Description: Find vectors between the various corners of a cube.

Constants I Periodic Table

In nature, substances often possess a crystalline structure. The basic component of a crystal is the unit cell, such as the rectangular parallelpiped illustrated in .

In the questions that follow, express your answers in terms of the unit vectors \hat{i} , \hat{j} , and \hat{k} , that is, a vector with components V_x , V_y , and V_z in the *x*, *y*, and *z* directions, respectively, is written $V_x \hat{i} + V_y \hat{j} + V_z \hat{k}$.

Part A

What is the vector $\vec{V}_{\rm CO}$ from point C to point O?

Express you answer in terms of any of the following: $L_1, L_2, L_3, \hat{i}, \hat{j}$, and \hat{k} .

View Available Hint(s) (1)

ANSWER:

$$\vec{V}_{\rm CO} = -L_1 \hat{j}$$

Part B

What is the vector $\vec{V}_{\rm OE}$ from point O to point E?

Express you answer in terms of any of the following: $L_1, L_2, L_3, \hat{i}, \hat{j}$, and \hat{k} .

ANSWER:

$$\vec{V}_{\mathrm{OE}}$$
 = $L_2 \hat{i} + L_3 \hat{k}$

Part C

What is the vector $\vec{V}_{\rm OF}$ from point O to point F?

Express you answer in terms of any of the following: $L_1, L_2, L_3, \hat{i}, \hat{j}$, and \hat{k} .

ANSWER:

$$\vec{V}_{\rm OF} = L_2 \hat{i} + L_1 \hat{j} + L_3 \hat{k}$$

Part D

What is the vector from A to B, $ec{V}_{
m AB}$?

Express you answer in terms of any of the following: $L_1, L_2, L_3, \hat{i}, \hat{j}$, and \hat{k} .

ANSWER:

 $\vec{V}_{\mathrm{AB}} = L_1 \hat{j}$

Part E

What is the vector $\vec{V}_{\rm BE}$ from point B to point E?

Express you answer in terms of any of the following: $L_1, L_2, L_3, \hat{i}, \hat{j}$, and \hat{k} .

ANSWER:

$$\vec{V}_{\mathrm{BE}} = -L_1\hat{j} + L_3\hat{k}$$