2
2)

(1 + 2�1�2 + �
2
1�

2
2)

= 1� (1� �2
1)(1� �2

2)
(1 + �1�2)2

= 1��,
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where � ⌘ (1� �2
1)(1� �2

2)/(1 + �1�2)2 is clearly a positive number. So �2 < 1, and hence |vAC | < c. qed.
Problem 12.4

(a) Velocity of bullet relative to ground is 1
2c + 1

3c = 5
6c = 10

12c.
Velocity of getaway car is 3

4c = 9
12c. Since vb > vg, bullet does reach target .

(b) Velocity of bullet relative to ground is
1
2 c+ 1

3 c

1+ 1
2 ·

1
3

=
5
6 c
7
6

= 5
7c = 20

28c.

Velocity of getaway car is 3
4c = 21

28c. Since vg > vb, bullet does not reach target .

Problem 12.5

(a) Light from 90th clock took 90⇥109 m
3⇥108 m = 300 sec = 5 min to reach me, so the time I see on the clock is

11:55 am .

(b) I observe 12 noon .

Problem 12.6

(
light signal leaves a at time t

0
a; arrives at earth at time ta = t

0
a + da

c

light signal leaves b at time t
0
b; arrives at earth at time tb = t

0
b + db

c

) �t = tb � ta = t
0
b � t

0
a +

(db � da)
c

= �t
0 +

(�v�t
0 cos ✓)
c

= �t
0
h
1� v

c
cos ✓

i

(Here da is the distance from a to earth, and db is the distance from b to earth.)

�s = v�t
0 sin ✓ =

v sin ✓�t

(1t
(1� v

c
cos ✓) ) u =

v sin ✓
(1� v

c cos ✓)
is the the apparent velocity.

du

d✓
=

v
⇥
(1� v

c cos ✓)(cos ✓)� sin ✓(v
c sin ✓)

⇤

(1� v
c cos ✓)2

= 0) (1� v

c
cos ✓) cos ✓ =

v

c
sin2

✓

) cos ✓ =
v

c
(sin2

✓ + cos2 ✓) =
v

c

✓max = cos�1(v/c) At this maximal angle, u = v
p

1�v2/c2

1�v2/c2 = vp
1�v2/c2

As v ! c, u!1 , because the denominator ! 0 — even though v < c.

Problem 12.7

The student has not taken into account time dilation of the muon’s “internal clock”. In the laboratory, the
muon lasts �⌧ = ⌧p

1�v2/c2
, where ⌧ is the “proper” lifetime, 2⇥ 10�6 sec. Thus

v =
d

t/

p
1� v2/c2

=
d

⌧

r
1� v2

c2
, where d = 800 meters.

⇣
⌧

d

⌘2
v
2 = 1� v

2

c2
; v

2
⇣⇣

⌧

d

⌘2
+

1
c2

⌘
= 1; v

2 =
1

(⌧/d)2 + (1/c)2
.

v
2

c2
=

1
1 + (⌧c/d)2

;
⌧c

d
=

(2⇥ 10�6)(3⇥ 108)
800

=
6
8

=
3
4
;

v
2

c2
=

1
1 + 9/16

=
16
25

; v =
4
5
c.
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Problem 12.8

(a) Rocket clock runs slow; so earth clock reads �t = 1p
1�v2/c2

· 1 hr. Here � = 1p
1�v2/c2

= 1p
1�9/25

= 5
4 .

) According to earth clocks signal was sent 1 hr, 15 min after take-o↵.

(b) By earth observer, rocket is now a distance
�

3
5c
� �

5
4

�
(1 hr) = 3

4c hr (three-quarters of a light hour) away.
Light signal will therefore take 3

4 hr to return to earth. Since it left 1 hr and 15 min after departure, light
signal reaches earth 2 hrs after takeo↵

(c) Earth clocks run slow: trocket = � · (2 hrs) = 5
4 · (2 hrs) = 2.5 hrs

Problem 12.9

Lc = 2Lv; Lc
�c

= Lv
�v

; so 2
�c

= 1
�v

=
q

1�
�

1
2

�2 =
q

3
4 ; 1

�2
c

= 1� v2

c2 = v2

c2 = 3
16 . v2

c2 = 1� 3
16 = 13

16 ; v =
p

13
4

c

Problem 12.10

Say length of mast (at rest) is l̄. To an observer on the boat, height of mast is l̄ sin ✓̄, horizontal projection
is l̄ cos ✓̄. To observer on dock, the former is una↵ected, but the latter is Lorentz contracted to 1

� l̄ cos ✓̄.
Therefore:

tan ✓ =
l̄ sin ✓̄

1
� l̄ cos ✓̄

= � tan ✓̄, or tan ✓ =
tan ✓̄p

1� v2/c2

Problem 12.11

Naively, circumference/diameter = 1
� (2⇡R)/(2R) = ⇡/� = ⇡

p
1� (!R/c)2 — but this is nonsense. Point

is: an accelerating object cannot remain rigid, in relativity. To decide what actually happens here, you need a
specific model for the internal forces holding the disc together.
Problem 12.12

(iv) ) t = t̄
� + vx

c2 . Put this into (i), and solve for x:

x̄ = �x� �x� �v
⇣

t̄

�
+

vx

c2

⌘
= �x

⇣
1� v

2

c2

⌘
� vt̄ = �x

1
�2
� vt̄ =

x

�
� vt̄; x = �(x̄ + vt̄) X

Similarly, (i) ) x = x̄
� + vt. Put this into (iv) and solve for t:

t̄ = �t� �v

c2

⇣
x̄

�
+ vt

⌘
= �t

⇣
1� v

2

c2

⌘
� v

c2
x̄

t

�
� v

c2
x̄; t = �

⇣
t̄ +

v

c2
x̄

⌘
X

Problem 12.13

Let brother’s accident occur at origin, time zero, in both frames. In system S (Sophie’s), the coordinates
of Sophie’s cry are x = 5 ⇥ 105 m, t = 0. In system S̄ (scientist’s), t̄ = �(t � v

c2 x) = ��vx/c
2. Since

this is negative, Sophie’s cry occurred before the accident, in S̄. � = 1p
1�(12/13)2

= 13p
169�144

= 13
5 . So

t̄ = �
�

13
5

� �
12
13c
�
(5⇥ 105)/c

2 = �12⇥ 105
/3⇥ 108 = 10�3. 4⇥ 10�3 seconds earlier

Problem 12.14

(a) In S it moves a distance dy in time dt. In S̄, meanwhile, it moves a distance dȳ = dy in time dt̄ =
�(dt� v

c2 dx).

) dȳ

dt̄
=

dy

�(dt� v
c2 dx)

=
(dy/dt)

�
�
1� v

c2
dx
dt

� ; or ūy =
uy

�
�
1� vux

c2

� ; ūz =
uz

�
�
1� vux

c2

�
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(b) S = dock frame; S 0 = boat frame; we need reverse transformations (v ! �v):

tan ✓ = �uy

ux
= �

ūy/�
�
1 + vūx

c2

�

(ūx + v)/
�
1 + vūx

c2

� = � 1
�

ūy

(ūx + v)
. In this case ūx = �c cos ✓̄; ūy = c sin ✓̄, so

tan ✓ = � 1
�

c sin ✓̄
(�c cos ✓̄+v)

=
1
�

✓
sin ✓̄

cos ✓̄ � v/c

◆

[Contrast tan ✓ = �
sin ✓̄
cos ✓̄

in Prob. 12.10. The point is that velocities are sensitive not only to the transfor-
mation of distances, but also of times. That’s why there is no universal rule for translating angles — you have
to know whether it’s an angle made by a velocity vector or a position vector.]

That’s how the velocity vector of an individual photon transforms. But the beam as a whole is a snapshot
of many di↵erent photons at one instant of time, and it transforms the same way the mast does.
Problem 12.15

Bullet relative to ground:
5
7
c. Outlaws relative to police:

3
4c� 1

2c

1� 3
4 ·

1
2

=
1
4c

5
8

=
2
5
c.

Bullet relative to outlaws:
5
7c� 3

4c

1� 5
7 ·

3
4

=
� 1

28c

13
28

= � 1
13

c . [Velocity of A relative to B is minus the velocity of

B relative to A, so all entries below the diagonal are trivial. Note that in every case vbullet < voutlaws, so no
matter how you look at it, the bad guys get away.]

speed of !

relative to #

Ground Police Outlaws Bullet Do they escape?

Ground 0 1
2 c 3

4 c 5
7 c Yes

Police � 1
2 0 2

5 c 1
3 c Yes

Outlaws � 3
4 c � 2

5 c 0 � 1
13 c Yes

Bullet � 5
7 c � 1

3 c 1
13 c 0 Yes

Problem 12.16

(a) Moving clock runs slow, by a factor � = 1p
1�(4/5)2

= 5
3 . Since 18 years elapsed on the moving clock,

5
3 ⇥ 18 = 30 years elapsed on the stationary clock. 51 years old

(b) By earth clock, it took 15 years to get there, at 4
5c, so d = 4

5c⇥ 15 years = 12c years (12 light years)

(c) t = 15 yrs, x = 12c yrs

(d) t̄ = 9 yrs, x̄ = 0. [She got on at the origin in S̄, and rode along on S̄, so she’s still at the origin. If you
doubt these values, use the Lorentz Transformations, with x and t in (c).]

(e) Lorentz Transformations:
⇢

x̃ = �(x + vt)
t̃ = �(t + v

c2 x)

�
[note that v is negative, since S̃ us going to the left ]

) x̃ = 5
3 (12c yrs + 4

5c · 15 yrs) = 5
3 · 24c yrs = 40c years.

t̃ = 5
3 (15 yrs + 4

5
c
c2 · 12c yrs) = 5

3

�
15 + 48

5

�
yrs = (25 + 16)yrs = 41 years.

(f) Set her clock ahead 32 years, from 9 to 41 (t̄! t̃). Return trip takes 9 years (moving time), so her clock

will now read 50 years at her arrival. Note that this is 5
3 · 30 years—precisely what she would calculate if the

stay-at-home had been the traveler, for 30 years of his own time.
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(g) (i) t̄ = 9 yrs, x = 0. What is t? t = v
c2 x + t̄

� = 3
5 · 9 yrs = 27

5 = 5.4 years, and he started at age 21, so he’s

26.4 years old (Younger than traveler (!) because to the traveller it’s the stay-at-home who’s moving.)

(ii) t̃ = 41 yrs, x = 0. What is t? t = t̃
� = 3

5 · 41 yrs, or 123
5 yrs, or 24.6 yrs, and he started at 21, so he’s

45.6 years old.

(h) It will take another 5.4 years of earth time for the return, so when she gets back, she will say her twin’s
age is 45.6 + 5.4 = 51 years—which is what we found in (a). But note that to make it work from traveler’s
point of view you must take into account the jump in perceived age of the stay-at-home when she changes
coordinates from S̄ to S̃.)
Problem 12.17

�ā
0
b̄
0 + ā

1
b̄
1 + ā

2
b̄
2 + ā

3
b̄
3 = ��2(a0 � �a

1)(b0 � �b
1) + �

2(a1 � �a
0)(b1 � �a

0) + a
2
b
2 + a

3
b
3

= ��2(a0
b
0 � �a

0
b
1� � �a

1
b
0� + �

2
a
1
b
1 � a

1
b
1 + �a

1
b
0� + �a

0
b
1� � �2

a
0
b
0) + a

2
b
2 + a

3
b
3

= ��2
a
0
b
0(1� �2) + �

2
a
1
b
1(1� �2) + a

2
b
2 + a

3
b
3

= �a
0
b
0 + a

1
b
1 + a

2
b
2 + a

3
b
3
. qed [Note: �

2(1� �2) = 1.]

Problem 12.18

(a)

0

BB@

ct̄

x̄

ȳ

z̄

1

CCA =

0

BB@

1 0 0 0
�� 1 0 0
0 0 1 0
0 0 0 1

1

CCA

0

BB@

ct

x

y

z

1

CCA (using the notation of Eq. 12.24, for best comparison)

(b) ⇤ =

0

BB@

� 0 ��� 0
0 1 0 0
��� 0 � 0

0 0 0 1

1

CCA

(c) Multiply the matrices: ⇤ =

0

BB@

�̄ 0 ��̄�̄ 0
0 1 0 0
��̄�̄ 0 �̄ 0

0 0 0 1

1

CCA

0

BB@

� ��� 0 0
��� � 0 0

0 0 1 0
0 0 0 1

1

CCA =

0

BB@

��̄ ���̄� ��̄�̄ 0
��� � 0 0
��̄��̄ ��̄��̄ �̄ 0

0 0 0 1

1

CCA

Yes, the order does matter. In the other order “bars” and “no-bars” would be switched, and this would yield
a di↵erent matrix.
Problem 12.19

(a) Since tanh ✓ = sinh ✓
cosh ✓ , and cosh2

✓ � sinh2
✓ = 1, we have:

� =
1p

1� v2/c2
=

1p
1� tanh2

✓

=
cosh ✓p

cosh2
✓ � sinh2

✓

= cosh ✓ ; �� = cosh ✓ tanh ✓ = sinh ✓.

) ⇤ =

0

BB@

cosh ✓ � sinh ✓ 0 0
� sinh ✓ cosh ✓ 0 0

0 0 1 0
0 0 0 1

1

CCA Compare: R =

0

@
cos� sin� 0
� sin� cos� 0

0 0 1

1

A
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(b) ū =
u� v

1� uv
c2

) ū

c
=

�
u
c

�
�
�

v
c

�

1�
�

u
c

� �
v
c

� ) tanh �̄ =
tanh�� tanh ✓

1� tanh� tanh ✓
, where tanh� = u/c, tanh ✓ = v/c;

tanh �̄ = ū/c. But a “trig” formula for hyperbolic functions (CRC Handbook, 18th Ed., p. 204) says:

tanh�� tanh ✓
1� tanh� tanh ✓

= tanh(�� ✓). ) tanh �̄ = tanh(�� ✓), or: �̄ = �� ✓

Problem 12.20

(a) (i) I = �c
2�t

2 +�x
2 +�y

2 +�z
2 = �(5� 15)2 +(10� 5)2 +(8� 3)2 +(0� 0)2 = �100+25+25 = �50

(ii) No. (In such a system �t̄ = 0, so I would have to be positive, which it isn’t.)

(iii) Yes.

1

✲ x

✻
y

2 4 6 8 10

2

4

6

8

A

B

❂
︸ ︷︷ ︸

5
︸

︷
︷

︸

5

✻
ct

✲ x

#
world line
of player 1

✮
world line of
player 2

✲✛
10 ft

✠

world line of
the ball

✒

■

✒

■

✒

✲ x

✻
ct

A

B✶
✐
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S̄ travels in the direction from B toward A,
making the trip in time 10/c.

) v =
�5x̂� 5ŷ

10/c
= � c

2
x̂� c

2
ŷ

Note that v2

c2 = 1
4 + 1

4 = 1
2 , so v = 1p

2
c, safely

less than c.

(b) (i) I = �(3� 1)2 + (5� 2)2 + 0 + 0 = �4 + 9 = 5

(ii) Yes. By Lorentz Transformation: �(ct̄) = �
�
�(ct)� �(�x)

�
. We want �t̄ = 0, so �(ct) = �(�x); or

v

c
=

�(ct)
(�x)

=
(3� 1)
(5� 2)

=
2
3
. So v =

2
3
c in the +x direction.

(iii) No. (In such a system �x = �y = �z = 0 so I would be negative, which it isn’t.)

Problem 12.21

Using Eq. 12.18 (iv): �t̄ = �(�t� v
c2 �x) = 0) �t = v

c2 �x, or v = �t
�xc

2 =
tB � tA

xB � xA
c
2
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Problem 12.22

(a)

1

✲ x

✻
y

2 4 6 8 10

2

4

6

8

A

B

❂
︸ ︷︷ ︸

5

︸
︷
︷

︸

5

✻
ct

✲ x

#
world line
of player 1

✮
world line of
player 2

✲✛
10 ft

✠

world line of
the ball

✒

■

✒

■

✒

✲ x

✻
ct

A

B✶
✐
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Truth is, you never do communicate with
the other person right now—you communicate
with the person he/she will be when the mes-
sage gets there; and the response comes back
to an older and wiser you.

(b) No way It is true that a moving observer
might say she arrived at B before she left A,
but for the round trip everyone must agree
that she arrives back after she set out.

Problem 12.24

(a)
�
1� u2

c2

�
⌘
2 = u

2; u
2
�
1 + ⌘2

c2

�
= ⌘

2; u =
1p

1 + ⌘2/c2
⌘.

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



CHAPTER 12. ELECTRODYNAMICS AND RELATIVITY 269

(b) 1p
1�u2/c2

= 1p
1�tanh2 ✓

= cosh ✓p
cosh2 ✓�sinh2 ✓

= cosh ✓ ) ⌘ = 1p
1�u2/c2

u = cosh ✓ c tanh ✓ = c sinh ✓.

Problem 12.25

(a) ux = uy = u cos 45� = 1p
2

2p
5
c =

r
2
5

c.

(b) 1p
1�u2/c2

= 1p
1�4/5

=
p

5p
5�4

=
p

5. ) ⌘ = up
1�u2/c2

) ⌘x = ⌘y =
p

2

(c) ⌘0 = �c =
p

5 c.

(d) Eq. 12.45)

8
>><

>>:

ūx = ux�v
1�uxv

c2
=
p

2
5 c�
p

2
5 c

1� 2
5

= 0.

ūy = 1
�

⇣
uy

1�uxv

c2

⌘
=
q

1� 2
5

p
2
5 c

1� 2
5

=
p

2/5p
3/5

c =
r

2
3

c.

(e) ⌘̄x = �(⌘x � �⌘0) =
q

1� 2
5 (
p

2 c�
q

2
5

p
5 c) = 0. ⌘̄y = ⌘y =

p
2 c.

(f) 1p
1�ū2/c2

= 1p
1�2/3

=
p

3; ) ⌘̄ =
p

3 ū)
⇢
⌘̄x =

p
3 ūx = 0 X

⌘̄y =
p

3 ūy =
p

2 c X

�

Problem 12.26

⌘
µ
⌘µ = �(⌘0)2 + ⌘

2 = 1
(1�u2/c2) (�c

2 + u
2) = �c

2 (1�u2/c2)
(1�u2/c2) = �c

2
. Timelike.

Problem 12.27

Use the result of Problem 12.24(a): u =
1p

1 + ⌘2/c2
⌘. Here

⌘

c
=

4
3
, so

1p
1 + 16/9

=
3
5
, and hence

u =
3
5
(4⇥ 108) = 2.4⇥ 108 m/s. Innocent.

Problem 12.28

(a) From Prob. 11.34 we have � = 1
b

p
b2 + c2t2. ) ⌧ =

R
1
� dt = b

R
dtp

b2+c2t2
= b

c ln(ct +
p

b2 + c2t2) + k; at

t = 0 we want ⌧ = 0: 0 = b
c ln b + k, so k = � b

c ln b; ⌧ =
b

c
ln

1
b
(ct +

p
b2 + c2t2)

�

(b)
p

x2 � b2 + x = be
c⌧/b;

p
x2 � b2 = be

c⌧/b� x; x
2� b

2 = b
2
e
2c⌧/b� 2xbe

c⌧/b + x
2; 2xbe

c⌧/b = b
2(1 + e

2c⌧/b);
x = b

�
ec⌧/b+e�c⌧/b

2

�
= b cosh(c⌧/b) . Also from Prob. 11.34: v = c

2
t/
p

b2 + c2t2.

v = c
x

p
x2 � b2 = c

b cosh(c⌧/b)

q
b2 cosh2(c⌧/b)� b2 = c

p
cosh2(c⌧/b)�1
cosh(c⌧/b) = c

sinh(c⌧/b)
cosh(c⌧/b) = c tanh

⇣
c⌧

b

⌘
.

(c) ⌘µ = �(c, v, 0, 0). � = x
b = cosh c⌧

b , so ⌘µ = cosh c⌧
b

�
c, c tanh c⌧

b , 0, 0
�

= c

⇣
cosh

c⌧

b
, sinh

c⌧

b
, 0, 0

⌘
.

Problem 12.29

(a) mAuA + mBuB = mCuC + mDuD; ui =
ūi + v

1 + (ūiv/c2)
.

mA
ūA + v

1 + (ūAv/c2)
+ mB

ūB + v

1 + (ūBv/c2)
= mC

ūC + v

1 + (ūCv/c2)
+ mD

ūD + v

1 + (ūDv/c2)
.

This time, because the denominators are all di↵erent, we cannot conclude that
mAūA + mBūB = mC ūC + mDūD.

As an explicit counterexample, suppose all the masses are equal, and uA = �uB = v, uC = uD = 0. This is
a symmetric “completely inelastic” collision in S, and momentum is clearly conserved (0=0). But the Einstein
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velocity addition rule gives ūA = 0, ūB = �2v/(1 + v
2
/c

2), ūC = ūD = �v, so in S̄ the (incorrectly defined)
momentum is not conserved:

m

✓
�2v

1 + v2/c2

◆
6= �2mv.

(b) mA⌘A + mB⌘B = mC⌘C + mD⌘D; ⌘i = �(⌘̄i + �⌘̄
0
i ). (The inverse Lorentz transformation.)

mA�(⌘̄A + �⌘̄
0
A) + mB�(⌘̄B + �⌘̄

0
B) = mC�(⌘̄C + �⌘̄

0
C) + mD�(⌘̄D + �⌘̄

0
D). The gamma’s cancel:

mA⌘̄A + mB ⌘̄B + �(mA⌘̄
0
A + mB ⌘̄

0
B) = mC ⌘̄C + mD⌘̄D + �(mC ⌘̄

0
C + mD⌘̄

0
D).

But mi⌘
0
i = p

0
i = Ei/c, so if energy is conserved in S̄ (ĒA + ĒB = ĒC + ĒD), then so too is the momentum

(correctly defined):
mA⌘̄A + mB ⌘̄B = mC ⌘̄C + mD⌘̄D. qed

Problem 12.30

�mc
2 �mc

2 = nmc
2 ) � = n + 1 = 1

1�
p

u2/c2
) 1� u2

c2 = 1
(n+1)2

) u2

c2 = 1� 1
(n+1)2 = n2+2n+1�1

(n+1)2 = n(n+2)
(n+1)2 ; u =

p
n(n + 2)
n + 1

c

Problem 12.31

ET = E1 + E2 + · · · ; pT = p1 + p2 + · · · ; p̄T = �(pT � �ET /c) = 0) � = v/c = pT c/ET

v = c
2
pT /ET = c

2(p1 + p2 + · · · )/(E1 + E2 + · · · )

Problem 12.32

Eµ =
(m2

⇡ + m
2
µ)

2m⇡
c
2 = �mµc

2 ) � =
(m2

⇡ + m
2
µ)

2m⇡mµ
=

1p
1� v2/c2

; 1� v
2

c2
=

1
�2

;

v
2

c2
= 1� 1

�2
= 1�

4m
2
⇡m

2
µ

(m2
⇡ + m2

µ)2
=

m
4
⇡ + 2m

2
⇡m

2
µ + m

4
µ � 4m

2
⇡m

2
µ

(m2
⇡ + m2

µ)2
=

(m2
⇡ �m

2
µ)2

(m2
⇡ + m2

µ)2
; v =

 
(m2

⇡ �m
2
µ)

(m2
⇡ + m2

µ)

!
c.

Problem 12.33

Initial momentum: E
2 � p

2
c
2 = m

2
c
4 ) p

2
c
2 = (2mc

2)2 �m
2
c
4 = 3m

2
c
4 ) p =

p
3 mc.

Initial energy: 2mc
2 + mc

2 = 3mc
2.

Each is conserved, so final energy is 3mc
2, final momentum is

p
3 mc.

E
2 � p

2
c
2 = (3mc

2)2 � (
p

3 mc)2c2 = 6m
2
c
4 = M

2
c
4
. ) M =

p
6 m ⇡ 2.5m

(In this process some kinetic energy was converted into rest energy, so M > 2m.)

v =
pc

2

E
=
p

3 mc c
2

3mc2
=

cp
3

= v.

Problem 12.34

First calculate pion’s energy: E
2 = p

2
c
2 + m

2
c
4 = 9

16m
2
c
4 + m

2
c
4 = 25

16m
2
c
4 ) E = 5

4mc
2.

Conservation of energy: 5
4mc

2 = EA + EB

Conservation of momentum: 3
4mc = pA + pB = EA

c �
EB
c )

3
4mc

2 = EA � EB

�
2EA = 2mc

2

) EA = mc
2; EB =

1
4
mc

2
.
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Problem 12.35

Classically, E = 1
2mv

2. In a colliding beam experiment, the relative velocity (classically) is twice the
velocity of either one, so the relative energy is 4E.

2

✲ x

✻ct

x̄
=
−

3
x̄

=
−

2
x̄

=
−

1
x̄

=
0

x̄
=

1
x̄

=
2

x̄
=

3

c̄t = −3c̄t = −2c̄t = −1c̄t = 0c̄t = 1c̄t = 2c̄t = 3

✒

✛ ✲8.7

✻

❄

9.2

✲ S

✻

1⃝✲ 2⃝✛E E

✲ S̄

✻

1⃝ 2⃝✛Ē
=⇒v

✲
m m

(before)

✒EA

⑦EB

60◦

θ

(after)
✲ ct

✻x

A
✒

B

✒
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Let S̄ be the system in which 1� is at rest. Its
speed v, relative to S, is just the speed of 1�
in S.

p̄
0 = �(p0 � �p

1)) Ē
c = �

�
E
c � �p

�
, where p is the momentum of 2� in S.

E = �Mc
2, so � = E

Mc2 ; p = ��MV = ��M�c. ) Ē = �
�

E
c + ��M�c

�
c = �(E + �Mc

2
�

2)

�
2 = 1

1��2 ) 1� �2 = 1
�2 ) �

2 = 1� 1
�2 = �2�1

�2 . ) Ē = E
Mc2 E +

h�
E

Mc2

�2 � 1
i
Mc

2

Ē = E2

Mc2 + E2

Mc2 �Mc
2; Ē =

2E
2

Mc2
�Mc

2
.

For E = 30 GeV and Mc
2 = 1 GeV, we have Ē = (2)(900)

1 � 1 = 1800� 1 = 1799 GeV = 60E.

Problem 12.36

2

✲ x

✻ct

x̄
=
−

3
x̄

=
−

2
x̄

=
−

1
x̄

=
0

x̄
=

1
x̄

=
2

x̄
=

3

c̄t = −3c̄t = −2c̄t = −1c̄t = 0c̄t = 1c̄t = 2c̄t = 3

✒

✛ ✲8.7

✻

❄

9.2

✲ S

✻

1⃝✲ 2⃝✛E E

✲ S̄

✻

1⃝ 2⃝✛Ē
=⇒v

✲
m m

(before)

✒EA

⑦EB

60◦

θ

(after)
✲ ct

✻x

A
✒

B

✒
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One photon is impossible, because in the “center of mo-
mentum” frame (Prob. 12.31) we’d be left with a photon
at rest, whereas photons have to travel at speed c.

8
<

:

Cons. of energy:
p

p0c
2 + m2c4 + mc

2 = EA + EB

Cons. of mom.:
⇢

horizontal: p0 = EA
c cos 60� + EB

c cos ✓ ) EB cos ✓ = p0c� 1
2EA

vertical: 0 = EA
c sin 60� � EB

c sin ✓ ) EB sin ✓ =
p

3
2 EA

�
square and add:

E
2
B(cos2 ✓ + sin2

✓) = p0c
2 � p0cEA +

1
4
E

2
A +

3
4
E

2
A

) E
2
B = p0c

2 � p0cEA + E
2
A =

q
p
2
0c

2 + m2c4 + mc
2 � EA

�2

= p0c
2 + m

2
c
4 + 2

q
p
2
0c

2 + m2c4(mc
2 � EA) + m

2
c
4 � 2EAmc

2 + E
2
A. Or:

�p0cEA = 2m
2
c
4 + 2mc

2
q

p
2
0c

2 + m2c4 � 2EA

q
p
2
0c

2 + m2c4 � 2EAmc
2;

) EA(mc
2 +

q
p
2
0c

2 + m2c4 � p0c/2) = m
2
c
4 + mc

2
p

p0c
2 + m2c4;

EA = mc
2 (mc

2 +
p

p
2
0c

2 + m2c4)
(mc2 +

p
p
2
0c

2 + m2c4 � p0c/2)
· (mc

2 �
p

p
2
0c

2 + m2c4 � p0c/2)
(mc2 �

p
p
2
0c

2 + m2c4 � p0c/2)

= mc
2 (m2

c
4� � p

2
0c

2 �m
2
c
4� � 1

2p0mc
3 � p0c

2

p
p
2
0c

2 + m2c4)

(m2c4� � p0mc3 + p0c2

4 � p0c
2 �m2c4� )

=
mc

2

2
(mc + 2p0 +

p
p
2
0 + m2c2)

(mc + 3
4p0)

.
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Problem 12.40

KµK
µ = �(K0)2 + K·K. From Eq. 12.69, K·K = F 2

(1�u2/c2) . From Eq. 12.70:

K
0 =

1
c

dE

d⌧
=

1
c

p
1� u2/c2

d

dt

 
mc

2

p
1� u2/c2

!
=

mcp
1� u2/c2


�1

2
(�1/c

2)
(1� u2/c2)3/2

2u·a
�

=
m

c

(u·a)
(1� u2/c2)2

But Eq. 12.74: u·F = uF cos ✓ =
mp

1� u2/c2


(u·a) +

u
2(u·a)

c2(1� u2/c2)

�
=

m(u·a)
(1� u2/c2)3/2

, so:

K
0 =

uF cos ✓
c

p
1� u2/c2

. ) KµK
µ =

F
2

(1� u2/c2)
� u

2
F

2 cos2 ✓
c2(1� u2/c2)

=

1� (u2

/c
2) cos2 ✓

(1� u2/c2)

�
F

2
. qed

Problem 12.41

F =
mp

1� u2/c2


a +

u(u·a)
c2 � u2

�
= q(E + u⇥B)) a +

u(u·a)
(c2 � u2)

=
q

m

p
1� u2/c2(E + u⇥B).

Dot in u: (u·a) +
u

2(u·a)
c2(1� u2/c2)

=
u·a

(1� u2/c2)
=

q

m

p
1� u2/c2

⇥
u·E + u·(u⇥B)| {z }

= 0

⇤
;

) u(u·a)
(c2 � u2)

=
q

m

r
1� u2

c2

u(u·E)
c2

. So a =
q

m

r
1� u2

c2

�
E + u⇥B� 1

c2
u(u·E)

�
. qed

Problem 12.42

One way to see it is to look back at the general formula for E (Eq. 10.36). For a uniform infinite plane of
charge, moving at constant velocity in the plane, J̇ = 0 and ⇢̇ = 0, while ⇢ (or rather, �) is independent of t

(so retardation does nothing). Therefore the field is exactly the same as it would be for a plane at rest (except
that � itself is altered by Lorentz contraction).

A more elegant argument exploits the fact that E is a vector (whereas B is a pseudovector). This means that
any given component changes sign if the configuration is reflected in a plane perpendicular to that direction.
But in Fig. 12.35(b), if we reflect in the x y plane the configuration is unaltered, so the z component of E would
have to stay the same. Therefore it must in fact be zero. (By contrast, if you reflect in a plane perpendicular
to the y direction the charges trade places, so it is perfectly appropriate that the y component of E should
reverse its sign.)
Problem 12.43

(a) Field is �0/✏0, and it points perpendicular to the positive plate, so:

E0 =
�0

✏0
(cos 45�x̂ + sin 45�ŷ) =

�0p
2 ✏0

(�x̂ + ŷ).

(b) From Eq. 12.109, Ex = Ex0 = � �0p
2 ✏0

; Ey = �Ey0 = �
�0p
2 E0

. So E =
�0p
2 ✏0

(�x̂ + �ŷ).

(c) From Prob. 12.10: tan ✓ = �, so ✓ = tan�1
�.

(d) Let n̂ be a unit vector perpendicular to the plates in S — evidently
n̂ = � sin ✓ x̂ + cos ✓ ŷ; |E| = �0p

2 ✏0

p
1 + �2.
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3

✲ x

✻y

❨n̂

θ

✲ x

✻
y

d

qA

qB
✲v

✲ x̄

✻
y

d

qA

qB

✛
v

✲ x

✻y

✯
vt

❑φ

❑Y

✯ X

✯X̄

❑Ȳ

❄φ ✲ x̄

✻ȳ
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So the angle � between n̂ and E is:

E·n̂
|E| = cos� =

1p
1 + �2

(sin ✓ + � cos ✓) =
cos ✓p
1 + �2

(tan ✓ + �) =
2�p

1 + �2
cos ✓

But � = tan ✓ = sin ✓
cos ✓ =

p
1�cos2 ✓
cos ✓ =

q
1

cos2 ✓ � 1) 1
cos

2
✓ = �

2 + 1) cos ✓ = 1p
1+�2

. So cos� =
✓

2�
1 + �2

◆
.

Evidently the field is not perpendicular to the plates in S.

Problem 12.44

(a) E =
�

2⇡✏0
ŝ

s
=

�

2⇡✏0
x0 x̂ + y0 ŷ

(x2
0 + y

2
0)

.

(b) Ēx = Ex =
�

2⇡✏0
x0

(x2
0 + y

2
0)

, Ēy = �Ey = �
�

2⇡✏0
y0

(x2
0 + y

2
0)

, Ēz = �Ez = 0, Ē =
�

2⇡✏0
(x0 x̂ + �y0 ŷ

(x2
0 + y

2
0)

.

Using the inverse Lorentz transformations (Eq. 12.19), x0 = �(x + vt), y0 = y,

Ē =
�

2⇡✏0
�(x + vt) x̂ + �y ŷ

[�2(x + vt)2 + y2]
=

�

2⇡✏0
1
�

(x + vt) x̂ + y ŷ

[(x + vt)2 + y2/�2]
.

Now S = (x+vt) x̂+y ŷ, and y = S sin ✓, so [(x+vt)2+y
2
/�

2] = [(x+vt)2+y
2(1�v

2
/c

2] = S
2�(v/c)2S2 sin2

✓ =
S

2[1� (v/c)2 sin2
✓], so

Ē =
�

2⇡✏0

p
1� (v/c)2�

1� v2 sin2
✓/c2

� Ŝ

S
.

This is reminiscent of Eq. 10.75. Yes, the field does point away from the present location of the wire.

Problem 12.45

(a) Fields of A at B: E = 1
4⇡✏0

qA

d2 ŷ; B = 0. So force on qB is F =
1

4⇡✏0
qAqB

d2
ŷ.

3

✲ x

✻y

❨n̂

θ

✲ x

✻
y

d

qA

qB
✲v

✲ x̄

✻
y

d

qA

qB

✛
v

✲ x

✻y

✯
vt

❑φ

❑Y

✯ X

✯X̄

❑Ȳ

❄φ ✲ x̄

✻ȳ
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3

✲ x

✻y

❨n̂

θ

✲ x

✻
y

d

qA

qB
✲v

✲ x̄

✻
y

d

qA

qB

✛
v

✲ x

✻y

✯
vt

❑φ

❑Y

✯ X
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❑Ȳ
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(b) (i) From Eq. 12.67: F̄ =
�

4⇡✏0
qAqB

d2
ŷ. (Note: here the particle is at rest in S̄.)

(ii) From Eq. 12.93, with ✓ = 90�: Ē =
1

4⇡✏0
qA(1� v

2
/c

2)
(1� v2/c2)3/2

1
d2

ŷ =
�

4⇡✏0
qA

d2
ŷ

(this also follows from Eq. 12.109).

B̄ 6= 0, but since vB = 0 in S̄, there is no magnetic force anyway, and F̄ =
�

4⇡✏0
qAqB

d2
ŷ (as before).
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Problem 12.46

System A: Use Eqs. 12.93 and 12.112, with ✓ = 90�, R = d ŷ, and �̂ = ẑ:

E = � q

4⇡✏0
�

d2
ŷ ; B = � q

4⇡✏0
v

c2

�

d2
ẑ ; where � =

1p
1� v2/c2

.

[Note that (E2 � B
2
c
2) =

� q
4⇡✏0d2

�2
�

2
�
1 � v2

c2

�
=
� q

4⇡✏0d2

�2 is invariant, since it doesn’t depend on v (see
Prob. 12.47b for the general proof). We’ll use this as a check.]

F = q
�
E + (�vx̂)⇥B

�
= � q

2

4⇡✏0
�

d2

�
ŷ � v

2

c2
(x̂⇥ẑ)

�
= � q

2

4⇡✏0
�

d2

�
1 +

v
2

c2

�
ŷ.

System B : The speed of �q is vB =
v + v

1 + v2/c2
=

2v

(1 + v2/c2)

�B =
1q

1� 4v2/c2

(1+v2/c2)2

=
(1 + v

2
/c

2)q
1� 2 v2

c2 + v4

c4

=
(1 + v

2
/c

2)
(1� v2/c2)

= �
2
�
1 +

v
2

c2

�
; vB�B = 2v�2

.

) E = � q

4⇡✏0
1
d2
�

2
�
1 +

v
2

c2

�
ŷ ; B = � q

4⇡✏0
2v

c2

�
2

d2
ẑ.

⇥
Check : (E2 �B

2
c
2) =

� q
4⇡✏0d2

�2
�

4
�
1 + 2v2

c2 + v4

c4 � 4v2

c2

�
=
� q

4⇡✏0d2

�2
�

4 1
�4 =

� q
4⇡✏0d2

�2 X
⇤

F = qE = � q
2

4⇡✏0
�

2

d2

�
1 +

v
2

c2

�
ŷ (+q at rest ) no magnetic force). [Check : Eq. 12.67 ) FA = 1

� FB . X]

System C : vC = 0. E = � q

4⇡✏0
1
d2

ŷ; B = 0. F = qE = � q
2

4⇡✏0
1
d2

ŷ.

[The relative velocity of B and C is 2v/(1 + v
2
/c

2), and corresponding � is �2(1 + v
2
/c

2). So Eq. 12.67
) FC = 1

�2(1+v2/c2)FB . X]
Summary :

✓
� q

4⇡✏0d2

◆
�ŷ

✓
� q

4⇡✏0d2

◆
�

2
�
1 + v

2
/c

2
�
ŷ

✓
� q

4⇡✏0d2

◆
ŷ

✓
� q

4⇡✏0d2

◆
v

c2
�ẑ

✓
� q

4⇡✏0d2

◆
2v

c2
�

2
ẑ 0

✓
� q

2

4⇡✏0d2

◆
�
�
1 + v

2
/c

2
�
ŷ

✓
� q

2

4⇡✏0d2

◆
�

2
�
1 + v

2
/c

2
�
ŷ

✓
� q

2

4⇡✏0d2

◆
ŷ

Problem 12.47

(a) From Eq. 12.109:

Ē·B̄ = ĒxB̄x + ĒyB̄y + ĒzB̄z = ExBx + �
2(Ey � vBz)(By +

v

c2
Ez) + �(Ez + vBy)(Bz �

v

c2
Ey)

= ExBx + �
2{EyBy +

v

c2
EyEz� � vByBz� � v

2

c2
EzBz + EzBz �

v

c2
EyEz� + vByBz� � v

2

c2
EyBy}

= ExBx + �
2

✓
EyBy

⇣
1� v

2

c2

⌘
+ EzBz

⇣
1� v

2

c2

⌘◆
= ExBx + EyBy + EzBz = E·B. qed
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(b) Ē
2 � c

2
B̄

2 =
⇥
E

2
x + �

2(Ey � vBz)2 + �
2(Ez + vBy)2

⇤
� c

2
⇥
B

2
x + �

2
�
By +

v

c2
Ez

�2 + �
2
�
Bz �

v

c2
Ey

�⇤

= E
2
x + �

2
�
E

2
y � 2EyvBz� + v

2
B

2
z + E

2
z + 2EzvBy� + v

2
B

2
y � c

2
B

2
y � c

22
v

c2
ByEz�

� c
2 v

2

c4
E

2
z � c

2
B

2
z + c

22
v

c2
BzEy� � c

2 v
2

c4
E

2
y

�
� c

2
B

2
x

= E
2
x � c

2
B

2
x + �

2

✓
E

2
y

⇣
1� v

2

c2

⌘
+ E

2
z

⇣
1� v

2

c2

⌘
� c

2(B2
y)
⇣
1� v

2

c2

⌘
� c

2
B

2
z

⇣
1� v

2

c2

⌘◆

= (E2
x + E

2
y + E

2
z )� c

2(B2
x + B

2
y + B

2
z) = E

2 �B
2
c
2
. qed

(c) No. For if B = 0 in one system, then (E2 � c
2
B

2) is positive. Since it is invariant, it must be positive in
any system. ) E 6= 0 in all systems.
Problem 12.48

(a) Making the appropriate modifications in Eq. 9.48 (and picking � = 0 for convenience),

E(x, y, z, t) = E0 cos(kx� !t) ŷ, B(x, y, z, t) =
E0

c
cos(kx� !t) ẑ, where k ⌘ !

c
.

(b) Using Eq. 12.109 to transform the fields:

Ēx = Ēz = 0, Ēy = �(Ey � vBz) = �E0

h
cos(kx� !t)� v

c
cos(kx� !t)

i
= ↵E0 cos(kx� !t),

B̄x = B̄y = 0, B̄z = �(Bz �
v

c2
Ey) = �E0


1
c

cos(kx� !t)� v

c2
cos(kx� !t)

�
= ↵

E0

c
cos(kx� !t),

where ↵ ⌘ �
⇣
1� v

c

⌘
=

s
1� v/c

1 + v/c
.

Now the inverse Lorentz transformations (Eq. 12.19) ) x = �(x̄ + vt̄) and t = �

⇣
t̄ +

v

c2
x̄

⌘
, so

kx� !t = �

h
k(x̄ + vt̄)� !

⇣
t̄ +

v

c2
x̄

⌘i
= �

h⇣
k � !v

c2

⌘
x̄� (! � kv)t̄

i
= k̄x̄� !̄t̄,

where, recalling that k = !/c): k̄ ⌘ �
⇣
k � !v

c2

⌘
= �k(1� v/c) = ↵k and !̄ ⌘ �!(1� v/c) = ↵!.

Conclusion:

Ē(x̄, ȳ, z̄, t̄) = Ē0 cos(k̄x̄� !̄t̄) ŷ, B̄(x̄, ȳ, z̄, t̄) =
Ē0

c
cos(k̄x̄� !̄t̄) ẑ,

where Ē0 = ↵E0, k̄ = ↵k, !̄ = ↵!, and ↵ ⌘

s
1� v/c

1 + v/c
.

(c) !̄ = !

s
1� v/c

1 + v/c
. This is the Doppler shift for light. �̄ =

2⇡
k̄

=
2⇡
↵k

=
�

↵
. The velocity of the wave

in S̄ is v̄ =
!̄

2⇡
�̄ =

!

2⇡
� = c. Yup, this is exactly what I expected (the velocity of a light wave is the same

in any inertial system).
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(d) Since the intensity goes like E
2, the ratio is

Ī

I
=

Ē
2
0

E
2
0

= ↵
2 =

1� v/c

1 + v/c
.

Dear Al,
The amplitude, frequency, and intensity of the light will all decrease to zero as you run faster

and faster. It’ll get so faint you won’t be able to see it, and so red-shifted even your night-vision
goggles won’t help. But it’ll still be going 3⇥ 108 m/s relative to you. Sorry about that.

Sincerely,

David

Problem 12.49

t̄
02 = ⇤0

�⇤2
�t

�� = ⇤0
0⇤2

2t
02 + ⇤0

1⇤2
2t

12 = �t
02 + (���)t12 = �(t02 � �t

12).
t̄
03 = ⇤0

�⇤3
�t

�� = ⇤0
0⇤3

3t
03 + ⇤0

1⇤3
3t

13 = �t
03 + (���)t13 = �(t03 � �t

13) = �(t03 + �t
31).

t̄23 = ⇤2
�⇤3

�t
�� = ⇤2

2⇤3
3t

23 = t
23.

t̄31 = ⇤3
�⇤1

�t
�� = ⇤3

3⇤1
0t

30 + ⇤3
3⇤1

1t
31 = (���)t30 + �t

31 = �(t31 � �t
03).

t̄12 = ⇤1
�⇤2

�t
�� = ⇤1

0⇤2
2t

02 + ⇤1
1⇤2

2t
12 = (���)t02 + �t

12 = �(t12 � �t
02).

Problem 12.50

Suppose t
⌫µ = ±t

µ⌫ (+ for symmetric, � for antisymmetric).

t̄
� = ⇤

µ⇤�
⌫ t

µ⌫

t̄
� = ⇤�

µ⇤
⌫ t

µ⌫ = ⇤�
⌫⇤

µt
⌫µ [Because µ and ⌫ are both summed from 0! 3,

it doesn’t matter which we call µ and and which call ⌫.]

= ⇤
µ⇤�

µ(±t
µ⌫) [Using symmetry of t

µ⌫ , and writing the ⇤’s in the other order.]

= ±t̄
�

. qed

Problem 12.51

F
µ⌫

Fµ⌫ = F
00

F
00 � F

01
F

01 � F
02

F
02 � F

03
F

03 � F
10

F
10 � F

20
F

20 � F
30

F
30

+ F
11

F
11 + F

12
F

12 + F
13

F
13 + F

21
F

21 + F
22

F
22 + F

23
F

23 + F
31

F
31 + F

32
F

32 + F
33

F
33

= �(Ex/c)2 � (Ey/c)2 � (Ez/c)2 � (Ex/c)2 � (Ey/c)2 � (Ez/c)2 + B
2
z + B

2
y + B

2
z + B

2
x + B

2
y + B

2
x

= 2B
2 � 2E

2
/c

2 = 2
⇣
B

2 � E
2

c2

⌘
,

which, apart from the constant factor �2/c
2, is the invariant we found in Prob. 12.47(b).

G
µ⌫

Gµ⌫ = 2(E2
/c

2 �B
2) (the same invariant).

F
µ⌫

Gµ⌫ = �2(F 01
G

01 + F
02

G
02 + F

03
G

03) + 2(F 12
G

12 + F
13

G
13 + F

23
G

23)

= �2
✓

1
c
ExBx +

1
c
EyBy +

1
c
EzBz

◆
+ 2[Bz(�Ez/c) + (�By)(Ey/c) + Bx(�Ex/c)]

= �2
c
(E ·B)� 2

c
(E ·B) = �4

c
(E ·B),
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which, apart from the factor �4/c, is the invariant we found of Prob. 12.47(a). [These are, incidentally, the
only fundamental invariants you can construct from E and B.]
Problem 12.52

E = 1
4⇡✏0

2�
x x̂ = µ0

2⇡
�c2

x x̂

B = µ0
4⇡

2�v
x ŷ = µ0

2⇡
�v
x ŷ

9
=

; F
µ⌫ =

µ0�

2⇡x

0

BB@

0 c 0 0
�c 0 0 �v

0 0 0 0
0 v 0 0

1

CCA G
µ⌫ =

µ0�

2⇡x

0

BB@

0 0 v 0
0 0 0 0
�v 0 0 �c

0 0 c 0

1

CCA

Problem 12.53

@⌫F
µ⌫ = µ0J

µ. Di↵erentiate: @µ@⌫F
µ⌫ = µ0@µJ

µ.
But @µ@⌫ = @⌫@µ (the combination is symmetric) while F

⌫µ = �F
µ⌫ (antisymmetric).

) @µ@⌫F
µ⌫ = 0. [Why? Well, these indices are both summed from 0 ! 3, so it doesn’t matter which we

call µ, which ⌫: @µ@⌫F
µ⌫ = @⌫@µF

⌫µ = @µ@⌫(�F
µ⌫) = �@µ@⌫F

µ⌫ . But if a quantity is equal to minus itself,
it must be zero.] Conclusion: @µJ

µ = 0. qed
Problem 12.54

We know that @⌫G
µ⌫ = 0 is equivalent to the two homogeneous Maxwell equations, r·B = 0 and r⇥E =

�@B
@t . All we have to show, then, is that @�Fµ⌫ + @µF⌫� + @⌫F�µ = 0 is also equivalent to them. Now this

equation stands for 64 separate equations (µ = 0! 3, ⌫ = 0! 3, � = 0! 3, and 4⇥ 4⇥ 4 = 64). But many
of them are redundant, or trivial.

Suppose two indices are the same (say, µ = ⌫). Then @�Fµµ + @µFµ� = @µF�µ = 0. But Fµµ = 0 and
Fµ� = �F�µ, so this is trivial: 0 = 0. To get anything significant, then, µ, ⌫, � must all be di↵erent. They
could beall spatial (µ, ⌫,� = 1, 2, 3 = x, y, z — or some permutation thereof), or one temporal and two spatial

(µ = 0, ⌫,� = 1, 2 or 2, 3, or 1, 3 — or some permutation). Let’s examine these two cases separately.
All spatial : say, µ = 1, ⌫ = 2, � = 3 (other permutations yield the same equation, or minus it.)

@3F12 + @1F23 + @2F31 = 0) @

@z
(Bz) +

@

@x
(Bx) +

@

@y
(By) = 0)r·B = 0.

One temporal : say, µ = 0, ⌫ = 1, � = 2 (other permutations of these indices yield same result, or minus it).

@2F01 + @0F12 + @1F31 = 0) @

@y

�
�Ex

c

�
=

@

@(ct)
(Bz) +

@

@x

�
+

Ey

c

�
= 0.

or: �@Bz
@t +

�
@Ex
@y �

@Ey

@x

�
= 0, which is the z-component of �@B

@t = r⇥E. (If µ = 0, ⌫ = 1,� = 2, we get the
y component; for ⌫ = 2,� = 3 we get the x component.)

Conclusion: @�Fµ⌫ + @µF⌫� + @⌫F�µ = 0 is equivalent to r·B = 0 and @B
@t = �r⇥E, and hence to

@⌫G
µ⌫ = 0. qed

Problem 12.55

K
0 = q⌘⌫F

0⌫ � q(⌘1F 01 + ⌘2F
02 + ⌘3F

03) = q(⌘·E)/c =
q

c
�u·E. Now from Eq. 12.70 we know that

K
0 = 1

c
dW
d⌧ , where W is the energy of the particle. Since d⌧ = 1

� dt, we have:

1
c
�

dW

dt
=

q

c
�(u·E)) dW

dt
= q(u·E)

This says the power delivered to the particle is force (qE) times velocity (u) — which is as it should be.
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Problem 12.56

@0� =
@

@x̄0
� = �1

c

@

@ t̄
� =

1
c

�@�
@t

@t

@ t̄
+
@�

@x

@x

@ t̄
+
@�

@y

@y

@ t̄
+
@�

@z

@z

@ t̄

�

From Eq. 12.19, we have:
@t

@ t̄
= �, @x

@t̄ = �v, @y
@t̄ = @z

@t̄ = 0.

So @0� = �1
c
�
�@�
@t

+ v
@�

@x

�
or (since ct = x

0 = �x0): @0� = �
� @�
@x0
� v

c

@�

@x1

�
= �

⇥
(@0

�)� �(@1
�)
⇤
.

@1� =
@

@x̄
� =

@�

@t

@t

@x1
+
@�

@x

@x

@x̄
+
@�

@y

@y

@x̄
+
@�

@z

@z

@x̄
= �

v

c2

@�

@t
+�

@�

@x
= �

� @�
@x1
� v

c

@�

@x0

�
= �

⇥
(@1

�)� �(@0
�)
⇤
.

@2� =
@�

@ȳ
=
@�

@t

@t

@ȳ
+
@�

@x

@x

@ȳ
+
@�

@y

@y

@ȳ
+
@�

@z

@z

@ȳ
=
@�

@y
= @

2
�.

@3� =
@�

@z̄
=
@�

@t

@t

@z̄
+
@�

@x

@x

@z̄
+
@�

@y

@y

@z̄
+
@�

@z

@z

@z̄
=
@�

@z
= @

3
�.

Conclusion: @
µ
� transforms in the same way as a

µ (Eq. 12.27)—and hence is a contravariant 4-vector. qed

Problem 12.57

According to Prob. 12.54, @Gµ⌫

@x⌫ = 0 is equivalent to Eq. 12.130. Using Eq. 12.133, we find (in the notation
of Prob. 12.56):

@Fµ⌫

@x�
+
@F⌫�

@xµ
+
@F�µ

@x⌫
= @�Fµ⌫ + @µF⌫� + @⌫F�µ

= @�(@µA⌫ � @⌫Aµ) + @µ(@⌫A� � @�A⌫) + @⌫(@�Aµ � @µA�)
= (@�@µA⌫ � @µ@�A⌫) + (@µ@⌫A� � @⌫@µA�) + (@⌫@�Aµ � @�@⌫Aµ) = 0. qed

[Note that @�@µA⌫ = @2A⌫

@x� @x⌫ = @2A⌫

@x⌫ @x� = @⌫@�A⌫ , by equality of cross-derivatives.]

Problem 12.58

From Eqs. 12.40 and 12.42, ⌘µ = �(c,v), while r µ = (ct � ctr, r � w(tr)) = (r , r ), so ⌘
⌫ r ⌫ =

��cr + �v · r = ��(r c� r · v).

� q

4⇡✏0c
⌘
0

(⌘⌫ r ⌫)
=

q

4⇡✏0c
�c

�(r c� r · v)
=

1
4⇡✏0c

qc

(r c� r · v)
=

1
c
V

(Eq. 10.46),

� q

4⇡✏0c
⌘

(⌘⌫ r ⌫)
=

q

4⇡✏0c
�v

�(r c� r · v)
=

1
4⇡✏0c

qv

(r c� r · v)
= A

(Eq. 10.47), so (Eq. 12.132)

� q

4⇡✏0c
⌘

µ

(⌘⌫ r ⌫)
= A

µ
. X
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Problem 12.59

3

✲ x

✻y

❨n̂

θ

✲ x

✻
y

d

qA

qB
✲v

✲ x̄

✻
y

d

qA

qB

✛
v

✲ x

✻y

✯
vt

❑φ

❑Y

✯ X

✯X̄

❑Ȳ

❄φ ✲ x̄

✻ȳ
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Step 1 : rotate from xy to XY , using Eq. 1.29:

X = cos�x + sin� y

Y = � sin�x + cos� y

Step 2 : Lorentz-transform from XY to X̄Ȳ , using
Eq. 12.18:

X̄ = �(X � vt) = �[cos�x + sin� y � �ct]
Ȳ = Y = � sin�x + cos� y

Z̄ = Z = z

ct̄ = �(ct� �X) = �
⇥
ct� �(cos�x + sin� y)

⇤

Step 3 : Rotate from X̄Ȳ to x̄ȳ, using Eq. 1.29 with negative �:

x̄ = cos� X̄ � sin� Ȳ = � cos�[cos�x + sin� y � �ct]� sin�[� sin�x + cos� y]

= (� cos2 �+ sin2
�)x + (� � 1) sin� cos� y � �� cos� (ct)

ȳ = sin� X̄ + cos� Ȳ = � sin�(cos�x + sin� y � �ct) + cos�(� sin� c + cos� y)

= (� � 1) sin� cos�x + (� sin2
�+ cos2 �)y � �� sin� (ct)

In matrix form:

0

BB@

ct̄

x̄

ȳ

z̄

1

CCA =

0

BB@

� ��� cos� ��� sin� 0
��� cos� (� cos2 �+ sin2

�) (� � 1) sin� cos� 0
��� sin� (� � 1) sin� cos� (� sin2

�+ cos2 �) 0
0 0 0 1

1

CCA

0

BB@

ct

x

y

z

1

CCA

Problem 12.60

4

✲π ✛ p
before (CM)

K Σ
after (CM)

✲
π p

Before

✲
K Σ

After

In CM : ✲ ✛p p

Before

✒

✠

p

p

rµ

❘

sµ
■

φ

After

✲ x
✻
y

(p = magnitude of 3-momentum
in CM, φ = CM scattering angle)
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In center-of-momentum system, threshold occurs when incident en-
ergy is just su�cient to cover the rest energy of the resulting particles,
with none “wasted” as kinetic energy. Thus, in lab system, we want
the outgoing K and ⌃ to have the same velocity, at threshold:

1

✲

π
✛

p
before (CM)

K Σ
after (CM)

✲

π p

Before

✲

K Σ

After
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Initial momentum: p⇡; Initial energy of ⇡: E
2 � p

2
c
2 = m

2
c
4 ) E

2
⇡ = m

2
⇡c

4 + p
2
⇡c

2.

Total initial energy: mpc
2 =

p
m2

⇡c4 + p2
⇡c2. These are also the final energy and momentum: E

2 � p
2
c
2 =

(mK + m⌃)2c4.
⇣
mpc

2 +
p

m2
⇡c4 + p2

⇡c2
⌘2
� p

2
⇡c

2 = (mK + m⌃)2c4

m
2
pc

4� + 2mpc
2

c
4

p
m2

⇡c2 + p2
⇡c + m

2
⇡c

4� + p
2
⇡c

2� � p
2
⇡c

2� = (mK + m⌃)2c4�

2mp

c

p
m2

⇡c2 + p2
⇡ = (mK + m⌃)2 �m

2
p �m

2
⇡

c�2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.



CHAPTER 12. ELECTRODYNAMICS AND RELATIVITY 281

(m2
⇡c

2 + p
2
⇡)

4m
2
p

c2
= (mK + m⌃)4 � 2(m2

p + m
2
⇡)(mK + m⌃)2 + m

4
p + m

4
⇡ + 2m

2
pm

2
⇡

4m
2
p

c2
p
2
⇡ = (mK + m⌃)4 � 2(m2

p + m
2
⇡)(mK + m⌃)2 + (m2

p �m
2
⇡)2

p⇡ =
c

2mp

q
(mK + m⌃)4 � 2(m2

p + m2
⇡)(mK + m⌃)2 + (m2

p �m2
⇡)2

= 1
(2mpc2)c

q
(mKc2 + m⌃c2)4 � 2

�
(mpc

2)2 + (m⇡c2)2
�
(mKc2 + m⌃c2)2 +

�
(mpc

2)2 � (m⇡c2)2
�2

= 1
2c(900)

q
(1700)4 � 2

�
(900)2 + (150)2

�
(1700)2 +

�
(900)2 � (150)2

�2

= 1
1800c

p
(8.35⇥ 1012)� (4.81⇥ 1012) + (0.62⇥ 1012) = 1

1800c (2.04⇥ 106) = 1133 MeV/c

Problem 12.61

4

✲π ✛ p
before (CM)

K Σ
after (CM)

✲
π p

Before

✲
K Σ

After

In CM : ✲ ✛p p

Before

✒

✠

p

p

rµ

❘

sµ
■

φ

After

✲ x
✻
y

(p = magnitude of 3-momentum
in CM, φ = CM scattering angle)
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Outgoing 4-momentua: r
µ =

�
E
c , p cos�, p sin�, 0

�
; s

µ =
�

E
c ,�p cos�,�p sin�, 0

�
.

5

In Lab: ✲

Before

✒

❘

r̄µ

s̄µ

θ Problem: calculate θ, in terms of p, φ.

θ
1

τ/ sinφ√ 1+
(τ

/ sin
φ)

2

✲ x

✻
y

d/2

−d/2 −q

+q

✕

l
︷︸︸︷

d
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Lorentz transformation: r̄x = �(rx � �r
0); r̄y = ry; s̄x = �(sx � �s

0); s̄y = sy.

Now E = �mc
2; p = ��mv (v here is to the left; E

2 � p
2
c
2 = m

2
c
4, so � = �pc

E .

) r̄x = �
�
p cos�+ pc

E
E
c

�
= �p(1 + cos�); r̄y = p sin�; s̄x = �p(1� cos�); s̄y = �p sin�.

cos ✓ =
r̄·̄s
r̄s̄

=
�

2
p
2(1� cos2 �)� p

2 sin2
�q⇥

�2p2(1 + cos�)2 + p2 sin2
�
⇤⇥
�2p2(1� cos�)2 + p2 sin2

�
⇤

=
(�2 � 1) sin2

�q⇥
�2(1 + cos�)2 + sin2

�
⇤⇥
�2(1� cos�)2 + sin2

�
⇤

=
(�2 � 1)rh

�2
� 1+cos �

sin �

�2 + 1
ih
�2
� 1�cos �

sin �

�2 + 1
i =

(�2 � 1)q�
�2 cot2 �

2 + 1
��

tan2 �
2 + 1

�
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cos ✓ =
!q�

1 + cot2 �
2 + ! cot2 �

2

��
1 + tan2 �

2 + ! tan2 �
2

� (where ! ⌘ �2 � 1)

=
!q�

csc2 �
2 + ! cot2 �

2

��
sec2 �

2 + ! tan2 �
2

� =
! sin �

2 cos �
2q�

1 + ! cos2 �
2

��
1 + ! sin2 �

2

�

=
1
2! sin�

q�
1 + !

1
2 (1 + cos�)

��
1 + !

1
2 (1� cos�)

� =
sin�q⇥�

2
! + 1

�
+ cos�

⇤ ⇥�
2
! + 1

�
� cos�

⇤

=
sin�q�

2
! + 1

�2 � cos2 �
=

sin�q
4

!2 + 4
! + sin2

�

=
1q

1 +
�

⌧2

sin2 �

� , where ⌧2 =
4
!2

+
4
!

.

sin ✓ = ⌧
sin � . ⌧

2 = 4
!2 (1 + !) = 4

(�2�1)2 �
2, so tan ✓ = 2�

(�2�1) sin � .

Or, since (�2 � 1) = �
2
⇣
1� 1

�2

⌘
= �

2 v2

c2 , tan ✓ =
2c

2

�v2 sin�

5

In Lab: ✲

Before

✒

❘

r̄µ

s̄µ

θ Problem: calculate θ, in terms of p, φ.

θ
1

τ/ sinφ√ 1+
(τ

/ sin
φ)

2

✲ x

✻
y

d/2

−d/2 −q

+q

✕

l
︷︸︸︷

d
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Problem 12.62
dp
d⌧ = K (a constant) ) dp

dt
dt
d⌧ = K. But dt

d⌧ = 1p
1�u2/c2

; p = mup
1�u2/c2

.

) d
dt

⇣
up

1�u2/c2

⌘
= K

m

p
1� u2/c2. Multiply by dt

dx = 1
u :

dt

dx

d

dt

✓
up

1� u2/c2

◆
=

d

dx

✓
up

1� u2/c2

◆
=

K

m

p
1� u2/c2

u
. Let w =

up
1� u2/c2

.

dw

dx
=

K

m

1
w

; w
dw

dx
=

1
2

d

dx
w

2 =
k

m
;

d(w2)
dx

=
2K

m
) d(w2) =

2K

m
(dx).

) w
2 = 2K

m x+ constant. But at t = 0, x = 0 and u = 0 (so w = 0), and hence the constant is 0.

w
2 =

2K

m
x =

u
2

1� u2/c2
; u

2 =
2Kx

m
� 2Kx

mc2
u

2 ; u
2
�
1 +

2Kx

mc2

�
=

2Kx

m
.

u
2 =

2Kx/m

1 + 2Kx
mc2

=
c
2

1 +
�

mc2

2Kx

� ;
dx

dt
=

cq
1 +

�
mc2

2Kx

� ; ct =
Z r

1 +
�mc2

2Kx

�
dx

Let mc2

2K = a
2; ct =

R p
x+a2p

x
dx. Let x = y

2; dx = 2y dy;
p

x = y.

ct =
Z p

y2 + a2

y
2y dy = 2

Z p
y2 + a2 dy =

h
y

p
y2 + a2 + a

2 ln(y +
p

y2 + a2)
i

+ constant.

At t = 0, x = 0) y = 0. ) 0 = a
2 ln a+ constant, so constant = �a

2 ln a.

) ct = y

p
y2 + a2 = a

2 ln
�
y/a +

p
(y/a)2 + 1

�
= a

2

⇣
y

a

⌘r⇣
y

a

⌘2
+ 1 + ln

✓
y

a
+
r⇣

y

a

⌘2
+ 1
◆�

Let: z = y
a =
p

x

q
2K
mc2 =

q
2Kx
mc2 = z. Then

2Kt

mc
= z

p
1 + z2 + ln(z +

p
1 + z2).
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Problem 12.63

5

In Lab: ✲

Before

✒

❘

r̄µ

s̄µ

θ Problem: calculate θ, in terms of p, φ.

θ
1

τ/ sinφ√ 1+
(τ

/ sin
φ)

2

✲ x

✻
y

d/2

−d/2 −q

+q

✕

l
︷︸︸︷

d
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r
(a) x(t) = c

↵

hp
1 + (↵t)2 � 1

i
, where ↵ = F

mc . The force of +q on
�q will be the mirror image of the force of �q on +q (in the x-axis),
so the net force is in the x direction (the net magnetic force is zero).
So all we need is the x-component of E.

The field at +q due to �q is: (Eq. 10.72)

E = � q

4⇡✏0
r

(r ·u)3
⇥
u(c2 � v

2) + u(r ·a)� a(r ·u)
⇤
.

u = cr � v) ux = c
lr � v = 1r (cl � v r ); r ·u = cr � r ·v = (cr � lv); r ·a = la. So:

Ex = � q

4⇡✏0
r

(cr � vl)3
⇥ 1
r (cl � v r )(c2 � v

2) =
1
r (cl � v r�)la� a(cr � lv�)
| {z }

1r ca(l2 � r 2) = �cad
2
/r

⇤

= � q

4⇡✏0
1

(cr � vl)3
⇥
(cl � v r )(c2 � v

2)� cad
2
⇤
.

The force on +q is qEx, and there is an equal force on �q, so the net force on the dipole is:

F = � 2q
2

4⇡✏0
1

(cr � lv)3
⇥
(cl � v r )(c2 � v

2)� cad
2
⇤
x̂

It remains to determine r , l,
v, and a, and plug these in.

v(t) =
dx

dt
=

c

↵

1
2

1p
1 + (↵t)2

2↵2
t =

c↵tp
1� (↵t)2

; v = v(tr) =
c↵tr

T
, where T =

p
1 + (↵tr)2.

a(tr) =
dv

dtr
=

c↵

T
+ c↵tr

✓
�1

2

◆
2↵2

tr

T 3
=

c↵

T 3

�
1 + (↵tr)2 � (↵tr)2

�
=

c↵

T 3

Now calculate tr: c
2(t� tr)2 = r 2 = l

2 + d
2; l = x(t)� x(tr) = c

↵

⇥p
1 + (↵t)2 �

p
1 + (↵tr)2

⇤
, so

t
2�� 2ttr + t

2
r� = 1

↵2

⇥
1 + (↵t)2� + 1 + (↵tr)2� � 2

p
1 + (↵t)2

p
1 + (↵tr)2

⇤
+ (d/c)2

(F)
p

1 + (↵t)2
p

1 + (↵tr)2 = 1 + ↵
2
ttr + 1

2

�
↵d
c

�2. Square both sides:

1� + (↵t)2 + (↵tr)2 + ↵
4
t
2
t
2
r� = 1� + ↵

4
t
2
t
2
r� +

1
4

⇣
↵d

c

⌘4
+ 2↵2

ttr +
⇣
↵d

c

⌘2
+ ↵

2
ttr

⇣
↵d

c

⌘2

t
2 + t

2
r � 2ttr � ttr

⇣
↵d

c

⌘2
�
⇣

d

c

⌘2
� ↵

2

4

⇣
d

c

⌘4
= 0

At this point we could solve for tr (in terms of t), but since v and a are already expressed in terms of tr, it is
simpler to solve for t (in terms of tr), and express everything in terms of tr:

t
2 � ttr


2 +

⇣
↵d

c

⌘2
�

+

t
2
r �

⇣
d

c

⌘2
� ↵

2

4

⇣
d

c

⌘4
�

= 0 =)

t =
1
2

(
tr


2 +

⇣
↵d

c

⌘2
�
±

s

t2r


4� + 4

⇣
↵d

c

⌘2
+
⇣
↵d

c

⌘4
�
� 4t2r� + 4

⇣
d

c

⌘2
+ ↵2

⇣
d

c

⌘4
)

= tr


1 +

1
2

⇣
↵d

c

i
)2
�
±

s
⇥
1 + (↵tr)2

⇤⇣d

c

⌘2

1 +

⇣
↵d

2c

⌘�
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Which sign? For small ↵ we want t ⇡ tr + d/c, so we need the + sign:

t = tr


1 +

1
2

⇣
↵d

c

⌘2
�

+
d

c
TD, where D =

r
1 +

⇣
↵d

2c

⌘2

So r = c(t� tr)) r = ctr
2

�
↵d
c

�2 + dTD. Now go back to Eq. (F) and solve for
p

1 + (↵t)2:

p
1 + (↵t)2 =

1
T

⇢
1 +

1
2

⇣
↵d

c

⌘2
+ ↵

2
tr


tr

⇣
1 +

1
2

⇣
↵d

c

⌘2
�

+
d

c
TD

��

=
1
T

⇢⇥
1 + (↵tr)2| {z }

T
2

⇤
1 +

1
2

⇣
↵d

c

⌘2
�

+
↵

2
trd

c
TD

�
=

1 +

1
2

⇣
↵d

c

⌘2
�
T +

↵
2
trd

c
D

l =
c

↵

hp
1 + (↵t2)�

p
1 + (↵tr)2

i
=

c

↵

⇢
1� +

1
2

⇣
↵d

c

⌘2
�
T +

↵
2
trd

c
D � T�

�
= ↵d

⇣
d

2c
T + trD

⌘

Putting all this in, the numerator in square brackets in F becomes:

[ ] =
n

c↵d

⇣
d

2c
T + trD

⌘
� c↵tr

T

h
ctr

2

⇣
↵d

c

⌘2
+ dTD

ioh
c
2 � c

2
↵

2
t
2
r

T 2

i
� c

c↵

T3
d
2

= c↵d

h
d

2c
T + trD� � d(atr)2

2cT
� trD�

i
c
2

T2

⇥
1 + (↵tr)2� � (↵tr)2� ⇤

� c
2
↵d

2

T 3

=
c
2
↵d

2

T 3

h1
2
T

2 � 1
2
(↵tr)2 � 1

i
=

c
2
↵d

2

2T 3

h
1 + (↵tr)2 � (↵tr)2 � 2

i
= �c

2
↵d

2

2T 3

) F =
q
2

4⇡✏0
c
2
↵d

2

⇥
(cr � lv)T

⇤3 x̂. It remains to compute the denominator:

(cr � lv)T =
⇢

c


ctr

2

⇣
↵d

c

⌘2
+ dTD

�
� ↵d

⇣
d

2c
T + trD

⌘
c↵tr

T

�
T

=
h1
2
↵

2
trd

2� + cdTD � 1
2
↵

2
trd

2� � cd(↵tr)2

T
D

i
T = cdD

⇥
T

2 � (↵tr)2| {z }
1+(↵tr)2� �(↵tr)2�

⇤
= dcD

) F =
q
2

4⇡✏0
c
2
d
2
↵

c3d3D3
x̂ =

q
2

4⇡✏0
↵

cd
⇥
1 +

�
↵d
2c

�2⇤3/2
x̂

⇣
↵ =

F

mc

⌘

Energy must come from the “reservoir” of energy stored in the electromagnetic fields.

(b) F = mc↵ =
1
2
"

q
2

4⇡✏0
↵

cd
⇥
1 +

�
↵d
2c

⇤2�3/2
)
h
1 +

⇣
↵d

2c

⌘2i3/2
=

q
2

8⇡✏0mc2d
=
⇣

µ0q
2

8⇡md

⌘
.

(force on one end only)

) ↵ =
2c

d

r⇣
µ0q

2

8⇡md

⌘2/3
� 1 , so F =

2mc
2

d

r⇣
µ0q

2

8⇡md

⌘2/3
� 1.
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Problem 12.64

(a) A
µ = (V/c, Ax, Ay, Az) is a 4-vector (like x

µ = (ct, x, y, z)), so (using Eq. 12.19): V = �(V̄ + vĀx). But
V̄ = 0, and

Āx =
µ0

4⇡
(m⇥r̄)x

r̄3

Now (m⇥r̄)x = my z̄ �mz ȳ = myz �mzy. So

V = �v
µ0

4⇡
(myz �mzy)

r̄3

Now x̄ = �(x � vt) = �Rx, ȳ = y = Ry, z̄ = z = Rz, where R is the vector (in S) from the (instantaneous)
location of the dipole to the point of observation. Thus

r̄
2 = �

2
R

2
x + R

2
y + R

2
z = �

2(R2
x + R

2
y + R

2
z) + (1� �2)(R2

y + R
2
z) = �

2
�
R2 �

v
2

c2
R

2 sin2
✓
�

(where ✓ is the angle between R and the x-axis, so that R
2
y + R

2
z = R

2 sin2
✓).

) V =
µ0

4⇡
v�(myRz �mzRy)

�3R3
�
1� v2

c2 sin2
✓
�3/2

; v·(m⇥R) = v(m⇥R)x = v(myRz �mzRy), so

V =
µ0

4⇡
v·(m⇥R)

�
1� v2

c2

�

R3
�
1� v2

c2 sin2
✓
�3/2

,

or, using µ0 = 1
✏0c2 and v·(m⇥R) = R·(v⇥m): V =

1
4⇡✏0

bR·(v⇥m)
�
1� v2

c2

�

c2R2
�
1� v2

c2 sin2
✓
�3/2

(b) In the nonrelativistic limit (v2 ⌧ c
2):

V =
1

4⇡✏0

bR·(v⇥m)
c2R2

=
1

4⇡✏0

bR·p
R2

, with p =
v⇥m

c2
,

which is the potential of an electric dipole.
Problem 12.65

(a) B = �µ0
2 Kŷ (Eq. 5.58); N = m⇥B (Eq. 6.1), so N = �µ0

2 mK(ẑ⇥ŷ).

N =
µ0

2
mKx̂ = µ0

2 (�vl
2)(�v)x̂ = µ0

2 ��v
2
l
2
x̂.
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(b)

��

Charge density in the front side: �0 (� = ��0);
Charge density on the back side: �̄ = �̄�0, where v̄ = 2v

1+v2/c2 ,

so �̄ =
1q

1� 4v2/c2

(1+v2/c2)2

=
(1 + v

2
/c

2)q
1 + 2 v2

c2 + v4

c4 � 4 v2

c2

=
1 + v

2
/c

2

q
1� 2 v2

c2 + v4

c4

=
(1 + v

2
/c

2)
(1� v2/c2)

= �
2
⇣
1 +

v
2

c2

⌘

Length of front and back sides in this frame: l/�. So net charge on back side is:

q+ = �̄
l

�
= �

2
⇣
1 +

v
2

c2

⌘
�

�

l

�
=
⇣
1 +

v
2

c2

⌘
�l

Net charge on front side is:

q� = �0
l

�
=
�

�

l

�
=

1
�2
�l

So dipole moment (note: charges on sides are equal):

p = (q+)
l

2
ŷ � (q�)

l

2
ŷ =

⇣
1 +

v
2

c2

⌘
�l

l

2
� 1
�2
�l

l

2

�
ŷ =

�l
2

2

⇣
1 +

v
2

c2
� 1 +

v
2

c2

⌘
ŷ =

�l
2
v
2

c2
ŷ.

E = �0
2✏0

ẑ, where � = ��0, so N = p⇥E =
�l

2
v
2

c2

�

2✏0�
(ŷ⇥ẑ) =

1
�

µ0

2
��l

2
v
2
x̂.

So apart from the relativistic factor of � the torque is the same in both systems — but in S it is the torque
exerted by a magnetic field on a magnetic dipole, whereas in S̄ it is the torque exerted by an electric field on
an electric dipole.
Problem 12.66

Choose axes so that E points in the z direction and B in the yz plane: E = (0, 0, E); B = (0, B cos�, B sin�).
Go to a frame moving at speed v in the x direction:

Ē =
�
0,��vB sin�, �(E + vB cos�)

�
; B̄
�
0, �(B cos�+

v

c2
E), �B sin�

�
.

(I used Eq. 12.109.) Parallel provided
��vB sin�

�(B cos�+ v
c2 E)

=
�(E + vB cos�)

�B sin�
, or

�vB
2 sin2

� =
�
B cos�+

v

c2
E
�
(E + vB cos�) = EB cos�+ vB

2 cos2 �+
v

c2
E

2 +
v
2

c2
EB cos�

0 = vB
2 +

v

c2
E

2 + EB cos�
⇣
1 +

v
2

c2

⌘
;

v

1 + v2/c2
= � EB cos�

B2 + E2/c2

Now E⇥B =

������

x̂ ŷ ẑ

0 0 E

0 B cos� B sin�

������
= �EB cos�. So

v

1 + v2/c2
=

E⇥B

B2 + E2/c2
. qed

No, there can be no frame in which E ? B, for (E·B) is invariant, and since it is not zero in S it can’t be
zero in S̄.
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Problem 12.67

6

✕v☛v

✛✛
v̄

✲ x−q
✲

❄

✻

✎❲

✗ ❖

☛❯

✕ ❑

+q
✛

✻

❄

✗❖

✎ ❲

✕❑

☛ ❯

✻

❄

✗❖

✎ ❲

✍
▼

✌
◆

◆ ❲ ❄✎✌

✍ ✗ ✻❖▼

✲ x
+ −

✶ct
!
E

!
E
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Just before:
Field lines emanate
from present position
of particle.

6

✕v☛v

✛✛
v̄

✲ x−q
✲

❄

✻

✎❲

✗ ❖

☛❯

✕ ❑

+q
✛

✻

❄

✗❖

✎ ❲

✕❑

☛ ❯

✻

❄

✗❖

✎ ❲

✍
▼

✌
◆

◆ ❲ ❄✎✌

✍ ✗ ✻❖▼

✲ x
+ −

✶ct
!
E

!
E
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Just after : Field lines outside sphere of radius ct emanate from
position particle would have reached, had it kept going on its
original “flight plan”. Inside the sphere E = 0. On the sur-
face the lines connect up (since they cannot simply terminate

in empty space), as suggested in the figure.
This produces a dense cluster of tangentially-directed field

lines, which expand with the spherical shell. This is a pic-
torial way of understanding the generation of electromagnetic

radiation.

Problem 12.68

Equation 12.67 assumes the particle is (instantaneously) at rest in S. Here the particle is at rest in S̄. So
F? = 1

� F̄?, Fk = F̄k. Using F̄ = qĒ, then,

Fx = F̄x = qĒx, Fy =
1
�

F̄y =
1
�

qĒy, Fz =
1
�

F̄z =
1
�

qĒz.

Invoking Eq. 12.109:

Fx = qEx, Fy =
1
�

q�(Ey � vBz) = q(Ey � vBz) Fz =
1
�

q�(Ez + vBy) = q(Ez + vBy).

But v ⇥B = �vBz x̂ + vBy ẑ, so F = q(E + v ⇥B). qed
Problem 12.69

1

✲ y

✻
z

✰
x

✻E

✰B

✲ ȳ

✻
z̄

✰
x̄

=⇒v

✲ ȳ

✻
z̄

✰
x̄

✶R

q

ωt

✒
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Rewrite Eq. 12.109 with x! y, y ! z, z ! x:

Ēy = Ey Ēz = �(Ez � vBx) Ēx = �(Ex + vBz)

B̄y = By B̄z = �

⇣
Bz +

v

c2
Ex

⌘
B̄x = �

⇣
Bx �

v

c2
Ez

⌘

This gives the fields in system S̄ moving in the y direction at speed v.

Now E = (0, 0, E0); B = (B0, 0, 0), so Ēy = 0, Ēz = �(E0 � vB0), Ēx = 0.
If we want Ē = 0, we must pick v so that E0 � vB0 = 0; i.e. v = E0/B0

(The condition E0/B0 < c guarantees that there is no problem getting to such a system.)
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With this, B̄y = 0, B̄z = 0, B̄x = �(B0 � v
c2 E0) = �B0

�
1� v2

c2

�
= �B0

1
�2 = 1

� B0; B̄ =
1
�

B0x̂.

The trajectory in S̄: Since the particle started out at rest at the origin
in S, it started out with velocity �vŷ in S̄. According to Eq. 12.71
it will move in a circle of radius R, given by

p = qBR, or �mv = q

⇣ 1
�

B0

⌘
R) R =

m�
2
v

qB0
.

1

✲ y

✻
z

✰
x

✻E

✰B

✲ ȳ

✻
z̄

✰
x̄

=⇒v

✲ ȳ

✻
z̄

✰
x̄

✶R

q

ωt

✒
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The actual trajectory is given by x̄ = 0 ; ȳ = �R sin!t̄ ; z̄ = R(1� cos!t̄); where ! =
v

R
.

The trajectory in S: The Lorentz transformations Eqs. 12.18 and 12.19, for the case of relative motion in
the y-direction, read:

x̄ = x x = x̄

ȳ = �(y � vt) y = �(ȳ + vt̄)
z̄ = z z = z̄

t̄ = �

⇣
t� v

c2
y

⌘
t = �

⇣
t̄ +

v

c2
ȳ

⌘

So the trajectory in S is given by:

x = 0; y = �(�R sin!t̄ + vt̄) = �

⇢
�R sin

h
!�

⇣
t� v

c2
y

⌘i
+ v�

⇣
t� v

c2
y

⌘�
, or

y

⇣
1 + �

2 v
2

c2

⌘

| {z }
�2y(1� v2

c2
+ v2

c2
)=�2y

= �
2
vt� �R sin

h
!�

⇣
t� v

c2
y

⌘i)
(y � vt)� = �R sin

h
!�

⇣
t� v

c2 y

⌘i
;

z = R(1� cos2 !t̄) = R

h
1� cos!�

⇣
t� v

c2
y

⌘i
.

So: x = 0; y = vt� R

�
sin
h
!�

⇣
t� v

c2
y

⌘i
; z = R�R cos

h
!�

⇣
t� v

c2

⌘i
.

We can get rid of the trigonometric terms by the usual trick:

�(y � vt) = �R sin
⇥
!�(t� v

c2 y)
⇤

z �R = �R cos
⇥
!�(t� v

c2 y)
⇤

�
) �

2(y � vt)2 + (z �R)2 = R
2
.

Absent the �2, this would be the cycloid we found back in Ch. 5 (Eq. 5.9). The �2 makes it, as it were, an
elliptical cycloid — same picture as Fig. 5.7, but with the horizontal axis stretched out.
Problem 12.70

(a) D = ✏0E + P suggests E! 1
✏0

D

H = 1
µ0

B�M suggests B! µ0H

�
but it’s a little cleaner if we divide by µ0 while we’re at it, so that

E! 1
µ0✏0

D = c
2
D, B! H. Then:

D
µ⌫ =

8
>><

>>:

0 cDx cDy cDz

�cDx 0 Hz �Hy

�cDy �Hz 0 Hx

�cDz Hy �Hx 0

9
>>=

>>;
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Then (following the derivation in Sect. 12.3.4):

@

@x⌫
D

0⌫ = cr·D = c⇢f = J
0
f ;

@

@x⌫
D

1⌫ =
1
c

@

@t
(�cDx) + (r⇥H)x = (Jf )x ; so

@Dµ⌫

@x⌫
= J

µ
f ,

where J
µ
f = (c⇢f ,Jf ). Meanwhile, the homogeneous Maxwell equations

�
r·B = 0, E = �@B

@t

�
are unchanged,

and hence
@G

µ⌫

@x⌫
= 0.

(b)
H

µ⌫ =

8
>><

>>:

0 Hx Hy Hz

�Hx 0 �cDz cDy

�Hy cDz 0 �cDx

�Hz �cDy cDx 0

9
>>=

>>;

(c) If the material is at rest, ⌘⌫ = (�c, 0, 0, 0), and the sum over ⌫ collapses to a single term:

D
µ0
⌘0 = c

2
✏F

µ0
⌘0 ) D

µ0 = c
2
✏F

µ0 ) �cD = �c
2
✏
E

c
) D = ✏E (Eq. 4.32), X

H
µ0
⌘0 =

1
µ

G
µ0
⌘0 ) H

µ0 =
1
µ

G
µ0 ) �H = � 1

µ
B) H =

1
µ
B (Eq. 6.31). X

(d) In general, ⌘⌫ = �(�c,u), so, for µ = 0:

D
0⌫
⌘⌫ = D

01
⌘1 + D

02
⌘2 + D

03
⌘3 = cDx(�ux) + cDy(�uy) + cDz(�uz) = �c(D · u),

F
0⌫
⌘⌫ = F

01
⌘1 + F

02
⌘2 + F

03
⌘3 =

Ex

c
(�ux) +

Ey

c
(�uy) +

Ez

c
(�uz) =

�

c
(E · u), so

D
0⌫
⌘⌫ = c

2
✏F

0⌫
⌘⌫ ) �c(D · u) = c

2
✏

⇣
�

c

⌘
(E · u)) D · u = ✏(E · u). [1]

H
0⌫
⌘⌫ = H

01
⌘1 + H

02
⌘2 + H

03
⌘3 = Hx(�ux) + Hy(�uy) + Hz(�uz) = �(H · u),

G
0⌫
⌘⌫ = G

01
⌘1 + G

02
⌘2 + G

03
⌘3 = Bx(�ux) + By(�uy) + Bz(�uz) = �(B · u), so

H
0⌫
⌘⌫ =

1
µ

G
0⌫
⌘⌫ ) �(H · u) =

1
µ
�(B · u)) H · u =

1
µ

(B · u). [2]

Similarly, for µ = 1:

D
1⌫
⌘⌫ = D

10
⌘0 + D

12
⌘2 + D

13
⌘3 = (�cDx)(��c) + Hz(�uy) + (�Hy)(�uz) = �(c2

Dx + uyHz � uzHy)
= �

⇥
c
2
D + (u⇥H)

⇤
x

,

F
1⌫
⌘⌫ = F

10
⌘0 + F

12
⌘2 + F

13
⌘3 =

�Ex

c
(��c) + Bz(�uy) + (�By)(�uz) = �(Ex + uyBz � uzBy)

= � [E + (u⇥B)]x , so D
1⌫
⌘⌫ = c

2
✏F

1⌫
⌘⌫ )

�
⇥
c
2
D + (u⇥H)

⇤
x

= c
2
✏� [E + (u⇥B)]x ) D +

1
c2

(u⇥H) = ✏ [E + (u⇥B)] . [3]

H
1⌫
⌘⌫ = H

10
⌘0 + H

12
⌘2 + H

13
⌘3 = (�Hx)(��c) + (�cDz)(�uy) + (cDy)(�uz)

= �c(Hx � uyDz + uzDy) = �c [H� (u⇥D)]x ,
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G
1⌫
⌘⌫ = G

10
⌘0 + G

12
⌘2 + G

13
⌘3 = (�Bx)(��c) +

✓
�Ez

c

◆
(�uy) +

✓
Ey

c

◆
(�uz)

=
�

c
(c2

Bx � uyEz + uzEy) =
�

c

⇥
c
2
B� (u⇥E)

⇤
x

, so H
1⌫
⌘⌫ =

1
µ

G
1⌫
⌘⌫ )

�c [H� (u⇥D)]x =
1
µ

�

c

⇥
c
2
B� (u⇥E)

⇤
x
) H� (u⇥D) =

1
µ


B� 1

c2
(u⇥E)

�
. [4]

Use Eq. [4] as an expression for H, plug this into Eq. [3], and solve for D:

D +
1
c2

u⇥
⇢

(u⇥D) +
1
µ


B� 1

c2
(u⇥E)

��
= ✏ [E + (u⇥B)] ;

D +
1
c2

⇥
(u ·D)u� u

2
D
⇤

= ✏ [E + (u⇥B)]� 1
µc2

(u⇥B) +
1

µc4
[u⇥ (u⇥E)] .

Using Eq. [1] to rewrite (u ·D):

D

✓
1� u

2

c2

◆
= � ✏

c2
(E · u)u + ✏[E + (u⇥B)]� 1

µc2
(u⇥B) +

1
µc4

⇥
(E · u)u� u

2
E
⇤

= ✏

⇢
1� u

2

✏µc4

�
E� 1

c2


1� 1

✏µc2

�
(E · u)u + (u⇥B)


1� 1

✏µc2

��
.

Let � ⌘ 1p
1� u2/c2

, v ⌘ 1
p
✏µ

. Then

D = �
2
✏

⇢✓
1� u

2
v
2

c4

◆
E +

✓
1� v

2

c2

◆
(u⇥B)� 1

c2
(E · u)u

��
.

Now use Eq. [3] as an expression for D, plug this into Eq. [4], and solve for H:

H� u⇥
⇢
� 1

c2
(u⇥H) + ✏[E + (u⇥B)]

�
=

1
µ


B� 1

c2
(u⇥E)

�
;

H +
1
c2

⇥
(u ·H)u� u

2
H
⇤

=
1
µ


B� 1

c2
(u⇥E)

�
+ ✏(u⇥E) + ✏[u⇥ (u⇥B)].

Using Eq. [2] to rewrite (u ·H):

H

✓
1� u

2

c2

◆
= � 1

µc2
(B · u)u +

1
µ


B� 1

c2
(u⇥E)

�
+ ✏(u⇥E) + ✏

⇥
(B · u)u� u

2
B
⇤

=
1
µ

⇢⇥
1� µ✏u

2
⇤
B +


✏µ� 1

c2

�
[(u⇥E) + (B · u)u]

�
.

H =
�

2

µ

⇢✓
1� u

2

v2

◆
B +

✓
1
v2
� 1

c2

◆
[(u⇥E) + (B · u)u]

�
.
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Problem 12.71

We know that (proper) power transforms as the zeroth component of a 4-vector K
0 = 1

c
dW
d⌧ . The Larmor

formula says that for v = 0, dW
d⌧ = 1

4⇡✏0
2
3

q2

c3 a
2 (Eq. 11.70). Can we think of a 4-vector whose zeroth component

reduces to this when the velocity is zero?
Well, a

2 smells like (↵⌫
↵⌫), but how do we get a 4-vector in here? How about ⌘µ, whose zeroth component

is just c, when v = 0? Try, then:

K
µ =

1
4⇡✏0

2
3

q
2

c5
(↵⌫

↵⌫)⌘µ

This has the right transformation properties, but we must check that it does reduce to the Larmor formula
when v = 0:

dW

dt
=

1
�

dW

d⌧
=

1
�

cK
0 =

1
�

c
µ0q

2

6⇡c3
(↵⌫

↵⌫)⌘0, but ⌘0 = c�, so
dW

dt
=

µ0q
2

6⇡c
(↵⌫

↵⌫) . [Incidentally, this tells

us that the power itself (as opposed to proper power) is a scalar. If this had been obvious from the start, we
could simply have looked for a Lorentz scalar that generalizes the Larmor formula.]

In Prob. 12.39(b) we calculated (↵⌫
↵⌫) in terms of ordinary velocity and acceleration:

↵
⌫
↵⌫ = �

4
h
a
2 +

(v·a)2

(c2 � v2)

i
= �

6
h
a
2
�
�2 +

1
c2

(v·a)2
i

= �
6
h
a
2
⇣
1� v

2

c2

⌘
+

1
c2

(v·a)2
i

= �
6
n

a
2 � 1

c2

⇥
v
2
a
2 � (v·a)2

⇤o
.

Now v·a = va cos ✓, where ✓ is the angle between v and a, so:

v
2
a
2 � (v·a)2 = v

2
a
2(1� cos2 ✓) = v

2
a
2 sin2

✓ = |v⇥a|2.

↵
⌫
↵⌫ = �

6
⇣
a
2 �

���
v⇥a

c

���
2⌘

.

dW

dt
=

µ0q
2

6⇡c
�

6
⇣
a
2 �

���
v⇥a

c

���
2⌘

, which is Liénard’s formula (Eq. 11.73).

Problem 12.72

(a) It’s inconsistent with the constraint ⌘µK
µ = 0 (Prob. 12.39(d)).

(b) We want to find a 4-vector b
µ with the property that

�
d↵µ

d⌧ +b
µ
�
⌘µ = 0. How about b

µ = 
�

d↵⌫

d⌧ ⌘⌫

�
⌘

µ? Then�
d↵⌫

d⌧ +b
µ
�
⌘µ = d↵µ

d⌧ ⌘µ +d↵⌫

d⌧ ⌘⌫(⌘µ
⌘µ). But ⌘µ

⌘µ = �c
2, so this becomes

�
d↵µ

d⌧ ⌘µ

�
�c

2

�

d↵⌫

d⌧ ⌘⌫

�
, which is zero,

if we pick  = 1/c
2. This suggests K

µ
rad =

µ0q
2

6⇡c

⇣
d↵

µ

d⌧
+

1
c2

d↵
⌫

d⌧
⌘⌫⌘

µ
⌘
. Note that ⌘µ = (c,v)�, so the spatial

components of b
µ vanish in the nonrelativistic limit v ⌧ c, and hence this still reduces to the Abraham-Lorentz

formula. [Incidentally, ↵⌫
⌘⌫ = 0) d

d⌧ (↵⌫
⌘⌫) = 0) d↵⌫

d⌧ ⌘⌫ +↵
⌫ d⌘⌫

d⌧ = 0, so d↵⌫

d⌧ ⌘⌫ = �↵⌫
↵⌫ , and hence b

µ can
just as well be written � 1

c2 (↵⌫
↵⌫)⌘µ.]

Problem 12.73

Define the electric current 4-vector as before: J
µ
e = (c⇢e,Je), and the magnetic current analogously:

J
µ
m = (c⇢m,Jm). The fundamental laws are then

@⌫F
µ⌫ = µ0J

µ
e , @⌫G

µ⌫ =
µ0

c
J

µ
m, K

µ =
⇣
qeF

µ⌫ +
qm

c
G

µ⌫
⌘
⌘⌫ .
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The first of these reproduces r·E = (1/✏0)⇢e and r⇥B = µ0Je + µ0✏0@E/@t, just as before; the second
yields r·B = (µ0/c)(c⇢m) = µ0⇢m and �(1/c)[@B/@t + r⇥E] = (µ0/c)Jm, or r⇥E = �µ0Jm � @B/@t

(generalizing Sec. 12.3.4). These are Maxwell’s equations with magnetic charge (Eq. 7.44). The third says

K
1 =

qep
1� u2/c2

[E + (u⇥B)]x +
qm

c

"
�cp

1� u2/c2
(�Bx) +

uyp
1� u2/c2

✓
�Ez

c

◆
+

uzp
1� u2/c2

✓
Ey

c

◆#
,

K =
1p

1� u2/c2

⇢
qe [E + (u⇥B)] + qm


B� 1

c2
(u⇥E)

��
, or

F = qe [E + (u⇥B] + qm


B� 1

c2
(u⇥E)

�
,

which is the generalized Lorentz force law (Eq. 7.69).
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4th ed Same? 3rd ed
1.1 X 1.1
1.2 X 1.2
1.3 X 1.3
1.4 X 1.4
1.5 X 1.5
1.6 X 1.6
1.7 X 1.7
1.8 X 1.8
1.9 X 1.9
1.10 X 1.10
1.11 X 1.11
1.12 X 1.12
1.13 X 1.13
1.14 X 1.14
1.15 X 1.15
1.16 X 1.16
1.17 X 1.17
1.18 X 1.18
1.19 new –
1.20 X 1.19
1.21 X 1.20
1.22 X 1.21
1.23 X 1.22
1.24 X 1.23
1.25 X 1.24
1.26 X 1.25
1.27 X 1.26
1.28 X 1.27
1.29 X 1.28
1.30 X 1.29
1.31 X 1.30
1.32 X 1.31
1.33 X 1.32
1.34 X 1.33
1.35 X 1.34
1.36 X 1.35
1.37 X 1.36
1.38 X 1.37
1.39 X 1.38
1.40 X 1.39
1.41 X 1.40
1.42 X 1.41
1.43 X 1.42
1.44 X 1.43
1.45 X 1.44

4th ed Same? 3rd ed
1.46 X 1.45
1.47 X 1.46
1.48 X 1.47
1.49 X 1.48
1.50 X 1.49
1.51 X 1.50
1.52 X 1.51
1.53 X 1.52
1.54 X 1.53
1.55 X 1.54
1.56 X 1.55
1.57 X 1.56
1.58 X 1.57
1.59 X 1.58
1.60 X 1.59
1.61 X 1.60
1.62 X 1.61
1.63 X 1.62
1.64 new –
2.1 X 2.1
2.2 mod 2.2
2.3 X 2.3
2.4 X 2.4
2.5 X 2.5
2.6 X 2.6
2.7 X 2.7
2.8 X 2.8
2.9 X 2.9
2.10 X 2.10
2.11 X 2.11
2.12 X 2.12
2.13 X 2.13
2.14 X 2.14
2.15 mod 2.15
2.16 X 2.16
2.17 X 2.17
2.18 X 2.18
2.19 X 2.19
2.20 X 2.20
2.21 X 2.21
2.22 X 2.22
2.23 X 2.23
2.24 X 2.24
2.25 X 2.25
2.26 X 2.26

4th ed Same? 3rd ed
2.27 X 2.27
2.28 X 2.28
2.29 X 2.29
2.30 X 2.30
2.31 X 2.31
2.32 new –
2.33 new –
2.34 X 2.32
2.35 X 2.33
2.36 X 2.34
2.37 new –
2.38 X 2.35
2.39 X 2.36
2.40 new –
2.41 X 2.37
2.42 X 2.38
2.43 X 2.39
2.44 X 2.40
2.45 X 2.41
2.46 new –
2.47 X 2.43
2.48 X 2.44
2.49 X 2.45
2.50 X 2.46
2.51 new –
2.52 X 2.47
2.53 X 2.48
2.54 mod 2.49
2.55 X 2.50
2.56 X 2.51
2.57 X 2.52
2.58 new –
2.59 new –
2.60 new –
2.61 new –
3.1 X 3.1
3.2 X 3.2
3.3 X 3.3
3.4 new –
3.5 X 3.4
3.6 X 3.5
3.7 X 3.6
3.8 X 3.7
3.9 X 3.8
3.10 X 3.9
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4th ed Same? 3rd ed
3.11 X 3.10
3.12 X 3.11
3.13 X 3.12
3.14 X 3.13
3.15 X 3.14
3.16 mod 3.15
3.17 X 3.16
3.18 X 3.17
3.19 X 3.18
3.20 X 3.19
3.21 X 3.20
3.22 X 3.21
3.23 X 3.22
3.24 X 3.23
3.25 X 3.24
3.26 X 3.25
3.27 X 3.26
3.28 new –
3.29 X 3.27
3.30 X 3.28
3.31 X 3.29
3.32 X 3.30
3.33 X 3.31
3.34 X 3.32
3.35 new –
3.36 X 3.33
3.37 new –
3.38 new –
3.39 X 3.35
3.40 X 3.36
3.41 new –
3.42 new –
3.43 X 3.37
3.44 X 3.38
3.45 X 3.39
3.46 X 3.40
3.47 X 3.41
3.48 X 3.42
3.49 new –
3.50 X 3.43
3.51 X 3.44
3.52 mod 3.45
3.53 X 3.46
3.54 X 3.47
3.55 X 3.48

4th ed Same? 3rd ed
3.56 X 3.49
3.57 new –
3.58 new –
4.1 X 4.1
4.2 X 4.2
4.3 X 4.3
4.4 X 4.4
4.5 X 4.5
4.6 X 4.6
4.7 X 4.7
4.8 X 4.8
4.9 X 4.9
4.10 X 4.10
4.11 X 4.11
4.12 X 4.12
4.13 X 4.13
4.14 X 4.14
4.15 X 4.15
4.16 mod 4.16
4.17 X 4.17
4.18 X 4.18
4.19 X 4.19
4.20 X 4.20
4.21 X 4.21
4.22 X 4.22
4.23 X 4.23
4.24 X 4.24
4.25 X 4.25
4.26 X 4.26
4.27 X 4.27
4.28 X 4.28
4.29 X 4.29
4.30 X 4.30
4.31 new –
4.32 new –
4.33 X 4.31
4.34 new –
4.35 X 4.32
4.36 X 4.33
4.37 X 4.34
4.38 X 4.35
4.39 X 4.36
4.40 X 4.37
4.41 X 4.38
4.42 X 4.39

4th ed Same? 3rd ed
4.43 X 4.40
5.1 X 5.1
5.2 X 5.2
5.3 X 5.3
5.4 X 5.4
5.5 X 5.5
5.6 X 5.6
5.7 X 5.7
5.8 X 5.8
5.9 X 5.9
5.10 X 5.10
5.11 X 5.11
5.12 new –
5.13 X 5.12
5.14 X 5.13
5.15 X 5.14
5.16 X 5.15
5.17 X 5.16
5.18 X 5.17
5.19 X 5.18
5.20 X 5.19
5.21 X 5.20
5.22 X 5.21
5.23 X 5.22
5.24 X 5.23
5.25 X 5.24
5.26 X 5.25
5.27 X 5.26
5.28 X 5.27
5.29 X 5.28
5.30 X 5.29
5.31 X 5.30
5.32 X 5.31
5.33 X 5.32
5.34 X 5.33
5.35 X 5.34
5.36 X 5.37
5.37 mod 5.35, 5.36
5.38 X 5.60
5.39 new –
5.40 X 5.38
5.41 X 5.39
5.42 X 5.40
5.43 X 5.41
5.44 X 5.42
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4th ed Same? 3rd ed
5.45 X 5.43
5.46 X 5.44
5.47 X 5.46
5.48 mod 5.47
5.49 X 5.48
5.50 X 5.49
5.51 new –
5.52 X 5.50
5.53 X 5.51
5.54 X 5.52
5.55 X 5.53
5.56 X 5.54
5.57 X 5.55
5.58 X 5.56
5.59 X 5.57
5.60 X 5.58
5.61 X 5.59
5.62 X 5.61
6.1 X 6.1
6.2 X 6.2
6.3 X 6.3
6.4 X 6.4
6.5 X 6.5
6.6 X 6.6
6.7 X 6.7
6.8 X 6.8
6.9 X 6.9
6.10 X 6.10
6.11 X 6.11
6.12 X 6.12
6.13 X 6.13
6.14 X 6.14
6.15 X 6.15
6.16 X 6.16
6.17 X 6.17
6.18 X 6.18
6.19 X 6.19
6.20 X 6.20
6.21 X 6.21
6.22 X 6.22
6.23 X 6.25
6.24 new –
6.25 X 6.23

4th ed Same? 3rd ed
6.26 X 6.24
6.27 X 6.26
6.28 X 6.27
6.29 X 6.28
7.1 X 7.1
7.2 X 7.2
7.3 X 7.3
7.4 X 7.4
7.5 X 7.5
7.6 X 7.6
7.7 X 7.7
7.8 X 7.8
7.9 X 7.9
7.10 X 7.10
7.11 X 7.11
7.12 X 7.12
7.13 X 7.13
7.14 X 7.14
7.15 X 7.15
7.16 X 7.16
7.17 X 7.17
7.18 X 7.18
7.19 X 7.19
7.20 new –
7.21 new –
7.22 X 7.20
7.23 X 7.21
7.24 X 7.22
7.25 X 7.23
7.26 X 7.24
7.27 X 7.25
7.28 X 7.26
7.29 X 7.27
7.30 X 7.28
7.31 X 7.29
7.32 X 7.30
7.33 new –
7.34 X 7.31
7.35 X 7.32
7.36 X 7.33
7.37 X 7.34
7.38 X 7.35
7.39 X 7.36

4th ed Same? 3rd ed
7.40 X 7.37
7.41 X 7.39
7.42 X 7.41
7.43 X 7.57
7.44 X 7.42
7.45 X 7.43
7.46 X 7.44
7.47 X 7.45
7.48 mod 7.46
7.49 mod 7.47
7.50 X 7.48
7.51 new –
7.52 X 7.49
7.53 X 7.50
7.54 new –
7.55 X 7.51
7.56 X 7.52
7.57 X 7.53
7.58 X 7.54
7.59 new –
7.60 X 7.55
7.61 X 7.56
7.62 X 7.58
7.63 X 7.59
7.64 X 7.60
8.1 X 8.1
8.2 X 8.2
8.3 X 8.3
8.4 X 8.4
8.5 new –
8.6 mod 8.6
8.7 mod 8.5
8.8 X 8.7
8.9 new –
8.10 X 8.8
8.11 new –
8.12 new –
8.13 X 8.9
8.14 new –
8.15 new –
8.16 X 8.10
8.17 X 8.11
8.18 new –
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4th ed Same? 3rd ed
8.19 X 8.12
8.20 new –
8.21 mod 8.13
8.22 X 8.14
8.23 X 8.15
8.24 new –
9.1 X 9.1
9.2 X 9.2
9.3 X 9.3
9.4 X 9.4
9.5 X 9.5
9.6 X 9.6
9.7 X 9.7
9.8 X 9.8
9.9 X 9.9
9.10 X 9.10
9.11 new –
9.12 X 9.11
9.13 X 9.12
9.14 X 9.13
9.15 X 9.14
9.16 X 9.15
9.17 X 9.16
9.18 X 9.17
9.19 X 9.18
9.20 X 9.19
9.21 X 9.20
9.22 X 9.21
9.23 X 9.22
9.24 X 9.23
9.25 X 9.24
9.26 new –
9.27 X 9.26
9.28 X 9.27
9.29 X 9.28
9.30 X 9.29
9.31 X 9.30
9.32 X 9.31
9.33 X 9.32
9.34 new –
9.35 X 9.33
9.36 X 9.34
9.37 X 9.35
9.38 X 9.36
9.39 X 9.37
9.40 X 9.38

4th ed Same? 3rd ed
10.1 X 10.1
10.2 X 10.2
10.3 mod 10.3, 10.5
10.4 X 10.4
10.5 X 10.6
10.6 X 10.7
10.7 new –
10.8 new –
10.9 new –
10.10 X 10.8
10.11 X 10.9
10.12 X 10.10
10.13 X 10.11
10.14 X 10.12
10.15 X 10.13
10.16 X 10.14
10.17 X 10.15
10.18 X 10.16
10.19 X 10.17
10.20 X 10.18
10.21 mod 12.43a
10.22 X 10.19
10.23 X 10.20
10.24 X 10.21
10.25 X 10.22
10.26 new –
10.27 X 10.23
10.28 X 10.24
10.29 new –
10.30 new –
10.31 X 10.25
10.32 X 10.26
10.33 new –
10.34 new –
11.1 X 11.1
11.2 X 11.2
11.3 X 11.3
11.4 X 11.4
11.5 X 11.5
11.6 X 11.6
11.7 X 11.7
11.8 new –
11.9 X 11.8
11.10 X 11.9
11.11 X 11.12
11.12 X 11.10

4th ed Same? 3rd ed
11.13 new –
11.14 X 11.14
11.15 X 11.15
11.16 X 11.16
11.17 X 11.17
11.18 new –
11.19 X 11.19
11.20 mod 11.20
11.21 new –
11.22 X 11.21
11.23 X 11.22
11.24 X 11.11
11.25 X 11.23
11.26 new –
11.27 new –
11.28 X 11.24
11.29 X 11.26
11.30 X 11.27
11.31 X 11.28
11.32 X 11.29
11.33 X 11.30
11.34 X 11.31
11.35 new –
12.1 X 12.1
12.2 X 12.2
12.3 X 12.3
12.4 X 12.4
12.5 X 12.5
12.6 X 12.6
12.7 X 12.7
12.8 X 12.8
12.9 X 12.9
12.10 X 12.10
12.11 X 12.11
12.12 X 12.12
12.13 X 12.13
12.14 mod 12.14
12.15 X 12.15
12.16 X 12.16
12.17 X 12.17
12.18 X 12.18
12.19 X 11.19
12.20 X 12.20
12.21 X 12.21
12.22 X 12.22
12.23 X 12.23
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4th ed Same? 3rd ed
12.24 X 12.24
12.25 X 12.25
12.26 mod 12.26
12.27 new –
12.28 X 12.27
12.29 X 12.28
12.30 X 12.29
12.31 X 12.30
12.32 X 12.31
12.33 X 12.32
12.34 X 12.33
12.35 X 12.34
12.36 X 12.35
12.37 X 12.36
12.38 X 12.37
12.39 X 12.38
12.40 X 12.39
12.41 X 12.40
12.42 X 12.41
12.43 X 12.42
12.44 new –
12.45 X 12.44
12.46 X 12.45
12.47 X 12.46
12.48 X 12.47

4th ed Same? 3rd ed
12.49 X 12.48
12.50 X 12.49
12.51 X 12.50
12.52 X 12.51
12.53 X 12.52
12.54 X 12.53
12.55 X 12.54
12.56 X 12.55
12.57 X 12.56
12.58 new –
12.59 X 12.57
12.60 X 12.58
12.61 X 12.59
12.62 X 12.60
12.63 X 12.61
12.64 X 12.62
12.65 X 12.63
12.66 X 12.64
12.67 X 12.65
12.68 X 12.66
12.69 X 12.67
12.70 X 12.68
12.71 X 12.69
12.72 X 12.70
12.73 X 12.71
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