Description: Find everything about standard projectile problem with lots of hints and wrong answer responses.

Learning Goal:

Understand how to apply the equations for 1-dimensional motion to the y and x directions separately in order to derive standard formulae for the range and height of a projectile.

A projectile is fired from ground level at time $t=0$, at an angle θ with respect to the horizontal. It has an initial speed v_{0}. In this problem we are assuming that the ground is level.

Part A

Find the time t_{H} it takes the projectile to reach its maximum height.
Express t_{H} in terms of v_{0}, θ, and g (the magnitude of the acceleration due to gravity).

- View Available Hint(s) (5)

ANSWER:

```
t
```


Part B

Find t_{R}, the time at which the projectile hits the ground.
Express the time in terms of v_{0}, θ, and g.

- View Available Hint(s) (3)

ANSWER:

$t_{R}=\frac{2\left(v_{0} \sin (\theta)\right)}{g}$

Part C

Find H, the maximum height attained by the projectile.
Express the maximum height in terms of v_{0}, θ, and g.

- View Available Hint(s) (3)

ANSWER:

$$
H(\theta)=\frac{1}{2 g}\left(v_{0} \sin (\theta)\right)^{2}
$$

Part D

Find the total distance R (often called the range) traveled in the x direction; in other words, find where the projectile lands.
Express the range in terms of v_{0}, θ, and g.
View Available Hint(s) (4)
ANSWER:

$$
R(\theta)=\frac{v_{0}^{2}}{g} \sin (2 \theta)
$$

The actual formula for $R(\theta)$ is less important than how it is obtained:

1. Consider the x and y motion separately.
2. Find the time of flight from the y-motion
3. Find the x-position at the end of the flight - this is the range.

If you remember these steps, you can deal with many variants of the basic problem, such as: a cannon on a hill that fires horizontally (i.e. the second half of the trajectory), a projectile that lands on a hill, or a projectile that must hit a moving target.

