Description: A series of multiple-choice questions about the variables that appear in the standard formulae of one-dimensional kinematics (limited to the case of constant, non-zero acceleration).

```
Constants I Periodic Table
```

Learning Goal:

To understand the meaning of the variables that appear in the equations for one-dimensional kinematics with constant acceleration.

Motion with a constant, nonzero acceleration is not uncommon in the world around us. Falling (or thrown) objects and cars starting and stopping approximate this type of motion. It is also the type of motion most frequently involved in introductory kinematics problems.

The kinematic equations for such motion can be written as

$$egin{aligned} x(t) &= x_\mathrm{i} + v_\mathrm{i} t + rac{1}{2} a t^2, \ v(t) &= v_\mathrm{i} + a t, \end{aligned}$$

where the symbols are defined as follows:

- x(t) is the position of the particle;
- x_i is the *initial* position of the particle;
- v(t) is the velocity of the particle;
- v_i is the *initial* velocity of the particle;
- *a* is the acceleration of the particle.

In anwering the following questions, assume that the acceleration is constant and nonzero: $a \neq 0$.

Part A

The quantity represented by x is a function of time (i.e., is not constant).

ANSWER:

 true 	
false	

Part B

```
The quantity represented by x_{\mathrm{i}} is a function of time (i.e., is not constant).
```

\supset	tru	е

false

Recall that x_i represents an initial value, not a variable. It refers to the position of an object at some initial moment.

Part C

The quantity represented by $v_{\rm i}$ is a function of time (i.e., is not constant).

ANSWER:

true	
 false 	

Part D

The quantity represented by v is a function of time (i.e., is not constant).

ANSWER:

The velocity v always varies with time wher	the linear acceleration is nonzero.
O false	
• true	

Part E

Which of the given equations is not an explicit function of t and is therefore useful when you don't know or don't need the time?

$$igcap_{
m v} = x_{
m i} + v_{
m i}t + rac{1}{2}at^2$$

 $igcap_{
m v} = v_{
m i} + at$
 $igcolor v^2 = v_{
m i}^2 + 2a(x-x_{
m i})$

Part F

A particle moves with constant acceleration a. The expression $v_i + at$ represents the particle's velocity at what instant in time? ANSWER:

 \bigcirc only at time t=0

only at the "initial" time

 \odot when a time t has passed since the particle's velocity was $v_{
m i}$

More generally, the equations of motion can be written as

$$x(t) = x_{\mathrm{i}} + v_{\mathrm{i}} \; \Delta t + rac{1}{2} a \; \left(\Delta t
ight)^2$$

and

$$v(t) = v_{
m i} + a \; \Delta t_{
m i}$$

Here Δt is the time that has elapsed since the beginning of the particle's motion, that is, $\Delta t = t - t_i$, where t is the current time and t_i is the time at which we start measuring the particle's motion. The terms x_i and v_i are, respectively, the position and velocity at $t = t_i$. As you can now see, the equations given at the beginning of this problem correspond to the case $t_i = 0$, which is a convenient choice if there is only one particle of interest.

To illustrate the use of these more general equations, consider the motion of two particles, A and B. The position of particle A depends on time as $x_{\rm A}(t) = x_{\rm i} + v_{\rm i}t + (1/2)at^2$. That is, particle A starts moving at time $t = t_{\rm iA} = 0$ with velocity $v_{\rm iA} = v_{\rm i}$, from $x_{\rm iA} = x_{\rm i}$. At time $t = t_1$, particle B has twice the acceleration, half the velocity, and the same position that particle A had at time t = 0.

Part G

What is the equation describing the position of particle B?

View Available Hint(s) (1)

$$\begin{array}{l} \bigcirc \ x_{\rm B}(t) = x_{\rm i} + 2v_{\rm i}t + \frac{1}{4}at^2 \\ \bigcirc \ x_{\rm B}(t) = x_{\rm i} + 0.5v_{\rm i}t + at^2 \\ \bigcirc \ x_{\rm B}(t) = x_{\rm i} + 2v_{\rm i}(t+t_1) + \frac{1}{4}a(t+t_1)^2 \\ \bigcirc \ x_{\rm B}(t) = x_{\rm i} + 0.5v_{\rm i}(t+t_1) + a(t+t_1)^2 \\ \bigcirc \ x_{\rm B}(t) = x_{\rm i} + 2v_{\rm i}(t-t_1) + \frac{1}{4}a(t-t_1)^2 \\ \bigcirc \ x_{\rm B}(t) = x_{\rm i} + 0.5v_{\rm i}(t-t_1) + a(t-t_1)^2 \end{array}$$

Part H

At what time does the velocity of particle B equal that of particle A?

View Available Hint(s) (2)

$$\begin{array}{c} \bigcirc t = t_1 + \frac{v_{\mathrm{i}}}{4a} \\ \hline \bullet t = 2t_1 + \frac{v_{\mathrm{i}}}{2a} \\ \hline \bullet t = 3t_1 + \frac{v_{\mathrm{i}}}{2a} \\ \hline \end{array}$$